跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/30 16:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王又德
研究生(外文):Yu-De Wang
論文名稱:高強度鋼纖維鋼筋混凝土柱軸壓及韌性行為研究
論文名稱(外文):Study of Uniaxial Compression and Toughness Behavior of High Strength Steel Fiber Reinforced Concrete Columns
指導教授:廖文正廖文正引用關係
口試委員:詹穎雯陳正誠李宏仁
口試日期:2015-07-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:127
中文關鍵詞:鋼纖維高強度混凝土柱軸壓試驗圍束韌性OpenSEES
外文關鍵詞:steel fiberhigh strength concretecolumn uniaxial compression testconfinementtoughnessOpenSEES
相關次數:
  • 被引用被引用:9
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了承受高樓建築於底層柱產生的高軸力,使用高強度混凝土於柱構件中具有降低斷面尺寸、降低材料用量、減少成本以及增加使用空間等優點,然而高強度混凝土的脆性破壞行為是其在應用上需要克服之處。當今多以增加鋼筋量的方式提升柱構件的韌性,卻容易導致鋼筋配置過於緊密使得施工作業困難。另外,高強度鋼筋混凝土柱一般呈現的早期保護層剝落現象,亦無法透過增加鋼筋量來改善。

於高強度混凝土中添加適量的鋼纖維可大幅改善脆性破壞行為,應用於柱構件中可紓解緊密鋼筋配置情形以及抑制保護層剝落。本研究主要探討鋼纖維應用於高強度鋼筋混凝土柱中,對於柱軸向強度以及韌性行為的影響。施作不同箍筋間距之柱試體且搭配不同鋼纖維添加量,透過柱軸壓試驗對鋼纖維之影響予以量化,其中包含圍束效應及韌性比的分析。柱軸壓試驗結果發現鋼纖維提升了高強度鋼筋混凝土柱之軸向強度及韌性行為,即便在箍筋間距放大至規範要求間距的四倍,柱試體的軸壓行為表現仍十分良好,顯示鋼纖維提供足夠的圍束效果,確實能達到紓解緊密鋼筋的目的。鋼纖維亦影響柱試體的破壞模式,表現出抑制保護層剝落、延緩主筋挫曲、均勻強度發展等特性。

本研究蒐集相關試驗結果,回歸出高強度鋼纖維鋼筋混凝土柱的韌性比預測公式,並以軸壓試驗角度,提出決定合適之鋼纖維添加量的設計流程,作為設計鋼纖維鋼筋混凝土柱時的簡易參考。同時透過OpenSEES柱軸壓試驗模型的建立與驗證,有助於快速獲得高強度鋼纖維鋼筋混凝土柱的軸壓行為。

High strength concrete has been widely used since member section can be further reduced; however, its nature of brittle may become an obstacle for further application, particularly for members under high axial loading level. While requiring more lateral reinforcement may cause construction difficulty, addition of fibers can be an alternative to enhance the ductility of high strength reinforced concrete columns.

This study presents the improvement of compressive strength and toughness behavior of high strength RC columns by adding high tensile strength hooked steel fibers. Eight 400×400×1200mm high strength RC columns with different stirrups spacing and fiber volume fraction were subjected uniaxial compression loading to verify the confinement efficiency. The test results show that great deformation capacity is developed even stirrups spacing is increased to d/2 in high strength RC with 1.5% fiber volume fraction. The feasibility of steel fibers as a substitute for transverse reinforcement is further confirmed. From the column failure mode, the ability to prevent the spalling and resist the buckling of longitudinal reinforcement due to addition of fibers is also observed.

In terms of analysis, this study collects relevant column compression test result and conducts the toughness ratio prediction formula of high strength steel fiber RC columns by regression. The column compression test results are verified by OpenSEES model with well accuracy. A systematic design procedure to determine the appropriate amount of steel fiber in high strength RC columns is provided. Addition of high strength hooked steel fibers in high strength RC columns offers opportunities to significantly simplify the design and construction of columns, while ensuring adequate ductility and damage tolerance.

口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
表目錄 x
圖目錄 xi
照片目錄 xiv
參數對照表 xvi
第一章 緒論 1
1.1 動機與目的 1
1.2 研究範圍與內容 3
第二章 文獻回顧 4
2.1 高強度鋼筋混凝土柱軸壓行為 4
2.1.1 柱軸向強度 4
2.1.2 保護層剝落 6
2.1.3 圍束效應 8
2.1.4 圍束設計規範 12
2.2 鋼纖維混凝土力學性質 14
2.2.1 鋼纖維添加至混凝土的力學性質影響 14
2.2.2 鋼纖維拉拔行為 14
2.2.3 鋼纖維拉拔能量 16
2.2.4 鋼纖維與混凝土間握裹強度 21
2.3 韌性比回歸公式 23
2.3.1 韌性指標定義 23
2.3.2 鋼筋混凝土柱韌性比回歸公式 25
2.3.3 鋼纖維鋼筋混凝土柱韌性比回歸公式 27
2.3.4 柱韌性比結果評估 29
第三章 試驗計畫 31
3.1 試驗背景 31
3.2 試驗材料及配比 31
3.2.1 試驗材料 31
3.2.2 試驗配比 33
3.3 柱試體設計 34
3.3.1 設計細節 34
3.3.2 軸向強度及韌性比預測 37
3.4 試驗儀器與設備 38
3.4.1 測試系統 38
3.4.2 內部量測系統 39
3.4.3 外部量測系統 40
3.4.4 其他相關設備 42
3.5 柱試體製作 44
3.5.1 應變計黏貼 44
3.5.2 鋼纖維混凝土拌和 44
3.5.3 試體澆置 45
3.6 試驗流程 49
3.6.1 試驗前置 49
3.6.2 試驗進行與結束 50
第四章 試驗結果 51
4.1 材料試驗 51
4.1.1 高強度混凝土及高強度鋼纖維混凝土 51
4.1.2 高強度鋼筋 53
4.2 柱軸壓試驗 54
4.2.1 力量位移曲線修正 54
4.2.2 軸向強度、勁度及韌性比表現 56
4.2.3 鋼筋降伏及挫曲 57
第五章 分析與比較 58
5.1 軸向強度 58
5.2 核心混凝土抗壓強度 59
5.3 韌性行為 62
5.3.1 韌性比回歸公式修正 63
5.3.2 韌性比之比較 66
5.4 鋼纖維取代橫向鋼筋討論 69
5.5 破壞模式 71
第六章 OpenSEES模擬 74
6.1 柱軸壓模擬 74
6.1.1 柱軸壓模型建立 74
6.1.2 OpenSEES結果比較 76
6.2 鋼纖維取代橫向鋼筋效果模擬 79
第七章 結論與建議 81
7.1 結論 81
7.2 建議 82
參考文獻 85
附錄A 試驗材料規格 89
附錄B 柱軸壓試驗照片 94
附錄C 柱試體應變計數據 118
附錄D 鋼纖維混凝土柱韌性比回歸公式資料庫 122
附錄E 柱軸壓試驗模擬OpenSEES程式碼 124


[1](財)国土開發技術研究,“建設省総合技術開發:鉄筋造建築物之超軽量化˙超高層化技術開發(New RC)” ,平成四年度構造性能分科会報告書,1993。
[2]ACI Committee, 318, “Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary,” American Concrete Institute, 2011.
[3]Awati, M., & Khadiranaikar, R. (2012). Behavior of concentrically loaded high performance concrete tied columns. Engineering Structures, 37, pp. 76-87.
[4]Cusson, D., & Paultre, P. (1994, March). High-strength concrete columns confined by rectangular ties. Journal of Structural Engineering, 120(3), pp. 783-804.
[5]Saatciohlu, M., & Razvi, S.R. (1998). High-strength concrete columns with square sections under concentric compression. Journal of Structural Engineering, 124, pp. 1438-1447.
[6]李宏仁,「含高強度材料RC柱之軸向受力行為與強度評估」,內政部建築研究所研究報告,2007。
[7]ACI Innovation Task Group 4, “Report on Structural Design and Detailing for High-Strength Concrete in Moderate to High Seismic Applications(ITG-4.3R-07),” American Concrete Institute, 2007.
[8]Foster, S.J., Liu, J., & Sheikh, S.A. (1998, December). Cover spalling in HSC columns loaded in concentric compression. Journal of Structural Engineering, 124, pp. 1431-1437.
[9]Bae, S., & Baryrak, O. (2003, March). Earky cover spalling in high-strength concrete columns. Journal of Structural Engineering, 129, pp. 314-323.
[10]Légeron, F., & Paultre, P. (2003, February). Uniaxial confinement model for normal- and high-strength concrete columns. Journal of Structural Engineering, 129, pp. 241-252.
[11]Sheikh, S.A., & Uzumeri, S.M. (1980, May). Strength and ductility of tied concrete columns. Journal of the Structural Division, 106(5), pp. 1079-1102.
[12]Mander, J.B., Priestley, M.J.N., & Park, R. (1988, August). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8), pp. 1804-1826.
[13]Cusson, D., & Paultre, P. (1995, March). Stress-strain model for confined high-strength concrete. Journal of Structural Engineering, 121, pp. 468-177.
[14]Paultre, P., Eid, R., Langlois, Y. & Lévesque, Y. (2010). Behavior of steel fiber-reinforced high-strength concrete columns under uniaxial compression. Journal of Stuctural Engineering, 136, pp. 1225-1235.
[15]Candian Standars Association, “Design of Concrete STuctures,” CSA A23.3-04, 2004.
[16]ACI Committee, 318, “Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary,” American Concrete Institute, Farmington Hills, Mich., 2014(in review process).
[17]Song, P.S., & Hwang, S. (2004). Mechanical properties of high-strength steel fiber-ringforced concrete. Construction and Building Materials, 18, pp. 669-673.
[18]Ou, Y.C., Tsai, M.S., Liu, K.Y., & Chang, K.C. (2012, February). Compressive behavior of steel-fiber-reinforced concrete with a high reinforcing index. Journal of Materials in Civil Engineering, 24, pp. 207-215.
[19]郭耀仁,「高強度鋼纖維混凝土的力學性質與圍束效應之研究」,碩士論文,國立臺灣大學土木研究所,2012。
[20]Xu, B.W., Hu, J.W., & Shi, H.S. (2011, August). Progressive micromechanical modeling for pullout energy of hooked-end steel fiber in cement-based composites. International Journal of Damage Mechanics, 20, pp. 922-938.
[21]Li, V.C., Wang, Y., & Backer, S. (1990, March). Effect of inclining angle, bundling and surface treatment on synthetic fibre pull-out from a cement matrix. Journal of Composites, 21, pp. 132-140.
[22]Li, V.C. (1992). Postcrack scaling relations for fiber reinforced cementitious composites. Journal of Materials in Civil Engineering, 4(1), pp. 41-57.
[23]Xu, B.W., Hu, J.W., & Shi, H.S. (2012, April). Micromechanical modeling of fracture energy for hooked-end steel fiber reinforced cementitious composites. International Journal of Damage Mechanics, 21, pp. 415-439.
[24]Oluojun, F.A. (1991). Predicton of concrete tensile strength form its compressive strength: Evaluation of existing relations for nomal weight concrete. ACI Mechanicals Journal, 88(3), pp. 302-309.
[25]Alwan, J.M., Namman, A., & Guerrero, P. (1999). Effect of mechanical clamping on the pull-out response of hooked steel fibers embedded in cementitious composites. Concrete Science and Engineering, 1(1), pp. 15-25.
[26]劉恩睿,「高強度鋼纖維鋼筋混凝土柱的軸壓行為與圍束效應之研究」,碩士論文,國立臺灣大學土木研究所,2013。
[27]曾笠維,「以鋼纖維取代橫向箍筋於New RC柱之應用評估」,碩士論文,國立臺灣大學土木研究所,2014。
[28]Riederer, K.A., (2006,December). Assessment of confinement models for reinforced concrete columns subjected to seismic loading. Master thesis, University of British Columbia, Vancouver, BC, Canada.
[29]張豐展,「高強度鋼筋混凝土柱圍束效應研究」,碩士論文,國立台灣大學土木研究所,2010。
[30]陳盈璋,「高強度鋼筋混凝土柱耐震圍束效應之研究」,碩士論文,國立台灣大學土木研究所,2011。
[31]黃冠傑,「鋼筋混凝土柱耐震圍束設計之研究」,碩士論文,國立台灣大學土木研究所,2013。
[32]王俊傑,「不同箍筋型式之New RC柱反覆側推行為研究」,碩士論文,國立台灣大學土木研究所,2014。
[33]李台光、陳正誠、華根,「大型鋼筋混凝土方形柱軸壓行為之探討」,中華民國結構工程學會,結構工程,第27卷第2期,pp. 3-20,2012。
[34]Lima Júnior, H.C., & Giongo, J.S. (2004, December). Steel-fibre high-strength concrete prisms confined by rectangular ties under concentric compression. Materials and Structures, 37, pp. 689-697.
[35]Aoude, H., Cook, W., & Mitchell, D. (2009, May). Behavior of columns constructed with fibers and self-consolidating concrete. ACI Structural Journal, 106, pp. 349-357.
[36]Shin, H.O., Yoon, Y.S., Lee, S.H., Cook, W.D., & Mitchell, D. (2014, July). Effect of steel fibers on the performance of ultrahigh-strength concrete columns. Journal of Materials in Civil Engineering.
[37]Dhakal, R., & Maekawa, K. (2002, September). Modeling for postyield buckling of reinforcement. Journal of Structural Engineering, pp. 1139-1147.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top