# 臺灣博碩士論文加值系統

(44.211.239.1) 您好！臺灣時間：2023/01/31 05:58

:::

### 詳目顯示

:

• 被引用:0
• 點閱:87
• 評分:
• 下載:5
• 書目收藏:0
 本研究旨在探討擺動翼型應用於線性往復發電的效率分析。應用RANS方法模擬NACA0015於不同入流攻角下之升力，使用標準k-ε模型透過外懸式襟翼相關實驗文獻以及計算模擬結果為數值方法做驗證，並以SST k-ω紊流模型輔助判斷單襟翼型失速之角度，假設翼面已達終端速度的二維等速度運動下，不考慮往復擺動翼於加速段擺動角度變化之影響，評估不同雷諾數下之計算結果，歸納出襟翼與主翼較佳升力值之幾何分布。研究中分析了多種主翼配置襟翼的組合。由分析結果知，於主翼面雷諾數1.60×105相同的基準下，透過標準k-ε及SST k-ω兩種不同紊流模型之計算判斷，單一主翼面單一襟翼相對主翼中線夾角30∘位於合成入流攻角6∘至8∘附近有較佳的升力，同樣條件下，若單一主翼搭配雙襟翼，則第二片襟翼之角度應為14∘至17∘之間。於此較佳幾何分布下陣列三主翼搭配四襟翼之升力則隨入流攻角增加至8∘而增加，以標準k-ε合成入流攻角6∘之單一翼組計算結果而言，三者相較於單一主翼無襟翼，升力分別提升了1.6倍、1.83倍以及2.91倍，由此可知主翼加上襟翼的簡單配置確實可提升整體流場升力，而單一主翼雙襟翼陣列翼組之間的間距比D至少要大於15，才能達到獨立而不受影響的陣列發電流場。
 Efficiency analyses of linear reciprocate power generation are performed in this study. Reynolds Averaged Navier-Stoke equations, incorporated with k-ε and SST k-ω eddy viscosity turbulence models, are applied to analyze the flow fields of NACA0015 with flaps at different angles of attack. To simplify the analyses, two-dimensional flows with constant foil velocity are assumed. The trend of efficiency variations are analyzed in this study, and the assumptions made will not affect the conclusions reached.Several different configurations of main foil with flaps are considered in this study. The results of numerical simulations performed at the Reynolds number of 1.60×105 show that, for a main foil with single flap at 30∘, better efficiencies are obtained when the angle of attack of the main foil is 6∘to 8∘to the incoming flow. For the same configuration but with a second flap added on the opposite side of the main foil, better efficiencies are obtained when the second flap is 14∘ to 17∘relative to the chord line of the main foil. For a foil array with three main foils and 4 flaps, the efficiency increases with the increase of angle of attack of the main foil. In addition, the efficiency variation is less sensitive when the angle of attack increased. It is found that, for the configurations considered above with angle of attack 6∘, the efficiency is 1.6, 1.83, and 2.91 times higher than the efficiency of a single foil without any flap. The numerical results also show that, for a foil array, main foils separation distance as large as 15 chord length, flow interaction still exists and larger separation distance is required to obtain independent flow field for every main foil with twin flaps set in foil arrays.
 摘要…………………………………………………………………………….….…...IAbstract…………...……………………………………………………………..........II目次………………………………………………………………………...……..…Ⅲ圖目次………………………………………………………………………….……Ⅳ表目次……………………………………………………………………………. Ⅵ第一章 緒論……………………………………………………………………..……11-1研究背景與動機………………………………………………………..…..11-2文獻回顧……………………………………………………………..…..…11-2-1擺動仿生翼………………………………………………………..…...31-2-2擺動發電翼………………………………………………………..…...31-3全文架構……………………………………………………………………..5第二章 物理模型與統御方程………………………………………………………..62-1往復發電翼型之架構設計…………………………………………………62-2翼面幾何之參數定義……………………………………………………....62-3翼面流場之運動條件與假設……………………………………………....72-4統御方程式及其假設……………………………………………………....82-4-1統御方程式………………………………………………………..…...82-4-2紊流模型………………………………...........................................10第三章 數值方法與驗證……………………………………………………….......133-1數值方法簡介…………………………………………………………….…133-2網格應用………………………………………………………………….....153-2-1網格設置與邊界條件……………………………………….……......153-2-2網格分布方式………………………………………………….……..203-3數值驗證與比較……………………………………………………….....25第四章 襟翼擺放之計算結果與討論………………………..………….……….…364-1單襟翼之計算………………………………………………………………..394-1-1單襟翼預估較佳升力區段…………………………………………...394-1-2單襟翼紊流模型之差異………..………………………………..…...604-2雙襟翼預估較佳升力區段……………………………………………...…...654-2-1入流攻角6∘下之計算…………….………………………………...654-2-2不同入流攻角下計算之比較…….……………...…………………...754-3不同雷諾數分析……………………..………………………………………874-4陣列三主翼與對稱襟翼………………………………………………...…...874-5單一主翼雙襟翼之陣列翼組距離…………………..………………...…...103第五章 結論與建議…………..……………………………………………………115參考文獻……………………………………………………………………………117
 Abiru H, Yoshitake A. 2011. Study on a Flapping Wing Hydroelectric Power Generation System. Journal of Environment and Engineering 6(1):178-186.Anderson JM, Streitlien K, Barrett DS, Triantafyllou MS. 1998. Oscillating foils of high propulsive efficiency. Journal of Fluid Mechanics 360:41-72.Ashraf MA, Young J, S. Lai JC, Platzer MF. 2011. Numerical Analysis of an Oscillating-Wing Wind and Hydropower Generator. AIAA Journal 49(7):1374-1386.Bernitsas MM, Raghavan K, Ben-Simon Y, Garcia EM. 2008. VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy From Fluid Flow. Journal of Offshore Mechanics and Arctic Engineering 130(4):041101-041101.Dickinson MH, Farley CT, Full RJ, Koehl MAR, Kram R, Lehman S. 2000. How Animals Move: An Integrative View. Science 288(5463):100-106.Fatih Birol, Maria van der Hoeven. 2014. International Energy Agency:World Energy Outlook 2014.Hover F, Haugsdal Ø, Triantafyllou M. 2004. Effect of angle of attack profiles in flapping foil propulsion. Journal of Fluids and Structures 19(1):37-47.Hu J, Xiong X, Ren K, Zhang L, Wei J. 2013. Validation of Turbulence Models in STAR-CCM+ by NACA 23012 Airfoil Characteristics.Issa RI. 1986. Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62(1):40-65.Kinsey T, Dumas G. 2008. Parametric study of an oscillating airfoil in a power-extraction regime. AIAA journal 46(6):1318-1330.Kinsey T, Dumas G, Lalande G, Ruel J, Mehut A, Viarouge P, Lemay J, Jean Y. 2011. Prototype testing of a hydrokinetic turbine based on oscillating hydrofoils. Renewable energy 36(6):1710-1718.Launder BE, Spalding DB. 1972. Lectures in mathematical models of turbulence. London; New York: Academic Press.Liao JC. 2007. A review of fish swimming mechanics and behaviour in altered flows. Philosophical Transactions of the Royal Society B: Biological Sciences 362(1487):1973-1993.Lighthill M. 1960. Note on the swimming of slender fish. Journal of fluid Mechanics 9(02):305-317.Lighthill S. 1975. Mathematical Biofluiddynamics. Society for Industrial and Applied Mathematics.Menter FR. 1994. Two-equation eddy-viscosity turbulence models for engineering applications. Aiaa Journal 32(8):1598-1605.Platt RC, Abbott IHA, Langley Aeronautical L. 1937. Aerodynamic characteristics of N.A.C.A. 23012 and 23021 airfoils with 20-percent-chord external-airfoil flaps of N.A.C.A. 23012 section. Annual report. 22:523-542.Sheldahl RE, Klimas PC, Energy USDo, Laboratories SN. 1981. Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines. Sandia National Laboratories.Simpson BJ, Hover FS, Triantafyllou MS. Experiments in direct energy extraction through flapping foils. The Eighteenth International Offshore and Polar Engineering Conference; 2008b: International Society of Offshore and Polar Engineers.Triantafyllou MS, Triantafyllou GS. 1995. An Efficient Swimming Machine. Scientific American 272(3):64-70.Wenzinger CJ. 1938. Pressure Distribution Over an N.A.C.A 23012 Airfoil with an N.A.C.A. 23012 External Airfoil Flap. NACA.Wilcox DC. 1993. Turbulence Modeling for CFD. DCW Industries Inc.White FM. 2003. Fluid Mechanics. McGraw-Hill.Young J, Ashraf MA, Lai JC, Platzer MF. 2013. Numerical Simulation of Fully Passive Flapping Foil Power Generation. AIAA journal 51(11):2727-2739.
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 無相關論文

 1 蘇衍綸（2002）。社會認知理論在烘焙學習上之應用。高雄餐旅學報，5，123-131。

 1 台灣東北部海域鎖管棒受網漁業捕撈能力之分析 2 養殖水產品認驗證制度分析 3 四旋翼載具之懸停控制 4 郵輪供應鏈之存貨策略：整合單一賣方與多買方之存貨模型 5 中國(上海)自由貿易試驗區之廠商吸引力指標之建立 6 應用封閉式分析網路程序法探討郵輪航線之發展策略─以兩岸航線為例 7 赤道西太平洋葉綠素甲濃度在非典型聖嬰期間之衛星觀測 8 利用微管束陣列膜固定化酵母菌 Kluyveromyces marxianus 生產生質乙醇 9 氣懸性污染垂直排放於上升型街谷之擴散特性風洞實驗研究 10 Cr–W–N薄膜之機械性質與抗氧化性 11 Hf－Ta鍍層氧化行為與機械性質 12 雙擺動推進翼的效率提升研究 13 應用品質機能展開於高速船服務品質之研究－以台北平潭航線為例 14 船舶進出港航行安全重要程度與滿意度分析-以臺中港為例 15 法夫酵母穀氧還蛋白之基因選殖、蛋白表現分析

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室