跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 05:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李皇蒔
研究生(外文):Lee,Huang-Shih
論文名稱:主翼配置襟翼的線性往復式發電效率研究
論文名稱(外文):Efficiency analyses of linear reciprocating power generator with main and flap foils.
指導教授:趙勝裕陳建宏陳建宏引用關係
指導教授(外文):Jaw,Sheng-YuhChen,Jiahn-Horng
口試委員:葉克家
口試委員(外文):Yeh,Keh-Chia
口試日期:2015-06-03
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:系統工程暨造船學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:118
中文關鍵詞:線性往復發電外懸式襟翼計算流體力學
外文關鍵詞:linear reciprocate power generationexternal airfoil flapCFD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:87
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討擺動翼型應用於線性往復發電的效率分析。應用RANS方法模擬NACA0015於不同入流攻角下之升力,使用標準k-ε模型透過外懸式襟翼相關實驗文獻以及計算模擬結果為數值方法做驗證,並以SST k-ω紊流模型輔助判斷單襟翼型失速之角度,假設翼面已達終端速度的二維等速度運動下,不考慮往復擺動翼於加速段擺動角度變化之影響,評估不同雷諾數下之計算結果,歸納出襟翼與主翼較佳升力值之幾何分布。
研究中分析了多種主翼配置襟翼的組合。由分析結果知,於主翼面雷諾數1.60×105相同的基準下,透過標準k-ε及SST k-ω兩種不同紊流模型之計算判斷,單一主翼面單一襟翼相對主翼中線夾角30∘位於合成入流攻角6∘至8∘附近有較佳的升力,同樣條件下,若單一主翼搭配雙襟翼,則第二片襟翼之角度應為14∘至17∘之間。於此較佳幾何分布下陣列三主翼搭配四襟翼之升力則隨入流攻角增加至8∘而增加,以標準k-ε合成入流攻角6∘之單一翼組計算結果而言,三者相較於單一主翼無襟翼,升力分別提升了1.6倍、1.83倍以及2.91倍,由此可知主翼加上襟翼的簡單配置確實可提升整體流場升力,而單一主翼雙襟翼陣列翼組之間的間距比D至少要大於15,才能達到獨立而不受影響的陣列發電流場。

Efficiency analyses of linear reciprocate power generation are performed in this study. Reynolds Averaged Navier-Stoke equations, incorporated with k-ε and SST k-ω eddy viscosity turbulence models, are applied to analyze the flow fields of NACA0015 with flaps at different angles of attack. To simplify the analyses, two-dimensional flows with constant foil velocity are assumed. The trend of efficiency variations are analyzed in this study, and the assumptions made will not affect the conclusions reached.
Several different configurations of main foil with flaps are considered in this study. The results of numerical simulations performed at the Reynolds number of 1.60×105 show that, for a main foil with single flap at 30∘, better efficiencies are obtained when the angle of attack of the main foil is 6∘to 8∘to the incoming flow. For the same configuration but with a second flap added on the opposite side of the main foil, better efficiencies are obtained when the second flap is 14∘ to 17∘relative to the chord line of the main foil. For a foil array with three main foils and 4 flaps, the efficiency increases with the increase of angle of attack of the main foil. In addition, the efficiency variation is less sensitive when the angle of attack increased. It is found that, for the configurations considered above with angle of attack 6∘, the efficiency is 1.6, 1.83, and 2.91 times higher than the efficiency of a single foil without any flap. The numerical results also show that, for a foil array, main foils separation distance as large as 15 chord length, flow interaction still exists and larger separation distance is required to obtain independent flow field for every main foil with twin flaps set in foil arrays.

摘要…………………………………………………………………………….….…...I
Abstract…………...……………………………………………………………..........II
目次………………………………………………………………………...……..…Ⅲ
圖目次………………………………………………………………………….……Ⅳ
表目次……………………………………………………………………………. Ⅵ
第一章 緒論……………………………………………………………………..……1
1-1研究背景與動機………………………………………………………..…..1
1-2文獻回顧……………………………………………………………..…..…1
1-2-1擺動仿生翼………………………………………………………..…...3
1-2-2擺動發電翼………………………………………………………..…...3
1-3全文架構……………………………………………………………………..5
第二章 物理模型與統御方程………………………………………………………..6
2-1往復發電翼型之架構設計…………………………………………………6
2-2翼面幾何之參數定義……………………………………………………....6
2-3翼面流場之運動條件與假設……………………………………………....7
2-4統御方程式及其假設……………………………………………………....8
2-4-1統御方程式………………………………………………………..…...8
2-4-2紊流模型………………………………...........................................10
第三章 數值方法與驗證……………………………………………………….......13
3-1數值方法簡介…………………………………………………………….…13
3-2網格應用………………………………………………………………….....15
3-2-1網格設置與邊界條件……………………………………….……......15
3-2-2網格分布方式………………………………………………….……..20
3-3數值驗證與比較……………………………………………………….....25
第四章 襟翼擺放之計算結果與討論………………………..………….……….…36
4-1單襟翼之計算………………………………………………………………..39
4-1-1單襟翼預估較佳升力區段…………………………………………...39
4-1-2單襟翼紊流模型之差異………..………………………………..…...60
4-2雙襟翼預估較佳升力區段……………………………………………...…...65
4-2-1入流攻角6∘下之計算…………….………………………………...65
4-2-2不同入流攻角下計算之比較…….……………...…………………...75
4-3不同雷諾數分析……………………..………………………………………87
4-4陣列三主翼與對稱襟翼………………………………………………...…...87
4-5單一主翼雙襟翼之陣列翼組距離…………………..………………...…...103
第五章 結論與建議…………..……………………………………………………115
參考文獻……………………………………………………………………………117

Abiru H, Yoshitake A. 2011. Study on a Flapping Wing Hydroelectric Power Generation System. Journal of Environment and Engineering 6(1):178-186.
Anderson JM, Streitlien K, Barrett DS, Triantafyllou MS. 1998. Oscillating foils of high propulsive efficiency. Journal of Fluid Mechanics 360:41-72.
Ashraf MA, Young J, S. Lai JC, Platzer MF. 2011. Numerical Analysis of an Oscillating-Wing Wind and Hydropower Generator. AIAA Journal 49(7):1374-1386.
Bernitsas MM, Raghavan K, Ben-Simon Y, Garcia EM. 2008. VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy From Fluid Flow. Journal of Offshore Mechanics and Arctic Engineering 130(4):041101-041101.
Dickinson MH, Farley CT, Full RJ, Koehl MAR, Kram R, Lehman S. 2000. How Animals Move: An Integrative View. Science 288(5463):100-106.
Fatih Birol, Maria van der Hoeven. 2014. International Energy Agency:World Energy Outlook 2014.
Hover F, Haugsdal Ø, Triantafyllou M. 2004. Effect of angle of attack profiles in flapping foil propulsion. Journal of Fluids and Structures 19(1):37-47.
Hu J, Xiong X, Ren K, Zhang L, Wei J. 2013. Validation of Turbulence Models in STAR-CCM+ by NACA 23012 Airfoil Characteristics.
Issa RI. 1986. Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62(1):40-65.
Kinsey T, Dumas G. 2008. Parametric study of an oscillating airfoil in a power-extraction regime. AIAA journal 46(6):1318-1330.
Kinsey T, Dumas G, Lalande G, Ruel J, Mehut A, Viarouge P, Lemay J, Jean Y. 2011. Prototype testing of a hydrokinetic turbine based on oscillating hydrofoils. Renewable energy 36(6):1710-1718.
Launder BE, Spalding DB. 1972. Lectures in mathematical models of turbulence. London; New York: Academic Press.
Liao JC. 2007. A review of fish swimming mechanics and behaviour in altered flows. Philosophical Transactions of the Royal Society B: Biological Sciences 362(1487):1973-1993.
Lighthill M. 1960. Note on the swimming of slender fish. Journal of fluid Mechanics 9(02):305-317.

Lighthill S. 1975. Mathematical Biofluiddynamics. Society for Industrial and Applied Mathematics.
Menter FR. 1994. Two-equation eddy-viscosity turbulence models for engineering applications. Aiaa Journal 32(8):1598-1605.
Platt RC, Abbott IHA, Langley Aeronautical L. 1937. Aerodynamic characteristics of N.A.C.A. 23012 and 23021 airfoils with 20-percent-chord external-airfoil flaps of N.A.C.A. 23012 section. Annual report. 22:523-542.
Sheldahl RE, Klimas PC, Energy USDo, Laboratories SN. 1981. Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines. Sandia National Laboratories.
Simpson BJ, Hover FS, Triantafyllou MS. Experiments in direct energy extraction through flapping foils. The Eighteenth International Offshore and Polar Engineering Conference; 2008b: International Society of Offshore and Polar Engineers.
Triantafyllou MS, Triantafyllou GS. 1995. An Efficient Swimming Machine. Scientific American 272(3):64-70.
Wenzinger CJ. 1938. Pressure Distribution Over an N.A.C.A 23012 Airfoil with an N.A.C.A. 23012 External Airfoil Flap. NACA.
Wilcox DC. 1993. Turbulence Modeling for CFD. DCW Industries Inc.
White FM. 2003. Fluid Mechanics. McGraw-Hill.
Young J, Ashraf MA, Lai JC, Platzer MF. 2013. Numerical Simulation of Fully Passive Flapping Foil Power Generation. AIAA journal 51(11):2727-2739.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top