跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/01/30 13:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:余境倫
研究生(外文):Yu, Jing-Lun
論文名稱:中孔洞生物活性玻璃纖維微球之製備與特性分析
論文名稱(外文):Preparation and characterization of mesoporous bioactive glass fibrous microspheres
指導教授:許富銀
指導教授(外文):Hsu, Fu-Yin
口試委員:蔡曉雯吳錫芩林秀美
口試委員(外文):Tsai, Shiao-WenWu, Hsi-ChinLin, Showe-Mei
口試日期:2014-12-26
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:生命科學暨生物科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:49
中文關鍵詞:生物活性玻璃纖維微球骨組織工程
外文關鍵詞:Bioactive glassFiberousMicrosphereBeadsBone tissue engineering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:369
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
謝辭 I
摘要 III
Abstract IV
目錄 V
圖表目錄 VIII
第一章 緒論 1
1-1 研究背景 1
1-2 骨組織介紹 3
1-3 骨組織工程 5
1-3.1 生物陶瓷材料 7
1-3.2 生物活性玻璃 8
1-3.2 中孔洞生物活性玻璃 9
1-4 電氣紡絲 10
1-5 表面纖維結構 11
1-6 微球型態 12
1-7 研究動機與目的 14
第二章 材料與方法 15
2-1 實驗材料與儀器設備 15
2-1.1 實驗材料 15
2-1.2 實驗儀器 18
2-2 實驗方法與原理 19
2-2.1 中孔洞生物活性玻璃前驅溶液之製備 19
2-2.2 中孔洞生物活性玻璃纖維之製備 20
2-2.3 中孔洞生物活性玻璃粉體之製備 20
2-2.4 微球支架之製備 21
2-2.5 微球支架之特性分析 21
2-2.6 微球支架之細胞活性測試 24
2-2.7 微球支架之離子釋放影響測試 25
第三章 結果與討論 26
3-1 電壓與濃度對微球粒徑影響 26
3-2 表面結構與形態觀察 30
3-3 孔隙結構分析 33
3-4 TEM微結構觀察 35
3-5 藥物釋放結果 36
3-6 微球支架之細胞活性測試 39
3-7 微球支架之離子釋放影響測試 42
第四章 結論 44
第五章 參考文獻 45

1. Lane JM, Tomin E, Bostrom MP. Biosynthetic bone grafting. Clin Orthop Relat Res. 1999; (367 Suppl): S107-117.
2. St John TA, Vaccaro AR, Sah AP, Schaefer M, Berta SC, Albert T, Hilibrand A. Physical and monetary costs associated with autogenous bone graft harvesting. Am J Orthop. 2003; 32(1): 18-23.
3. Tiedeman JJ, Garvin KL, Kile TA, Connolly JF. The role of a composite demineralized bone matrix and bone marrow in the treatment of osseous defects. Orthopedics. 1995; 18(12): 1153-1158.
4. Venkatesan J, Kim SK. Chitosan composites for bone tissue engineering-an overview. Mar Drugs. 2010; 8(8): 2252-66.
5. Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci. 2006; 1092: 385-396.
6. Dong MS, Wang DL.生物支架材料—组织工程连载之二. China Biotechnology. 2014; 34(6): 122-127.
7. Jarcho M, Kay JF, Gumaer KI, Doremus RH, Drobeck HP. Tissue, cellular and subcellular events at a bone-ceramic hydroxylapatite interface. J Bioeng. 1977; 1(2): 79-92.
8. Rejda BV, Peelen JG, de Groot K. Tri-calcium phosphate as a bone substitute. J Bioeng. 1977; 1(2): 93-97.
9. Le Geros RZ, Lin S, Rohanizadeh R, Mijares D, Le Geros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med. 2003; 14(3): 201-209.
10. Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1971; 5: 117–141.
11. Wu C, Chang J, Ni S, Wang J. In vitro bioactivity of akermanite ceramics. J Biomed Mater Res A. 2006; 76(1): 73-80.
12. Hench LL. Bioceramics. J Am Ceram Soc. 1998; 81: 1705-1728.
13. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP. Bioactive glass in tissue engineering. Acta Biomater. 2011; 7(6): 2355-2573.
14. Sepulveda P, Jones JR, Hench LL. Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses. J Biomed Mater Res. 2001; 58(6): 734-740.
15. Lian HY, Liang YH, Yamauchi Y, Wu KCW. A hierarchical study on load/release kinetics of guest molecules into/from mesoporous silica thin films. J Phys Chem C. 2011; 115: 6581-6590.
16. Yan X, Yu C, Zhou X, Tang J, Zhao D. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew Chem Int Ed Engl. 2004; 43(44): 5980-5984.
17. Rohanov#westeur034# D, Boccaccini AR, Yunos DM, Horkavcov#westeur034# D, Březovsk#westeur034# I, Helebrant A. TRIS buffer in simulated body fluid distorts the assessment of glass-ceramic scaffold bioactivity. Acta Biomater. 2011; 7(6): 2623-2630.
18. Vallet-Reg#westeur046# M. Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chemistry. 2006; 12(23): 5934-5943.
19. Wu C, Chang J, Xiao Y. Mesoporous bioactive glasses as drug delivery and bone tissue regeneration platforms. Ther Deliv. 2011; 2(9): 1189-1198.
20. Lu T, Li Y, Chen T. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int J Nanomedicine. 2013; 8: 337-350.
21. Frenot, A, Ioannis SC. Polymer nanofibers assembled by electrospinning. Adv Colloid Interface Sci. 2003; 8(1): 64-75.
22. Boudreau NJ, Jones PL. Extracellular matrix and integrin signalling: the shape of things to come. Biochem J. 1999; 339 (Pt 3): 481-488.
23. Sisson K, Zhang C, Farach-Carson MC, Chase DB, Rabolt JF. Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin. J Biomed Mater Res A. 2010; 94(4): 1312-1320.
24. Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering Part II: Rapid prototyping techniques. Tissue Eng. 2002; 8(1): 1-11.
25. Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering Part I: Traditional factors. Tissue Eng. 2001; 7(6): 679-89.
26. Woo KM, Jun JH, Chen VJ, Seo J, Baek JH, Ryoo HM, Kim GS, Somerman MJ, Ma PX. Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization. Biomaterials. 2007; 28(2): 335-343.
27. 呂孟儒. 製備中孔洞生物活性玻璃奈米纖維/第一型膠原蛋白複合骨填補基質及其對骨再生之影響. 國立臺灣海洋大學碩士論文. 2013.
28. Chapekar MS. Tissue engineering: challenges and opportunities. J Biomed Mater Res. 2000; 53(6): 617-620.
29. Siddiqui N, Pramanik K. Effects of micro and nano beta-TCP fillers in freeze-gelled chitosan scaffolds for bone tissue engineering. J Appl Polym Sci. 2014; 131(21): 41025
30. Gravel M, Gross T, Vago R, Tabrizian M. Responses of mesenchymal stem cell to chitosan-coralline composites microstructured using coralline as gas forming agent. Biomaterials. 2006; 27(9): 1899-1906.
31. Qiu QQ, Ducheyne P, Ayyaswamy PS. 3D bone tissue engineered with bioactive microspheres in simulated microgravity. In Vitro Cell Dev Biol Anim. 2001; 37(3): 157-165.
32. Qiu QQ, Ducheyne P, Ayyaswamy PS. Fabrication, characterization and evaluation of bioceramic hollow microspheres used as microcarriers for 3-D bone tissue formation in rotating bioreactors. Biomaterials. 1999; 20(11): 989-1001.
33. Wong HL, Wang MX, Cheung PT, Yao KM, Chan BP. A 3D collagen microsphere culture system for GDNF-secreting HEK293 cells with enhanced protein productivity. Biomaterials. 2007; 28(35): 5369-5380.
34. Kim HW, Gu HJ, Lee HH. Microspheres of collagen-apatite nanocomposites with osteogenic potential for tissue engineering. Tissue Eng. 2007; 13(5): 965-973.
35. Malda J, Frondoza CG. Microcarriers in the engineering of cartilage and bone.Trends Biotechnol. 2006; 24(7): 299-304.
36. Dormer NH, Qiu Y, Lydick AM, Allen ND, Mohan N, Berkland CJ, Detamore MS. Osteogenic differentiation of human bone marrow stromal cells in hydroxyapatite-loaded microsphere-based scaffolds. Tissue Eng Part A. 2012; 18(7-8): 757-767.
37. Fischer EM, Layrolle P, Van Blitterswijk CA, De Bruijn JD. Bone formation by mesenchymal progenitor cells cultured on dense and microporous hydroxyapatite particles. Tissue Eng. 2003; 9(6): 1179-1188.
38. Barrias CC, Ribeiro CC, Lamghari M, Miranda CS, Barbosa MA. Proliferation, activity, and osteogenic differentiation of bone marrow stromal cells cultured on calcium titanium phosphate microspheres. J Biomed Mater Res A. 2005; 72(1): 57-66.
39. Mateus AY, Barrias CC, Ribeiro C, Ferraz MP, Monteiro FJ. Comparative study of nanohydroxyapatite microspheres for medical applications. J Biomed Mater Res A. 2008; 86(2): 483-493.
40. Yao J, Radin S, S Leboy P, Ducheyne P. The effect of bioactive glass content on synthesis and bioactivity of composite poly (lactic-co-glycolic acid)/bioactive glass substrate for tissue engineering. Biomaterials. 2005; 26(14): 1935-1943.
41. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol F. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 1985; 57(4): 603-619.
42. Sampath SS, Robinson DH. Comparison of new and existing spectrophotometric methods for the analysis of tobramycin and other aminoglycosides. J Pharm Sci. 1990; 79(5): 428-431.
43. Hashimoto Y, Adachi S, Matsuno T, Omata K, Yoshitaka Y, Ozeki Y, Umezu Y, Satoh T, Nakamura M. Effect of an injectable 3D scaffold for osteoblast differentiation depends on bead size. Biomed Mater Eng. 2009; 19(6): 391-400.
44. Newton D, Mahajan R, Ayres C, Bowman JR, Bowlin GL, Simpson DG. Regulation of material properties in electrospun scaffolds: Role of cross-linking and fiber tertiary structure. Acta Biomater. 2009; 5(1): 518-529.
45. Shin SH, Purevdorj O, Castano O, Planell JA, Kim HW. A short review: Recent advances in electrospinning for bone tissue regeneration. J Tissue Eng. 2012; 3(1): 2041731412443530.
46. Declercq H, Van den Vreken N, De Maeyer E, Verbeeck R, Schacht E, De Ridder L, Cornelissen M. Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source. Biomaterials. 2004; 25(5): 757-768.
47. Gough JE, Jones JR, Hench LL. Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials. 2004; 25(11): 2039-2046.
48. Yun HS, Park JW, Kim SH, Kim YJ, Jang JH. Effect of the pore structure of bioactive glass balls on biocompatibility in vitro and in vivo. Acta Biomater. 2011; 7(6): 2651-2660.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top