跳到主要內容

臺灣博碩士論文加值系統

(3.229.137.68) 您好!臺灣時間:2021/07/25 16:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊泓斌
研究生(外文):Hong-Bin Yang
論文名稱:複合相變材料於建築節能之研究與應用
論文名稱(外文):Research and Application of Composite Phase-Change Materials for Energy-Saving Buildings
指導教授:陳振川陳振川引用關係劉楨業
指導教授(外文):Jenn-Chuan, ChernTony C., Liu
口試委員:詹穎雯張大鵬黃然李釗
口試委員(外文):Yin-Wen, ChanT.P, ChangRan, HuangChau, Lee
口試日期:2015-05-28
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:162
中文關鍵詞:複合相變混凝土複合牆板力學性質熱學性質熱學行為相變材料固液相行為
外文關鍵詞:Concrete containing phase-change materialphase-change material (PCM)mechanical propertiesthermal propertiessolid-liquid phase of phase-change material
相關次數:
  • 被引用被引用:1
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
相變材料具有於特定溫度區間內改變其物理狀態的能力,在這個溫度區間範圍內,材料吸收以及釋放出大量的潛熱。相變材料作為建築物外殼潛熱控制材料,以增加結構物對於氣候條件之隔絕與延遲作用、提高室內空間的舒適度並進而達到調節空調耗能與尖峰時段的用電情形。
針對複合相變材料於建築節能之研究與應用,本研究主要針對相變混凝土配比設計、相變混凝土之力學性質、熱學性質、熱學行為、相變材料之固液相特性、應於台灣氣候條件之影響分析,另外應用BIM建築模擬資訊系統進行效益評估。
研究發現相變材料的取代將有效提升相變混凝土的熱學相關性質,但也對力學性質造成影響,相變取代量越大,抗壓強度的折減量越高,以相變材料取代量10%為例,抗壓強度折減27%;另外,相變材料取代量越大,體積收縮量越大、彈性模數越小。相變材料之固液相行為部分,以熱傳導係數與熱擴散係數影響較顯著,比熱容與力學性質部分影響較不顯著。
針對台灣溫度條件進行研究,夏季,隨著相變材料比例的增加,相變材料利用潛熱吸收熱量及釋放熱量的特性,提升周圍環境溫度的穩定效果;冬季,溫度條件無法提供本研究使用的相變材料足夠之熱量,整體而言潛熱依舊可運用在冬季保溫的功效。另外,根據BIM建築模擬資訊系統之分析結果,夏季時,相變潛熱之效果發揮,減緩熱進入室內之情況,故可有效減少空調之使用量;冬季時,因環境溫度較低之緣故,相變材料無法完全發揮,省電比例較不顯著。


A phase change material (PCM) is also known as a material of latent thermal energy storage (LTES). When PCMs undergo phase change, it can absorb or emit large amounts of heat to store or release thermal energy. These properties can be used to control the surrounding temperature. The advantages of TES include being able to reduce the peak electricity usage of air-conditioning systems, regulate the energy use of peak and off-peak hours and delay the temperature changes on the indoor environment.
In this research, PCM will be studied for building energy conservation, and the research of composite phase change materials, including the mixture designs, mechanical properties, thermal properties, thermal behavior, and the effects of the solid phase and liquid phase on the mechanical properties of concrete was also be a key focus of this research. Furthermore, analyze the application in climate of Taiwan.
Based on the results of this study, the following conclusions are drawn: A higher replacement amount of PCM gave a lower specific weight of PCM-modified concrete. With increasing replacement amount, the mechanical properties such as compressive strength and elastic modulus decreased. For the drying shrinkage, as the original concrete materials were replaced by the PCM with lower strength and stiffness, the drying shrinkage also increased with the increase in amount of PCM added.
And the solid-liquid phase change of PCM allows its high latent heat properties to be used. This study revealed that whether the PCM was in a solid phase or liquid phase, it also affected the mechanical properties. The PCM at liquid phase would be softer than the PCM at solid phase, lowering the compressive strength and elastic modulus, the effect of the solid-liquid phases on the drying shrinkage was less significant. Overall, the concrete containing PCM had lower strength and stiffness when compared with original concrete specimens that containing no PCM.
Concrete with PCM may not suitable for use as structural elements. However, PCM is an important solution for optimizing the energy consumption in modern buildings. It can absorb or emit large amounts of heat to store or release thermal energy. These properties can be used to control the building temperatures resulting in energy saving and carbon reduction.


中文摘要 ………………………………………………………………………….i
英文摘要. ii
第一章 緒論 1
1.1 前言 1
1.2研究目的 3
1.3 研究內容與論文架構 4
第二章 文獻探討 5
2.1都市熱島效應(Urban Heat Island) 5
2.2 建築節能 7
2.3 建築氣候學與建築熱環境 9
2.4熱質量(Thermal mass) 11
2.4.1 熱質量之應用 12
2.4.2 熱質量之材料特性 14
2.4.3熱質量於建築結構之應用 16
2.5建築結構之隔熱性能評估 18
2.6 熱質量溫度能量之儲存 19
2.7 相變材料的定義 21
2.7.1 相變材料的沿革與發展 22
2.7.2 相變材料之分類與優缺點 23
2.7.3 相變材料於建築材料上之應用 24
2.7.4相變材料與建築結構之結合方式 29
2.8 國內相變材料與建築結構物複合行為之研究 30
第三章 研究規劃 33
3.1研究規畫與流程 33
3.2實驗材料 37
3.3實驗儀器與設備 45
第四章 相變材料之製備 51
4.1前言.. 51
4.2浸漬法 - 負壓真空法 51
4.2.1 使用材料 51
4.2.2負壓真空法試驗程序 53
4.3微膠囊封裝-懸浮聚合法 54
4.3.1懸浮聚合法(suspension polymerization) 55
4.3.2 使用材料 55
4.3.3懸浮聚合法試驗程序 58
4.4 試驗結果 58
4.4.1浸漬法-膨脹珍珠岩相變粒料容留量 58
4.4.2 微膠囊封裝-懸浮聚合法 59
4.5相變材料之製備小結 61
第五章 複合相變混凝土之力學性質 63
5.1 前言.. 63
5.2複合相變混凝土之配比設計 63
5.2.1相變砂漿配比設計 63
5.2.2相變混凝土配比設計 64
5.2.3相變活性粉混凝土配比設計 65
5.3試驗方法與試驗變數 65
5.3.1坍流度試驗 65
5.3.2單位重試驗 66
5.3.3 抗壓強度與彈性模數試驗 66
5.3.4乾燥收縮試驗 67
5.3.5相變材料固、液相效益 67
5.4 試驗結果 68
5.4.1 相變材料對單位重之影響 68
5.4.2相變材料對混凝土力學性質之影響 69
5.4.2.1 浸漬法-相變砂漿抗壓強度比較 69
5.4.2.2微膠囊封裝-相變砂漿抗壓強度比較 71
5.4.2.3 相變混凝土抗壓強度比較 73
5.4.2.4 相變混凝土彈性模數比較 76
5.4.2.5 相變活性粉混凝土抗壓強度比較 77
5.4.2.6相變混凝土乾燥收縮試驗 80
5.4.2.7 相變材料對混凝土力學性質小結 82
5.4.3相變材料固、液相對混凝土之影響 84
5.4.3.1相變材料固、液相對抗壓強度之影響 84
5.4.3.2相變材料固、液相對彈性模數之影響 87
5.4.3.3相變材料固、液相對體積穩定性之影響 90
5.5複合相變混凝土之力學性質小結 92
第六章 複合相變混凝土之熱學性質 93
6.1 前言.. 93
6.2 試驗規畫與試驗變數 94
6.2.1熱傳導性質試驗 94
6.2.2相變混凝土之比熱容修正 94
6.2.3試驗變數與配比選用 95
6.3試驗結果 96
6.3.4相變混凝土比熱容修正 102
6.4相變材料對混凝土熱學性質之影響小結 105
6.5相變材料固、液相對熱學性質之影響 107
6.4複合相變牆版之熱學行為小結 110
第七章 複合相變牆版之熱學行為 111
7.1 前言… 111
7.1.1熱傳理論 112
7.2試驗變數與試驗條件 113
7.2.1 熱貫流試驗 114
7.2.2熱貫流試驗-熱循環試驗溫度設定 115
7.2.3熱貫流試驗-台灣夏季、冬季溫度歷程之設定 116
7.3試驗結果 118
7.3.1熱循環試驗 118
7.3.1.1控制側表面溫度 121
7.3.1.2 混凝土中心點溫度 121
7.3.1.3試驗側混凝土表面溫度 122
7.3.1.4試驗側空氣溫度 123
7.3.2熱循環試驗小結 125
7.3.3台灣夏季、冬季溫度歷程試驗 125
7.3.3.1夏季溫度試驗 125
7.3.3.3冬季溫度試驗 130
7.4複合相變牆版之熱學行為小結 134
第八章 相變混凝土數值模擬與BIM建築資訊系統之應用 137
8.1 前言 137
8.2 試驗規劃 137
8.2.1 相變混凝土ABAQUS數值模擬 137
8.2.1.1模型建立與參數設定 137
8.2.2 BIM建築資訊系統之應用 140
8.2.2.1 Ecotect Analysis 140
8.2.2.2 EnergyPlus 140
8.2.2.3 Open Studio 140
8.2.2.4 地理位置及環境設定 140
8.3試驗結果 142
8.3.1 ABAQUS數值模擬 142
8.3.2 BIM建築模擬資訊系統 149
8.4相變混凝土數值模擬與BIM建築資訊系統之應用小結 150
第九章 結論與建議 153
9.1結論.. 153
9.2建議.. 155
參考文獻 156



1.交通部中央氣象局(2014),http://www.cwb.gov.tw/
2.Intergovernmental Panel on Climate Change. (2014). The Fifth Assessment Report“Climate change 2013”, Cambridge University Press.
3.陳雲蘭(2008),「百年來台灣氣候的變化」,科學發展月刊,424期,第6-11頁。
4.經濟部能源局(2013),中華民國101年能源統計手冊。
5.經濟部能源局(2009),辦公大樓節約能源手冊。
6.台灣電力公司-電力供需資訊,http://www.taipower.com.tw
7.林炯明(2010)。都市熱島效應之影響及其環境意涵。環境與生態學報,第3卷第1期,第1-15頁。
8.陳蔚宗、李昭仁、朱時梁(2007)。都市熱島效應之肇因與抑制技術。工業材料雜誌,第248期,第109~116頁。
9.王瑞、張杰、龔靜(2010)。建築節能設計。中國武漢,華中科技大學出版社。
10.謝錫興、張文奎、郭誠恕、劉學銓、黃彥皓(2013)。台灣智慧綠建築發展之關鍵技術與要素。第十屆台灣建築論壇,台北。
11.何明錦(2013)。台灣智慧綠建築發展現況與未來展望。高貴不貴的智慧綠建築實務研討會,台北。
12.Eiffert P, Kiss GJ. (2000). Building-integrated photovoltaic designs for commercial and institutional structures: a sourcebook for architects. Rep. NREL/-KB27252-025. Natl. Renew. Energy Lab., Golden, CO.
13.羅運俊、何梓年、王長貴(2014)。太陽能利用技術。中國北京,化學工業出版社。
14.胡湘玲(2009)。太陽能源。台北市,天下遠見出版股份有限公司。
15.薛一冰、楊倩苗、王崇杰(2012)。建築節能及節能改造技術。中國北京,中國建築工業出版社。
16.Peter F. Smith. (2009). Building for A Changing Climate – The Challenge for Construction, Planning and Energy Translation. UK: Earthscan Publications Ltd.
17.Brown, G. Z., Mark DeKay. (2001). Sun, Wind & Light: Architectural Design Strategies. USA: John Wiley & Sons, Inc .
18.James R. Gould & Carol Grant Gould. (2007). Animal architects: building and the evolution of intelligence. New Jersey: Basic Books: Publisher.
19.Givoni. B. (1976). Man, Climate and Architecture. Applied Science Publishers, London, 2nd edn.
20.Givoni. B. (1992). Comfort, climate analysis and building design guidelines. Energy and Buildings 1:11.
21.Chris Reardon. (2013). Thermal mass. Retrieved February 15, 2015, from Your Home, Australia''s Guide to Environmentally Sustainable Homes Web site: http://www.yourhome.gov.au/passive-design/thermal-mass
22.Daniel D. Chiras. (2002). The Solar House-Passive Heating and Cooling, Chelsea Green Publishing Co.
23.Baggs, S, Baggs, D and Baggs, J. (1991). Australian earth-covered building. UNSW Press, Kensington, NSW.
24.Baggs, D and Mortensen, N. (2006). Thermal mass in building design. Environment design guide, DES 4. Australian Institute of Architects, Melbourne. www.environmentdesignguide.com.au
25.Alex Wilson. (1979). Thermal storage wall design manual, USA: New Mexico Solar Energy Association.
26.Autodesk Education Community. (2015). Trombe Wall and Attached Sunspace. http://sustainabilityworkshop.autodesk.com/buildings/trombe-wall-and-attached-sunspace
27.Designing Comfortable Homes, Wellington, Cement & Concrete Association of New Zealand, 2001.
28.Building Comfortable Homes, Wellington, Cement & Concrete Association of New Zealand, 2002.
29.劉加平(2009)。建築物理(第四版),西安建築科技大學,中國建築工業出版社。
30.Ken Brenden. (2010). Why R is Not Simply the Inverse of U. Door & Window Manufacturer Magazine,Volume 11, Issue 7,10.
31.Sharma A., V.V. Tyagi , C.R. Chen , D. Buddhi.(2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13, 318:345.
32.Lane GA(1983). Solar heat storage - latent heat materials, vol. I. Boca Raton,FL: CRC Press, Inc.
33.陳麗如、張雅淇、張仕欣、李昭仁,(2008),「建築物外殼之潛熱熱控技術」,工業材料雜誌,第262期,第127~133頁。
34.張雄、張永娟(2009)。建築節能技術與節能材料,化學工業出版社。
35.張仁元(2009)。相變材料與相變儲能技術,科學出版社。
36.張興祥、王馨、吳文健 (2009)。相變材料膠囊製備與應用,化學工業出版社。
37.周國兵(2013),自然能源、相變蓄能、建築節能,中國建築工業出版社
38.Rubitherm GmbH: PCMs and Thermal Technology: http://www.rubitherm.com/english/index.htm
39.Telkes M, Raymond E. (1949). Storing solar heat in chemicals - a report on the Dover house. Heat Vent , 46(11), 80–6.
40.Agyenim F., Hewitt N., Eames P., Smyth M. (2010). A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews. 14(2).615-628.
41.張東、吳科如(2003),建築節能新技術-相變儲能建築材料,新型材料(4).11
42.Mewes, D., & Mayinger, F. (2008) “Heat and Mass Transfer”. Germany: Springer.
43.Lane G.A. (1983). Solar Heat Storage: Latent Heat Material - Volume I: Background and Scientific Principles. CRC Press, Florida.
44.Abhat A. (1983). Low temperature latent heat thermal energy storage: heat storage materials, Solar Energy, 30,313–332.
45.Hariri A., Ward, I. (1988). A review of thermal storage systems used in building applications, Building and Environment, 23, 1–10.
46.Zalba, B., Marín, J.M., Cabeza, L.F., Mehling, H. (2003). Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Applied Thermal Engineering, 23 (3), 251–283.
47.Khudhair, A.M., Farid, M.M. (2004).A review on energy conservation in building applications with thermal storage by latent heat using phase change materials, Energy Conversion and Management, 45 (2), 263–275.
48.Farid, M.M., Khudhair, A.M., Ali, S., Razack, K. (2004). A review on phase change energy storage: materials and applications, Energy Conversion and Management, 45, 1597–1615.
49.Sharma, S.D., Sagara, K. (2005). Latent heat storage materials and systems: a review. International Journal of Green Energy, 2(1), 1–56.
50.Pasupathy, A., Velraj, R. (2006). Phase change material based thermal storage for energy conservation in building architecture. International Energy Journal, 7 (2),147–159.
51.Tyagi, V.V., Buddhi, D. (2007). PCM thermal storage in buildings: a state of art. Renewable and Sustainable Energy Reviews, 11 (6), 1146–1166.
52.Kenisarin, M., Mahkamov, K. (2007).Solar energy storage using phase change materials. Renewable and Sustainable Energy Reviews, 11(9), 1913–1965.
53.Zhang, Y., Zhou, G., Lin, K., Zhang, Q., Di, H. (2007). Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook. Building and Environment, 42 (6),2197–2209.
54.Mondal, S. (2008). Phase change materials for smart textiles—an overview. Applied Thermal Engineering, 28, 1536–1550.
55.Pasupathy, A., Velraj, R., Seeniraj, R.V. (2008).Phase change material-based building architecture for thermal management in residential and commercial establishments. Renewable and Sustainable Energy Reviews, 12(1), 39–64.
56.Regin, A.F., Solanki, S.C., Saini, J.S. (2008).Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renewable and Sustainable Energy Reviews, 12, 2438–2458.
57.Verma, P., Varun, S.K., Singal. (2008). Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material. Renewable and Sustainable Energy Reviews, 12(4) , 999–1031.
58.Wang, X., Zhang, Y., Xiao, W., Zeng, R., Zhang, Q., Di, H. (2009). Review on thermal performance of phase change energy storage building envelope. Chinese Science Bulletin, 54(6),920–928.
59.Jegadheeswaran, S., Pohekar, S.D. (2009). Performance enhancement in latent heat thermal storage system: a review. Renewable and Sustainable Energy Reviews, 13, 2225–2244.
60.Sharma, A., Tyagi, V.V., Chen, C.R., Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13(2), 318–345.
61.Zhu, N., Ma, Z., Wang, S. (2009). Dynamic characteristics and energy performance of buildings using phase change materials: a review. Energy Conversion and Management, 50(12), 3169–3181.
62.Agyenim, F., Hewitt, N., Eames, P., Smyth, M. (2010). A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews, 14(2), 615–628.
63.Raj, V.A.A., Velraj, R. (2010). Review on free cooling of buildings using phase change materials. Renewable and Sustainable Energy Reviews, 14 (9), 2819–2829.
64.Tyagi, V.V., Kaushik, S.C., Tyagi, S.K., Akiyama, T. (2011). Development of phase change materials based microencapsulated technology for buildings: a review. Renewable and Sustainable Energy Reviews, 15(2), 1373–1391.
65.Kuznik, F., David, D., Johannes, K., Roux, J.J. (2011). A review on phase change materials integrated in building walls. Renewable and Sustainable Energy Reviews, 15(1), 379–391.
66.Cabeza, L.F., Castell, A., Barreneche, C., Gracia, A. de., Fernández, A.I. (2011). Materials used as PCM in thermal energy storage in buildings: a review. Renewable and Sustainable Energy Reviews, 15(3), 1675–1695.
67.Dutil, Y., Rousse, D.R., Salah, N.B., Lassue, S., Zalewski, L. (2011). A review on phasechange materials: mathematical modeling and simulations. Renewable and Sustainable Energy Reviews, 15(1), 112–130.
68.Baetens, R., Jelle, B.P., Gustavsen, A. (2012). Phase change materials for building applications: a state-of-the-art review. Energy and Buildings, 42(9), 1361–1368.
69.Rodriguez-Ubinas, E., Ruiz-Valero, L., Vega, S., Neila, J. (2012). Applications of phase change material in highly energy-efficient houses, Energy and Buildings, 50, 49–62.
70.Osterman, E., Tyagi, V.V., Butala, V., Rahim, N.A., Stritih, U. (2012). Review of PCM based cooling technologies for buildings. Energy and Buildings, 49, 37–49.
71.Rao, Z., Wang, S., Zhang, Z. (2012). Energy saving latent heat storage and environmental friendly humidity-controlled materials for indoor climate. Renewable and Sustainable Energy Reviews, 16(5), 3136–3145.
72.Zhou, D., Zhao, C.Y., Tian, Y. (2012). Review on thermal energy storage with phase change materials (PCMs) in building applications. Applied Energy, 92, 593–605.
73.Nguyen, Q., Ngo, T., Mendis, P. (2012). A review on fire protection for phase change materials in building applications, in From Materials to Structures, Advancement through Innovation, CRC Press. 561-566.
74.Parameshwaran, R., et al. (2012). Sustainable thermal energy storage technologies for buildings: A review. Renewable and Sustainable Energy Reviews, 16(5). 2394-2433.
75.Al-Saadi, S.N., Zhai, Z. (2013). Modeling phase change materials embedded in building enclosure: A review. Renewable and Sustainable Energy Reviews, 21(0). 659-673.
76.Jeon, J., et al. (2013). Application of PCM thermal energy storage system to reduce building energy consumption. Journal of Thermal Analysis and Calorimetry, 111(1). 279-288.
77.Pomianowski, M., Heiselberg, P., Zhang, Y. (2013). Review of thermal energy storage technologies based on PCM application in buildings. Energy and Buildings, 67(0). 56-69.
78.Soares, N., et al. (2013). Review of passive PCM latent heat thermal energy storage systems towards buildings'' energy efficiency. Energy and Buildings, 59. 82-103.
79.Waqas, A., Din, Z. Ud. (2013). Phase change material (PCM) storage for free cooling of buildings—A review. Renewable and Sustainable Energy Reviews,18(0). 607-625.
80.Whiffen, T.R., Riffat, S.B. (2013). A review of PCM technology for thermal energy storage in the built environment: Part II. International Journal of Low-Carbon Technologies, 8(3). 159-164.
81.Jamekhorshid, A., Sadrameli, S.M., Farid, M. (2014). A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renewable and Sustainable Energy Reviews, 31(0). 531-542.
82.Kamali, S. (2014). Review of free cooling system using phase change material for building. Energy and Buildings, 80(0). 131-136.
83.Madessa, H.B. (2014). A Review of the Performance of Buildings Integrated with Phase Change Material: Opportunities for Application in Cold Climate. Energy Procedia, 62(0). 318-328.
84.Memon, S.A. (2014). Phase change materials integrated in building walls: A state of the art review. Renewable and Sustainable Energy Reviews, 31(0). 870-906.
85.Pons, O., et al. (2014). Review of the use of phase change materials (PCMs) in buildings with reinforced concrete structures. Materiales de Construccion, 64,315.
86.Hong-Bin Yang, Tony Liu, Jenn-Chain Chern, Ming-Hao Lee. (2015). Mechanical Properties of Concrete Containing Phase-Change Material,” Journal of the Chinese Institute of Engineers.
87.Hawes DW, Feldman D, Banu D. (1993). Latent heat storage in building materials. Energy and Buildings . 20(1):77–86.
88.李明豪(2013),相變混凝土之物理性質與應用於建築資訊模擬效應分析,碩士論文,臺灣大學土木工程學研究所。
89.陳柏寰(2013),複合相變混凝土牆版熱學性質與數值模擬分析,碩士論文,臺灣大學土木工程學研究所。
90.羅宜筠(2013),複合相變材料牆版系統及數值模擬分析,碩士論文,臺灣大學土木工程學研究所。
91.黃郁雯(2013),導熱相變化複合材料之製備,碩士論文,朝陽科技大學應用化學系。
92.蕭亞漩(2013), 計算流體力學模擬及分析建築外殼中相變材料的熱效應,碩士論文,國立清華大學化學系。
93.黃育承(2013),多層式複合材料應用於屋頂隔熱之研究,碩士論文,崑山科技大學機械工程研究所。
94.王譯賢(2012),相變化材料於可攜式電子零件冷卻之數值模擬,碩士論文,國立成功大學機械工程學系。
95.林奕錕(2012),相變材料砂漿與RPC之熱學性質研究與數值模擬分析,碩士論文,臺灣大學土木工程學研究所。
96.范揚晟(2012),以石墨烯及奈米碳材提升熱相變化材料性能之研究,碩士論文,國防大學理工學院材料科學與工程。
97.陳景渟(2012),相變材料用於混凝土中之力學及熱學行為,碩士論文,臺灣大學土木工程學研究所。
98.張鐿鐘(2012),相變化材料應用於車頂隔熱對於汽車節能效果之影響,碩士論文,崑山科技大學機械工程研究所。
99.蔡宗憲(2012),以界面聚合法製備相變材料微膠囊之研究,碩士論文,國立高雄應用科技大學化學工程與材料工程系。
100.丁銘顯(2011),廣義隔熱材料應用於室內熱舒適度之數值模擬,碩士論文,臺灣大學土木工程學研究所。
101.高嘉文(2011),相變化材料於球形容器之儲熱實驗與分析,碩士論文,國立中央大學機械工程研究所。
102.郭昭儀(2011),相變材料性能及應用於節能建材之研究,碩士論文,臺灣大學土木工程學研究所。
103.楊位盛(2011),數值分析建築物整合鋪設穩態形狀相變材料板(SSPCM)及主動式外表帷幕系統(ABE)之空調效應,碩士論文,中華大學機械工程學系。
104.吳宗南(2011),相變化材料封裝方法與其應用於熱交換器之分析,碩士論文,崑山科技大學機械工程研究所。
105.黃俊偉(2010),相變材料應用於多溫域共構之節能運送貨櫃,碩士論文,崑山科技大學機械工程研究所。
106.鍾曉旻(2010),鎳金屬殼層披覆正十八烷微膠囊之製備與研究,碩士論文,國立台北科技大學化學工程研究所。
107.吳昇威(2010),相變材料應用於增加室內熱舒適度之數值模擬,碩士論文,臺灣大學土木工程學研究所。
108.郭又中(2010),相變化材料應用於建築物節能隔熱磚之實驗研究,碩士論文,崑山科技大學機械工程研究所。
109.蘇偉堯(2010),PCM應用於隔熱浪板之熱傳及研究,碩士論文,崑山科技大學機械工程研究所。
110.蘇青瑾(2006),相變化材料於建築環境控制之應用,碩士論文,立德管理學院資源環境研究所。
111.周東鴻(2005),微膠囊包覆共晶儲能材料之研究,碩士論文,中國文化大學材料科學與製造研究所。
112.曾元宏(2001),相變材料微膠囊之製備及其特性分析,碩士論文,國立成功大學化學工程學系。
113.楊泓斌、劉楨業、陳振川、陳柏寰、羅宜筠(2014),複合相變混凝土牆板之熱學性質與應用於台灣氣候條件之研究,中國土木水利工程學刊,第二十六卷,第四期,第281~291頁。
114.徐仁崇(2008),相變儲能混凝土的試製研究,重慶大學材料科學與工程研究所碩士論文。
115.顏家桃(2010),複合相變材料的製備及其在地板採暖中的應用,華南理工大學。
116.杜開明(2009),相变型保温墙体材料的制备及性能研究,重慶大學材料科學與工程研究所碩士論文。
117.Hawes, D., W.Banu, D., Feldman, D. (1989). “ Latent heat storage in concrete,” Solar Energy Materials;vol19, Issue 3-5, pp.335-348.
118.Hawes D., W.Banu, D., Feldman, D. (1990). “ Latent heat storage in concrete II,” Solar Energy Materials;vol21, Issue 1, pp.61-80.
119.Hunger, M., Entrop, A. G., Mandilaras, I.,Brouwers, H. J. H., Founti, M. (2009), “The Behavior of Self-Compacting Concrete Containing Micro-Encapsulated Phase Change,” Cement & Concrete, Vol 31,pp.731-743.
120.Pania Meshgin and Yunping Xi(2012), “Effect of Phase-Change Materials on Properties of Concrete”, ACI Materials Journal, Title no.109-M08, January-February.
121.楊泓斌 (2007),陶瓷骨材於活性粉混凝土運用之研究,碩士論文,國立台灣大學土木工程學系。
122.Kumar P. Mehta,Paulo J.M. Monterio. (2006).Concrete: Microstructure, Properties, and Materials. McGraw-Hill Education.
123.Frederic, K. and Joseph, V. (2009). “Experimental Assessment of a Phase Change Material for Wall Building Use”, Applied Energy, Vol. 86, issue 10, pp. 2038-2046.
124.「中華民國101年氣候資料年報-地面資料」中央氣象局 (2012)。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文