跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/29 22:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭冠宏
研究生(外文):Guo, Guan-Hong
論文名稱:調整導線架構及感測圖案提升超音波元件特性之研究
論文名稱(外文):A Study in Adjusting the Conductive Layer Structure and Sensing Patterns to Enhance Ultrasonic Sensor Properties
指導教授:張忠誠張忠誠引用關係
指導教授(外文):Chang, Chun-Chen
口試委員:許渭州吳炳昇鄭國順張忠誠
口試委員(外文):Hsu, Wei-ChouWu, Biing-SengCheng, Kuo-ShengChang, Chun-Chen
口試日期:2015-07-05
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:64
中文關鍵詞:鋯鈦酸鉛微橋結構犧牲層
外文關鍵詞:lead zirconate titanatemicro bridge structuresacrificial layer
相關次數:
  • 被引用被引用:4
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:4
超音波感測器早期是由塊狀的壓電材料進行製作,近年來隨著微機電製程技術日趨成熟且穩定,因此近期的超音波感測器已由塊狀的壓電材料改為薄膜材料製作,薄膜式超音波感測器具有體積小以及大量製作之優點。
本論文採用為微橋結構以及犧牲層技術來製作薄膜式超音波感測元件,在壓電材料的部分則是使用鋯鈦酸鉛 ( PZT ),犧牲層與支撐層材料選用氧化鋅 ( ZnO ) 及氮化矽 ( Si3N4 ),氧化鋅 ( ZnO ) 及氮化矽( Si3N4 )在蝕刻過程中具有優越的蝕刻選擇性,對於犧牲層技術中的結構釋放相當有利。
本論文在超音波感測元件的組成上由38 × 41單一元件並聯組成,在超音波感測元件製作完成後,並透過電性量測以及特性量測兩部分進行量測,電性量測包含等效電路、介電參數、電滯曲線、共振頻率與反共振頻率量測以及機電耦合係數,特性量測的部分包含元件接收強度、元件靈敏度、聲場以及影像量測。本論文所製作出的超音波感測元件在頻率為6MHz時,具有較佳的靈敏度,其靈敏度為-175.41 dBreV/μPa。

Ultrasonic sensor, in the early stage, was prepared using block piezo-electric material. In recent years, along with the gradual maturity and stability of MEMs (Micro Electro Mechanical Systems), the material of recent ultrasonic sensor has been changed from block piezoelectric material into thin film material, in addition, thin film ultrasonic sensor has advantages such as small volume and suitability for mass production.

In this paper, micro bridge structure and sacrificial technology are adopted to prepare thin film ultrasonic sensor device. In the piezoelectric material part, lead zirconate titanate (PZT) is used, and the sacrificial layer and support layer materials selected are ZnO and Si3N4. Meanwhile, ZnO and Si3N4 have excellent etching selectivity during the etching process, therefore, it is very beneficial for the structural release in the sacrificial layer technique.

In this paper, the ultrasonic sensor device is made up of 38 × 41 single device in parallel, meanwhile, after ultrasonic sensor device is prepared, electrical measurement and characteristic measurement are used in the measurement process. The electrical property measurement includes equivalent circuit, dielectric constant, electrical hysteresis curve, resonant frequency and anti-resonant frequency measurement and electromechanical coupling coefficient. In the characteristic measurement part, it includes device receiving strength, device sensitivity, sonic field and image measurement. Moreover, the ultrasonic sensor device prepared in this paper has better sensitivity at frequency of 6MHz, which is about -175.41 dBreV/μPa.

目錄
致謝 I
摘要 II
Abstract III
Chapter 1 緒論 1
1-1超音波簡介 1
1-2超音波感測器簡介 1
1-3微機電聲波感測器簡介 2
1-4 研究動機 2
1-5章節概述 2
Chapter 2 壓電材料之薄膜理論及製程技術 3
2-1壓電效應 ( Piezoelectric effect ) 3
2-1-1正壓電效應 ( Direct piezoelectric effect ) 3
2-1-2逆壓電效應 ( Converse piezoelectric effect ) 3
2-2壓電材料種類 4
2-3壓電材料參數 5
2-3-1機電耦合係數 ( Electromechanical coupling coefficient, k ) 5
2-3-2機械品質因數 ( Mechanical quality factor, Qm ) 5
2-3-3頻率常數 ( Frequency constant, N ) 5
2-3-3居禮溫度 ( Curie temperature, Tc ) 6
2-4壓電材料特性 6
2-4-1極化 ( Polarization ) 6
2-4-2自發極化 ( Spontaneous polarization ) 7
2-4-3介電特性 ( Dielectric property ) 7
2-4-4電滯曲線 8
2-5鋯鈦酸鉛 ( PZT ) 壓電材料 8
2-6壓電方程式 9
2-7微影製程技術 11
2-8蝕刻製程技術 11
2-9犧牲層技術 12
Chapter 3 微橋結構之超音波感測元件設計及製作 13
3-1 LNO薄膜沉積溫度與退火製程 13
3-2 LNO薄膜分析 13
3-2-1薄膜厚度 13
3-2-2薄膜晶體結構 14
3-2-3薄膜表面 14
3-2-4薄膜表面型態 14
3-3 PZT薄膜沉積溫度與退火製程 14
3-4超音波元件製作 15
3-4-1製程準備 16
3-4-2沉積氧化鋅 ( ZnO ) 犧牲層 16
3-4-3蝕刻氧化鋅 ( ZnO ) 犧牲層 16
3-4-4沉積氮化矽 ( Si3N4 ) 支撐層 16
3-4-5沉積鈦 ( Ti ) 與白金 ( Pt ) 下電極 16
3-4-6沉積鎳酸鑭 ( LNO ) 緩衝層 17
3-4-7沉積鋯鈦酸鉛 ( PZT ) 壓電層 17
3-4-8沉積鈦 ( Ti ) 與白金 ( Pt ) 上電極 17
3-4-9沉積氮化矽 ( Si3N4 ) 防水層 17
3-4-10移除氧化鋅 ( ZnO ) 犧牲層 18
3-4-11元件封裝 18
Chapter 4 微橋結構之超音波感測元件量測及分析 19
4-1元件基本電性量測 19
4-1-1等效電路 19
4-1-2介電參數 19
4-1-3電滯曲線 20
4-1-4共振頻率與反共振頻率量測 20
4-1-5機電耦合係數 21
4-2元件特性量測 21
4-2-1元件接收強度量測 21
4-2-2元件靈敏度 22
4-2-3元件聲場量測 24
4-2-4元件影像量測 25
Chapter 5 結論 26
參考文獻 27

圖目錄
Fig. 1-1 電鐵材料特性及其應用 30
Fig. 1-2 聲波感測元件結構之種類 31
Fig. 2-1 機械能與電能轉換現象 32
Fig. 2-2 正壓電效應 32
Fig. 2-3 逆壓電效應 32
Fig. 2-4 極化過程 33
Fig. 2-5 極化因素 34
Fig. 2-6 電滯曲線 35
Fig. 2-7 ABO3結構 35
Fig. 2-8 PZT 相圖 36
Fig. 2-9莫爾百分比之關係圖 36
Fig. 2-10 壓電材料方向性 37
Fig. 2-11 等向性與非等向性蝕刻示意圖 37
Fig. 3-1 LNO薄膜厚度量測 38
Fig. 3-2 LNO薄膜XRD量測 38
Fig. 3-3 LNO薄膜表面粗糙度量測 39
Fig. 3-4 LNO薄膜SEM量測 40
Fig. 3-5 PZT薄膜厚度量測 40
Fig. 3-6 PZT薄膜SEM量測 41
Fig. 3-7 PZT薄膜表面粗糙度量測 42
Fig. 3-8 PZT薄膜XRD量測 43
Fig. 3-9 38 × 41單一元件並聯示意圖 43
Fig. 3-10 單一元件尺寸示意圖 44
Fig. 3-11 超音波元件製程示意圖 48
Fig. 3-12 超音波元件製程OM圖 52
Fig. 3-13 犧牲層斜率SEM圖 52
Fig. 3-14 掏空犧牲層SEM圖 53
Fig. 3-15 元件封裝 53
Fig. 4-1 RLC等效電路模型 54
Fig. 4-2 介電常數 54
Fig. 4-3Sawyer-Tower電路 55
Fig. 4-4 P-E電滯曲線 55
Fig. 4-5元件阻抗以及相位分析圖 56
Fig. 4-6元件接收強度量測之架構圖 56
Fig. 4-7 低頻 ( 5kHz ~ 200kHz ) 接收強度 57
Fig. 4-8高頻 ( 150kHz ~ 1MHz ) 接收強度 57
Fig. 4-9高頻 ( 1MHz ~ 12MHz ) 接收強度 58
Fig. 4-10 互易校準法量測元件靈敏度之架構圖 58
Fig. 4-11 低頻 ( 10kHz ~ 200kHz ) 靈敏度量測 59
Fig. 4-12 高頻 ( 200kHz ~ 1MHz ) 靈敏度量測 59
Fig. 4-13 高頻 ( 1MHz ~ 10MHz ) 靈敏度量測 60
Fig. 4-14 元件聲場量測之架構圖 60
Fig. 4-15 低頻元件聲場量測 61
Fig. 4-16 高頻元件聲場量測 62
Fig. 4-17 影像量測之架構圖 63
Fig. 4-18 影像量測 63

表目錄
Table 2-1 常見壓電材料種類 64
Table 4-1 機電耦合a與b常數 64
[1] Julius Cohen, Seymour Edelman, “Piezoelectric Effect in Oriented Polyvinylchloride and Polyvinylflouride”, Journal of Applied Physics, Vol. 42, pp. 3072, 1971.
[2] A. Abbate, J. Koay, J. Frankel, S. C. Schoeder, and P. Das, ” Signal Detection and Noise Suppression Using a Wavelet Transform Signal Processor :Application to Ultrasonic Flaw Detection”, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions, vol. 44 , pp.14-26,1997.
[3] Ohnishi, O., NEC Corp., Kawasaki, Myohga, O., Uchikawa, T., Tamegai, M., “Piezoelectric ultrasonic motor using longitudinal-torsional composite resonance vibration”, IEEE Ultrasonics, Vol.40, pp.687-693, 1993
[4] C.C. Chang, and C. S. Tang,“ An integrated pyroelectric infrared sensor with a PZT thin film “, Sensor and Actuators A , Vol.65,pp.171-174,1998
[5] J. Leonard and H. F. Durrant – Whyte, “ Application of multi-target tracking to sonar based mobile robot navigation”, in Int. Conf. Decision Contr., 1990.
[6] F. H. Fishers and V. P. Simmons, “ Sound absorption in sea water”, J. Acoust. Soc. Am., 62, pp. 558 – 564, 1977.
[7] R. Inaba, A. Tokusfima, O. Kawasaki, Y. Ise, and H. Yoneno, “Piezoelectric ultrasonic motor”, Proceeding of the IEEE Ultrasonic Symp, Vol. 40, pp. 687-693, 1987.
[8] Sanghoon Lee, Daejong Kim, Micheal D. Bryant, Frederick F. Ling, “A micro corona motor”, Sensor and Actuators A 118, pp. 226-232, 2005.
[9] R. Feynman, “Infinitesimal machinery”, J. of Micro electromechanical System, Vol. 2, No. 1, pp. 4-14, 1993.
[10]K. Petersen, “Silicon as a mechanical material”, Proceedings of the IEEE, pp. 420-457, 1982.
[11] S. V. Krishnaswamy, J. Rosenbaum, S. Horwitz, C. Vale, R. A. Moore, “Film Bulk Acoustic Wave Resonator Technology”, Ultrasonic Symposium Proceedings, Vol. 1, pp. 529-536, 1990.
[12] J. Eisenmenger, C. Brand, P. Leiderer, “Microbridge on YBa_2 Cu_3 O_(7-δ) thin films patterned by reversible laser annealing”, Physica C: Superconductivity and its applications, Vol. 262, Issue 3, pp. 168-172, 1996.
[13] Ritter, T., “Single Crystal PZN/PT-Polymer Composites for Ultrasound Transducer Applications”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 47, No. 4, pp. 792-800, 2000.
[14] Qing Xin Su, Paul Kirby, Eiju Komuro, Massaaki Imura, Qi Zhang, Roger Whatmore, “Thin-film bulk acoustic resonators and filters using ZnO and lead-zirconium-titanate thin films”, IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 4, pp. 769-778, April 2001.
[15] 蘇明德, “壓電陶瓷及導電陶瓷” 科學發展, Vol. 446, pp. 68-71, 2010.
[16] S. Nakamura, H. Numasato, K. Sato, M. Kobayashi, I. Naniwa, “A push–pull multi-layered piggyback PZT actuator”, Microsystem Technologies, Vol. 8, Issue 2-3, pp. 149-154, May2002.
[17] Laishram Radhapiyari, O.P. Thakur, Chandra Prakash, “Structural and dielectric properties of the system Ba1-xSrxFe0.01Ti0.99O3”, Materials Letters, Vol. 57, pp. 1824-1829, 2003.
[18] C.B.Eom, R.B.V.Dover, J.M.Phillips, D.J.Werder , J.H. Marshall ,“Fabricaton and properties of epitaxial ferroelectric heterostructures with (SrRuO¬3) isotropic metallic oxide electrode ”, Appl. Phys. Lett. 63(18), pp.2570,1993.
[19] C.L Huang, B.H Chen, L Wu, “Application feasibility of Pb(Zr,Ti)O3 ceramics fabricated from sol–gel derived powders using titanium and zirconium alkoxides”, Materials Research Bulletin, Vol. 39, Issues 4-5, pp. 523-532, 2004.
[20] Kun Zhang, Jaka Sunarso, Zongping Shao, Wei Zhou, Chenghua Sun, Shaobin Wang, Shaomin Liu, “Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production”, RSC Adv, Vol. 1, pp. 1661-1676, 2011.
[21] P. Muralt, “Piezoelectric and pyroelectric Microsystem based on ferroelectric thin film”, Application of Ferroelectrics IEEE International Symposium, Vol. 1, pp. 145-151, 1996.
[22] D. Damjanovic, “Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics”, Rep. Prog. Phys., Vol. 61, pp. 1267-1324, 1998.
[23] 蔡松嬴, “水下超音波微橋結構元件之緩衝層厚度對頻率響應變化之模擬及製作研究”, 國立臺灣海洋大學, 電機工程研究所碩士論文, 2013.
[24] 施建宇, “壓電複合材料板的振動探討及其應用在超音波馬達之初步研究”, 國立成功大學, 土木工程學系碩士論文, 2003.
[25] Y. H. Yeh, “The Study of LiTaO3 Pyroelectric Thin Film IR Detectors Prepared by the Sol-Gel Process with Various Annealing Treatments”, National Sun-Yat-Sen University, Taiwan, 2004.
[26] Choon-Sup Lee, Jae-Duck Lee, Chul-Hi Han, “A new wide-dimensional freestanding microstructure fabrication technology using laterally formed porous silicon as a sacrificial layer”, Sensor and Actuators A: Physical, Vol. 84, Issues 1-2, pp. 181-185, 1 August 2000.
[27] Yosuke Okamura, Saori Utsunomiya, Hidenori Suzuki, Daisuke Niwa, Tetsuya Osaka, Shinji Takeoka, “Fabrication of free-standing nanoparticle-fused nanosheets and their hetero-modification using sacrificial film”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 318, Issues 1-3, pp. 184-190, 1 April 2008.
[28] F. Hedrich, S. Billat, W. Lang, “Structuring of membrane sensors using sacrificial porous silicon”, Sensors and Actuators A: Physical, Vol. 84, Issue 3, pp. 315-323, 1 September 2000.
[29] 徐文祥、許鎮鵬, “微機電製程中的犧牲層技術之發展現況”, 半導體科技, 2005.
[30] 郭忠山, “鋯鈦酸鉛(PbZr0.5Ti0.5O3)薄膜沉積於鎳酸鑭(LaNiO3)基板及其應用於超音波半導體感測元件之特性分析”, 國立臺灣海洋大學, 電機工程研究所碩士論文, 1998.
[31] J. Drennam, C. P. Tavares, B. C. H. Steele, “An electron microscope investigation of phases in the system La-Ni-O”, Mater. Res. Bulletin, Vol. 17, pp. 621-623, 1982.
[32] 陳建宏, “鋯鈦酸鉛微機電製程薄膜式超音波陣列元件之研究”, 國立臺灣海洋大學, 電機工程研究所碩士論文, 2009.
[33] C.C. Yang, M.S. Chen, T.J. Hong, C.M. Wu, J.M. Wu, T.B. Wu, “Preparation of (100)-oriented metallic LaNiO3 thin films on Si substrates by radio frequency magnetron sputtering for the growth of textured Pb(Zr0.53Ti0.47)O3”, Appl. Phys. Lett., Vol. 66, pp. 2643-2645, 1995.
[34] 楊振寰, “鋯鈦酸鉛微橋結構聲波感測元件之製作及其應用”, 國立臺灣海洋大學, 電機工程研究所碩士論文, 2012.
[35] Jina Kim, Benjamin L. Grisso, Jeong K. Kim, Dong Sam Ha, and Daniel J. Inman, “Electrical Modeling of Piezoelectric Ceramics for Analysis and Evaluation of Sensory Systems”, IEEE Sensors Applications Symposium, pp. 122-127, 2008.
[36] C.B. Sawyer and C.H. Tower, “Rochelle Salt as a dielectric”, Physical review, Vol. 35, pp. 269-275, 1930.
[37] 蔡億達, “PZT:Nb 陶瓷之製作及其在表面聲波濾波器的應用”, 國立成功大學, 電機工程學系碩士論文, 2003.
[38] 盧平強, “鈦酸鉛鋯薄膜感音器之研製”, 國立臺灣海洋大學, 電機工程研究所碩士論文, 1995.
[39] K. G. Lee, “Simulation, Fabrication, and Characteristic Measurement of Piezoelectric Ultrasound Transducer with Non-uniform Thickness”, National Cheng Kong University, 1993.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊