跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/02/05 22:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖士傑
研究生(外文):Liao, Shih-Chieh
論文名稱:奈米領結與奈米扯鈴桿之角度變化對光催化增益的影響
論文名稱(外文):Various angles of nano silver bowtie and diabolo for enhancing photocatalytic activity
指導教授:王星豪林資榕
指導教授(外文):Wang, Shing-HoaLin, Tzy-Rong
口試委員:吳文發邱柏凱
口試委員(外文):Wu, Wen-FaChiu, Po-Kay
口試日期:2015-07-31
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:49
中文關鍵詞:表面電漿共振表面增強拉曼散射光催化紅移
外文關鍵詞:LSPRSERSphoto catalysisredshift
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用光阻劑及電子束微影技術(Electron beam lithography technique)在二氧化鈦薄膜上,蒸鍍不同角度頂錐角的奈米銀領結形與扯鈴形結構。此結構會於金屬Ag/TiO2介面及空氣/TiO2介面,產生局部表面電漿共振及局部電場增強效應,製備出高效能光吸收的二氧化鈦光觸媒元件。結果顯示,領結形與扯鈴形的銀奈米結構,不僅局部表面電漿共振增強,且隨著頂錐角的角度減小,拉曼光譜之強度越顯著。基於頂錐角的尖端處,具有最大電流密度,故表面電漿共振電場最強位置,侷限於領結形的尖端間隙處或侷限於扯鈴形的腰寬。隨著頂錐角的角度增大,其棱邊長度增長達到表面電漿極化子(SPP)共振腔條件時,產生干涉駐波,是共振波長紅移的原因。反之,近紫外光區的短波長有藍移現象,推測歸咎於短波長駐波沿著領結形軸與扯鈴形軸駐留,導致等效折射率效減小。奈米銀領結形與扯鈴形結構元件置於甲基藍溶液,呈現頂錐角的角度越小的奈米結構,其降解速率越快,證實增強的表面電漿效應,強力助於光的吸收,及增多自由基的數量,促進二氧化鈦光催化之功效提升。


Photoresist and electron beam lithography technique were used to fabricate the evaporated nano silver bowtie and diabolo structure with various tip angles embedded on the surface of titanium dioxide film. The reinforced localized surface plasmon resonance and electric field can be generated at the metallic Ag/TiO2 interface and air/TiO2 interface for making a high light absorbance of titanium dioxide photocatalytic device. The results in both bowtie and diabolo structure show that not the localized surface plasmon resonance (LSPR) enhances, but also the Raman intensity amplifies as the tip angle reduces. On the basis of maximum electric current density at the apex, the strongest surface plasmon resonant confines at the tip gap of bowtie and the waist width of diabolo. As tip angle increase, the resonant wavelength of the standing wave matches the lengthened length of prism edges and red shifts. In the short wavelength region, as tip angle increases, the resonant peak wavelength blueshift presumably attributes to the decrease in the effective index of the local SPP standing wave mainly resided along the both bowtie axis and diabolo axis. The fastest photocatalytic rate by placing bowtie Ag/TiO2 with tip angle 30° in methylene blue solution reveals the best degradation efficiency. Because a great amount of light absorbance can generate many valid radicals by surface plasman resonance enhanced electric field.
Content Caption List
中文摘要…………………………………………………………………………….2
Abstract……………………………………………………….……...……….....….3
Content Caption List……………………..……………….……………...…..….4
Figure Caption List……………..……………….………..………………………….5
Chapter 1 Introduction…………………….……………………………………6
Chapter 2 Experimental procedure…………………………………………..8
2.1 Deposition of TiO2 film on Si wafer by DC sputtering………………………8
2.2 Making bowtie and diabolo patter by using E-beam lithography ….…..……8
2.3 Evaporation of Ag into the pattern………………………………...…………8
2.4 Characterization of photocatalyst film………….………………………....10
2.5 Photocatalytic degradation effect by methylene blue……………..….……10
Chapter 3 Results and Discussions……………………………..……………11
3.1 TiO2 film analysis by X-ray diffraction………………………..……………11
3.2 Bowtie and diabolo analysis by SEM…………….……………………..….12
3.3 SERS effect by Raman spectroscopy…….…………….…………….…….13
3.4 UV-VIS-NIR analysis…….…………….…………….…………….……...16
3.5 Degradation of Methylene Blue……….…………….…………….………18
Conclusions…….………….…………….………...……….…………….………..23
Reference…….…………….…………….…………….…………….…………..24

Figure Caption List
Fig 1 Schematic dimension of nano Ag bowtie (a~c) and diabolo (d~f) with a tip angle at 30°, 60° and 90° respectively……………………………………………………9
Fig 2 The cross-section schematic dimension of nano Ag bowtie(a) and diabolo(b)..10
Fig 3 XRD diffraction of various bowtie Ag/TiO2 and diabolo Ag/TiO2 photocatalyst. ……………………………………………………………………….11
Fig 4 SEM morphology of nano bowtie Ag/TiO2 (a,b,c) and nano diabolo Ag/TiO2 (d,e,f) at various tip angles…………………………………………………………12
Fig 5 Raman spectra of (a) nano bowtie Ag/TiO2 and (b)nano diabolo Ag/TiO2 with various angles. The stars represent the vibration modes of R6G…………………….14
Fig 6 The comparison of enhancement factors obtained in Fig 5.………....15
Table 1 AEF calculation process use table shown………………………....................15
Fig 7 UV-VIS-NIR spectra of (a) nano bowtie Ag/TiO2 (b) nano diabolo Ag/TiO2, both with various tip angles………………………………………………………….17
Fig 8 Photocatalysis of nano bowtie Ag/TiO2 and nano diabolo Ag/TiO2 with various tip angles on the methylene blue (MB) under LED exposure at the composite wavelength…………………………………………………………………………19
Fig 9 Schematic diagram for the SPR enhanced photocatalytic mechanism at (a) the gap cavity of Bowtie and (b) the distribution of SPR in Diabolo…………………..20

[1] Anuja Bokare, Mrinal Pai, Anjali A. Athawale .Surface modified Nd doped TiO2 nanoparticles as photocatalysts in UV and solar light irradiation. Solar Energy 91 (2013) 111–119
[2] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69–96.
[3] A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Photochem. Rev. 1 (2000) 1–21.
[4] R.J. Watts, S. Kong, M.P. Orr, G.C. Miller, B.E. Henry, Photocatalytic inactivation of coliform bacteria and viruses in secondary waste water effluent, Water Res. 29 (1995) 95–100.
[5] A.L. Linsebigler, G. Lu, J.T. Yates Jr., Photocatalysis on TiO2 surfaces: principles,
mechanisms, and selected results, Chem. Rev. 95 (1995) 735–758.
[6] B. Ohtani, Y. Ogawa, S. Nishimoto, Photocatalytic activity of amorphous anatase
mixture of titanium(IV) oxide particles suspended in aqueous solutions, J. Phys. Chem. B 101 (1997) 3746–3752.
[7] S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V.
Murugesan, Solar photocatalytic degradation of azo dye: comparison of photocatalytic
efficiency of ZnO and TiO2, Sol. Energy Mater. Sol. Cells 77 (2003) 65–82.
[8] Sharma, M., Jain, T., Singh, S., Pandey, O.P., 2012. Photocatalytic
degradation of organic dyes under UV–Visible light using capped ZnS
nanoparticles. Solar. Energy 86, 626–633.
[9] P.V. Kamat, D. Meisel, Nanoparticles in advanced oxidation processes, Curr. Opin.
Colloid Interface Sci. 7 (2002) 282–287.
[10] Hao Ming Chen, Chih Kai Chen, Chih-Jung Chen .al, Plasmon Inducing Effects for Enhanced Photoelectrochemical Water Splitting: X ray Absorbance Approach to Electronic Structures, ACS Nano, 6, P7362 (2012)
[11] Jing Zhao, Xiaoyu Zhang, Chanda Ranjit Yonzon, Amanda J Haes, Richard P Van Duyne, Localized surface plasmon resonance biosensors, nanomedicine (2006) 1(2), 219-228
[12] B Cui, L Clime, K Li, T Veres, Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy, nanotechnology 19(2008) 145302
[13] Alfred J. Baca, Tu T. Truong, Lee R. Cambrea, Jason M. Montgomery, Stephen K. Gray, Daner Abdula, Tony R. Banks, Jimin Yao, Ralph G. Nuzzo, and John A. Rogers , Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering, APPLIED PHYSICS LETTERS 94, 243109 2009
[14] Erik C. Dreaden, Rachel D. Near, Tamer Abdallah, M. Hassan Talaat, and Mostafa A. El-Sayed , Multimodal plasmon coupling in low symmetry gold nanoparticle pairs detected in surface-enhanced Raman scattering, APPLIED PHYSICS LETTERS 98, 183115 2011
[15] Tzy-Rong Lin, Shu-Wei Chang, Shun Lien Chuang, Zhaoyu Zhang, and P. James Schuck, Coating effect on optical resonance of plasmonic nanobowtie antenna, APPLIED PHYSICS LETTERS 97, 063106 2010
[16] Wei Ding, Renaud Bachelot, Sergei Kostcheev, Pascal Royer, and Roch Espiau de Lamaestre, Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles, JOURNAL OF APPLIED PHYSICS 108, 124314 2010
[17] Zeyu Pan and Junpeng Guo, Enhanced optical absorbance and electric field resonance in diabolo metal bar optical antennas, OPTICS EXPRESS 32491
[18]. Y. C. Chao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection”, Science 297, 1536-1540 (2002).
[19] Yang, W. F., Chen, R., Liu, B., Gurzadyan, G. G., Wong, L. M., Wang, S. J., and Sun, H. D., “Surface-plasmon enhancement of band gap emission from ZnCdO thin films by gold particles,” Applied Physics Letters, Vol. 97, No. 6, 061104 (2010).
[20] Z. Fan, R. Kanchanapally and P. C. Ray, J. Phys. Chem. Lett., 2013, 4, 3813–3818.
[21] Qianqian Su, Xiaoyuan Ma, Jian Dong, Caiyun Jiang, and Weiping Qian, A Reproducible SERS Substrate Based on Electrostatically Assisted APTES-Functionalized Surface-Assembly of Gold Nanostars, ACS Appl. Mater. Interfaces, 2011, 3, 1873–1879.
[22] Ji Chen and Zhaoyu Zhang, Bowtie nanoantennas with symmetry breaking, Journal of Nanophotonics 093798-1 Vol. 9, 2015
[23] V. Rodríguez-González, S. Obregón Alfaro, L.M. Torres-Martínez, Sung-Hun Cho, Soo-Wohn Lee, Silver–TiO2 nanocomposites: Synthesis and harmful algae bloom UV-photoelimination, Applied Catalysis B: Environmental 98 (2010) 229–234

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 〔8〕 吳培儷,陸宛蘋,“台灣非營利部門之現況與組織運作分析”,康寧學報,第四期。
2. 〔12〕 官有垣,2000,“非營利組織在台灣的發展:兼論政府對財團法人基金會的法令規範”,中國行政評論,第10 卷1 期,頁75-110。
3. 〔13〕 官有垣、李宜興,2002,“地方民間組織與政府在社區營造的伙伴關係:以嘉義新港文教基金會推動淨港計畫為例”,研考雙月刊,第229 期,頁87-99。
4. 〔15〕 林淑馨,2004,“日本規範非營利組織的法制改革之研究”,東吳政治學報,第19期,頁71-110。
5. 〔20〕 徐震,1995,“論社區意識與社區發展”,社會建設,90,頁4-12。
6. 〔21〕 徐震,2005,“台灣社區發展與社區營造的異同-論社區工作中微視與鉅視面的兩條路線”,社區發展季刊,107期,頁22-31
7. 〔22〕 張英陣,1999 ,“企業與非營利組織的伙伴關係”,社區發展季刊季刊,第85期,頁62-71。
8. 〔24〕 張培新,2003“全球化浪潮下之公民資質初探”,人文及社會學科教學通訊,第14卷1期,頁58-75。
9. 〔26〕 陳玉賢,1997,“學校社區化、社區學校化是「教育改革工程」的良藥”,臺灣教育,558,頁47-50
10. 〔44〕 潘淑滿、蔡青墉、楊榮宗,2000,“評估「社區總體營造」在現階段推行社區發展工作之成效:都市社區落實草根民主的可能途逕”,社會工作學刊,第6期,頁87-122。
11. 〔50〕 羅秀華,2004,“社區自主與政策的對話”,社區發展季刊,第107期,頁146-160。
12. 〔51〕 顧忠華,1998,“公民社會與非營利組織--一個理論性研究的構想”,亞洲研究,第26 期,頁8-23。
13. 〔52〕 顧忠華,2000,“二十一世紀非營利與非政府組織的全球化”,新世紀智庫論壇季刊,第11期,頁17-24。
14. 〔53〕 延藤安弘,1999,“個人自律性、市民共同性、行政的公共性-一個創造性的社區營造過程中居民所應扮演的日常生活角色”,城市與設計學報,第9/10期,頁215~233。
15. 〔17〕 U.N.Economic and Social Council,1956,“Official Records of the 24th Session Annexes, Agenda Item 4,20th Report of the Administrative Committee on the Council CE/(2931)”.Annex ,P.14. 譯者:徐震,2005,“台灣社區發展與社區營造的異同-論社區工作中微視與鉅視面的兩條路線”,社區發展季刊,107期,頁22-31