跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/26 06:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾彥淩
研究生(外文):Yen-Ling Tseng
論文名稱:孔洞於結構中之最佳化設計
論文名稱(外文):Optimal Design of Structures with Openings
指導教授:呂良正呂良正引用關係
指導教授(外文):Liang-Jenq Leu
口試委員:郭世榮宋裕祺黃仲偉
口試日期:2015-07-07
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:78
中文關鍵詞:結構最佳化結構開孔拓樸最佳化多層最佳化
外文關鍵詞:Structural OptimizationOpeningsTopology OptimizationMulti-level Optimization
相關次數:
  • 被引用被引用:2
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
結構物無可避免需要開孔,無論是開窗、開門,或是配置管線須穿越結構體,亦或是需要減輕結構重量刻意設置孔洞,開孔必會對結構造成影響。本研究期望能透過最佳化方式找尋對結構物強度影響最低之孔洞位置。本研究分為兩部分:第一部分是在結構中置放形狀、大小固定之孔洞,尋找其中心座標最佳解;第二部分則將孔洞位置最佳化結合拓樸最佳化,期望能有更廣及更彈性之應用。
孔洞位置最佳化設計中,給予孔洞初始位置,藉由孔洞移動準則迭代尋找最終孔洞位置座標。孔洞移動準則是參考置入物件於拓樸最佳化中之移動(Qian and Ananthasuresh 2004)進行延伸應用,設置孔洞相當於置入勁度為零之物件,並透過最陡梯度法使孔洞一步步往較好的方向演進。
孔洞位置最佳化結合到拓樸最佳化中,透過多層最佳化的概念來實現此問題。其中,拓樸最佳化使用元素交換法(Rouhi et al. 2010)作為演算法核心,此方法有一限制,不論在第幾個迭代步,材料體積皆固定與目標體積一致,此限制對於孔洞位置最佳化的結合影響很大,且初始拓樸不易設計,故參考本研究團隊過去提出之變體積函數(施可葳2013),避免此阻礙。
目前孔洞位置最佳化僅能找到局域最佳解,對於選擇孔洞開口位置時,使用者可先設置幾種不同的初始位置,均勻分布於結構中,透過此方法,可避免將孔洞設置於對結構影響較大之處,並且尋求相對初始位置較好之解。
孔洞位置最佳化結合拓樸最佳化問題中,可看出孔洞對於拓樸造成之影響,並且透過例題結果,進一步驗證多層最佳化之可靠性,可看出孔洞確實朝向拓樸過程中挖除材料的位置移動。

Prescribed openings are embedded to structures for many reasons like windows, doors, room for pipes, or reducing weight. Stiffness of structures will decrease because of openings. This research is aimed at deciding the positions of openings that will affect the stiffness as little as possible. This research can be divided into two parts. Firstly, the positions of openings are optimized within the design domain. Secondly, topology optimization is considered in conjunction with the first part.
The optimization of structures with openings is similar to an embedding problem in topology optimization (Qian and Ananthasuresh 2004), but the stiffness of the embedded objects is zero instead. The steepest descent method is used to determine the positions of openings in such kind of problems.
Next, the above problem combining with topology optimization is solved using the multi-level optimization technique, where the element exchange method (EEM; Rouhi et al. 2010) is applied to carry out topology optimization. A restriction of EEM is that the volume at each iteration is same as the objective volume. Because of this, it would be very difficult to design the initial topology with openings. A volume-changeable function (Shih 2013) is employed avoid this situation.
Because the steepest descent method is a kind of gradient-based optimization method, the results could be different when different initial position are used. To avoid this situation, different initial arrangements of the openings are adopted. Although the best solution may be not be reached, a better one can always be obtained, where the openings are placed in the inefficient region of the design domain.
In the mixed application of topology and the opening optimization, the effect of openings in the process of topology optimization is clearly demonstrated. The multi-level optimization algorithms shown to be very reliable when searching for optimal results.

口試委員會審定書 #
誌謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 XI
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 1
1.2.1 置入物件於拓樸最佳化問題 2
1.2.2 結構拓樸最佳化 2
1.3 研究內容 3
第二章 結構最佳化方法 5
2.1 前言 5
2.2 最佳化問題描述 5
2.3 結構最佳化 6
2.3.1 尺寸最佳化 6
2.3.2 形狀最佳化 7
2.3.3 拓樸最佳化 7
2.4 多層最佳化 8
2.5 結構最佳化分析方法 8
2.5.1 結構最佳化演進法 8
2.5.2 雙向結構最佳化演進法 9
2.6 元素交換法 11
2.6.1 元素交換法基本概念 11
2.6.2 元素交換法之參數 13
2.6.3 元素交換機制(Element Exchange, EE) 13
2.6.4 隨機交換機制(Random Shuffle, RS) 13
2.6.5 棋盤化效應(Checkerboard) 14
2.6.6 最大迭代步數與收斂準則 14
2.6.7 方法流程 15
2.7 小結 16
第三章 孔洞於結構中之位置最佳化 23
3.1 前言 23
3.2 孔洞位置最佳化問題 23
3.2.1 問題描述 23
3.2.2 最陡梯度法 25
3.2.3 孔洞移動準則 26
3.2.4 停止條件 29
3.2.5 方法流程 30
3.3 參數選擇與孔洞初始位置之影響 30
3.4 多個孔洞之位置最佳化 32
3.5 小結 35
第四章 結合拓樸最佳化 53
4.1 前言 53
4.2 孔洞位置最佳化結合拓樸最佳化 53
4.2.1 交替進行EEM與孔洞位置最佳化之限制與機制 53
4.2.2 變體積函數(Volume-Changeable Function) 54
4.2.3 停止條件 55
4.2.4 方法流程 56
4.3 例題探討與比較 56
4.4 小結 59
第五章 結論與未來展望 73
5.1 結論 73
5.2 未來展望 74
參考文獻 75

Arora, J. S. (2011). Introduction to Optimum Design. London, Academic Press.
Bendse, M. P. (1989). Optimal shape design as a material distribution problem. Structural and Multidisciplinary Optimization 1(4): 193-202.
Bendse, M. P. (2004). Topology Optimization: Theory, Methods, and Applications. New York: Springer.
Clausen, A., Aage, N. and Sigmund, O. (2014). Topology optimization with flexible void area. Structural and Multidisciplinary Optimization 50(6): 927-943.
Flager, F., Adya, A., Haymaker, J. and Fischer, M. (2014). A bi-level hierarchical method for shape and member sizing optimization of steel truss structures. Computers and Structures 131: 1-11.
Huang, X. and Xie, Y. M. (2007). Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elements in Analysis and Design 43(14): 1039-1049.
Kang, Z. and Wang, Y. (2013). Integrated topology optimization with embedded movable holes based on combined description by material density and level sets. Computer Methods in Applied Mechanics and Engineering 255: 1-13.
Leu, L. J., Mukherjee, S., Wei, X. and Chandra, A., (1994). Shape optimization in elasticity and elasto-viscoplasticity by the boundary element method. International Journal of Solids and Structures 31(4): 533-550.

Li, Q., Steven, G. P. and Xie, Y. M. (2001). A simple checkerboard suppression algorithm for evolutionary structural optimization. Structural and Multidisciplinary Optimization 22(3): 230-239.
Qian, Z. and Ananthasuresh, G. K. (2004). Optimal embedding of rigid objects in the topology design of structures. Mechanics Based Design of Structures and Machines 32(2): 165-193.
Querin, O. M., Steven G. P. and Xie, Y. M. (1998). Evolutionary structural optimization (ESO) using a bidirectional algorithm. Engineering Computations 15(8): 1031-1048.
Rouhi, M., Rais-Rohani, M. and Williams, T. N. (2010). Element exchange method for topology optimization. Structural and Multidisciplinary Optimization 42(2): 215-231.
Rozvany, G. I. N., Zhou, M. and Birker, T. (1992). Generalized shape optimization without homogenization. Structural Optimization 4(3-4): 250-252
Sigmund, O. (2001). A 99 line topology optimization code written in Matlab. Structural and Multidisciplinary Optimization 21(2): 120-127.
Sigmund, O. and Petersson, J. (1998). Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural optimization 16(1): 68-75.
Snyman, J. (2005). Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms (Vol. 97). Springer Science & Business Media.

Svanberg, K. (1987). The method of moving asymptotes—a new method for structural optimization. International Journal for Numerical Methods in Engineering 24(2): 359-373.
Vanderplaats, G. N. and Salajegheh, E. (1989). New approximation method for stress constraints in structural synthesis. AIAA Journal 27(3): 352-358.
Venkayya, V. B. (1993). Structural Optimization: Status and Promise. AIAA Series: Progress in Aeronautics and Astronautics, Vol. 150, AIAA, Washington D.C.
Wang, D., Zhang, W. H. and Jiang, J. S. (2002). Truss shape optimization with multiple displacement constraints. Computer Methods in Applied Mechanics and Engineering 191(33): 3597-3612.
Wang, Y., Luo, Z., Zhang, X. and Kang, Z. (2014). Topological design of compliant smart structures with embedded movable actuators. Smart Materials and Structures 23(4): 045024.
Wei, P., Shi, J. and Ma, H. (2013). The stiffness spreading method in integrated layout optimization design for multi-component structural Systems.10th World Congress on Structural and Multidisciplinary Optimization, Orlando, Florida, USA.
Xie, Y. M. (1997). Evolutionary Structural Optimization. London, New York: Springer.
Zhang, W., Zhong, W. and Guo, X. (2015). Explicit layout control in optimal design of structural systems with multiple embedding components. Computer Methods in Applied Mechanics and Engineering 290: 290.
Zhu, J. H., Gao, H. H., Zhang, W. H. and Zhou, Y. (2015). A multi-point constraints based integrated layout and topology optimization design of multi-component systems. Structural and Multidisciplinary Optimization 51(2): 397-407.
Zhu, J., Zhang, W. and Beckers, P. (2009). Integrated layout design of multi‐component system. International Journal for Numerical Methods in Engineering 78(6): 631-651.
Zhu, J., Zhang, W., Beckers, P., Chen, Y. and Guo, Z. (2008). Simultaneous design of components layout and supporting structures using coupled shape and topology optimization technique. Structural and Multidisciplinary Optimization 36(1): 29-41.
施可葳(2013),元素交換法於結構拓樸最佳化之改良與應用,國立臺灣大學土木工程學研究所碩士論文。
柯俊宇(2014),結構最佳化軟體開發:應用於斜張橋設計,國立臺灣大學土木工程學研究所碩士論文。
郭哲宇(2011),加入隨機化之拓樸最佳化方法之研究及應用,國立臺灣大學土木工程學研究所碩士論文。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top