跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/31 02:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:温欣儀
研究生(外文):Hsin-Yi Wen
論文名稱:以克利金法內插溫度之模型選擇與參數檢定研究
論文名稱(外文):A Study on Model Selection and Parameter Identification for Temperature Interpolation Using Kriging
指導教授:李天浩李天浩引用關係
指導教授(外文):Tim-Hau Lee
口試委員:鄭安孺余化龍
口試委員(外文):Anne-Ru ChengHwa-Lung Yu
口試日期:2015-07-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:97
中文關鍵詞:通用克利金法簡單克利金法迴歸克利金法統計結構半變異圖參數檢定交叉驗證
外文關鍵詞:Universal KrigingSimple KrigingRegression KrigingStatistic structureVariogramParameter identificationCross Validation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:369
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究應用去一內插的效率係數,評估使用迴歸克利金(Regrssion Kriging, RK)法、簡單克利金(Simple Kriging, SK)法和通用克利金(Universal Kriging, UK)法時,選擇不同統計結構函數模型、參數檢定方法的優劣點,根據分析結果,建議各階段選擇模型、估計參數和內插面化使用的客觀評估方法與最佳方案。
檢定資料一、二階統計結構參數的方法,包括:(1)採用迴歸克利金(RK)法程序,先迴歸估計一階趨勢,再用迴歸殘餘值,依循建立半變異圖模型的傳統程序,計算二階統計模型參數。(2)使用內在假設概念估計半變異圖參數,並不去除原始半變異圖中的溫度趨勢值,但使用迴歸得到的一階趨勢函數,僅使用兩測站以經度、緯度、高程計算的溫度趨勢差值平方項總和低於選擇門檻值的原始半變異圖數據,來檢定半變異圖模式參數。(3)選擇趨勢和半變異圖模型,使用最大概似法(MLE),同時檢定一、二階統計模型參數。(4)選擇趨勢和半變異圖模型,使用克利金法去一估計的交叉驗證法評量指標為目標函數,擾動迭代(趨勢和)半變異圖模型參數,使目標函數達到最佳值的方式,決定資料統計結構參數。這4種參數檢定方法,除了(2)只能應用於通用克利金(UK)法外,其他三種方法都能配合UK法應用,也能配合『先去除觀測值趨勢,再用簡單克利金(SK)法內插殘差值,最後加上估計點趨勢值』的程序應用。最後,利用克利金法去一估計誤差值與克利金法理論估計誤差標準偏差比值的統計顯著程度,以及迴歸模式的Cook’s D指標值大小,判斷某測站溫度是否合理或一致。
本研究採用2008至2012年間擁有最多有效觀測的小時溫度資料,計算日勳溫和月均溫等不同時間長度的資料,經資料測試各參數檢定作法後決定方法論,再利用2003至2009年間擁有最多觀測的小時溫度資料,選出多筆資料驗證方法論。經過測試2008至2012年擁有最多有效觀測的小時溫度資料、日均溫和月均溫資料,決定一階統計模型為經緯高一次項模式。二階統計模型則選用指數模型、球形模型、高斯模型和坑洞效應模型,經測試後以指數模型、球型模型最穩定且經常表現最佳。再經由2003至2009年中多筆小時觀測資料進行驗證後,利用最大概似(maximum likelihood estimation, MLE)法檢定參數與以效率係數作為目標函數的交叉驗證迭代最佳化(iteration for optimal cross validation ,IOCV)法程序皆可改進傳統法檢定的參數,然而以交叉驗證迭代最佳化(IOCV)法檢定參數時由於理論上仍存有疑慮,且利用最大概似(MLE)法與交叉驗證迭代最佳化法檢定的參數表現類似,因此建議使用最大概似(MLE)法作為克利金法的參數檢定方法。
在估計時,測試結果顯示利用最大概似(MLE)法檢定參數後進行去趨勢-簡單克利金(SK)法或以通用克利金(UK)法去一估計,其效率係數表現皆較傳統方法檢定的參數經去趨勢-簡單克利金(SK)法或通用克利金(UK)法去一估計之效率係數為佳,顯示該程序所檢定的參數應較傳統程序更有能力描述溫度樣本在空間中的相關性。而比較去趨勢-簡單克利金(SK)法與通用克利金(UK)法的去一估計效率係數顯示經最大概似(MLE)法檢定參數後以去趨勢-簡單克利金(SK)法去一估計的表現比經最大概似(MLE)法檢定參數後以通用克利金(UK)法的表現為佳。
本研究的結論建議使用克利金法時,可優先選擇指數、球型模型作為二階統計模型參數,經由最大概似(MLE)法程序檢定參數並再搜尋檢定參數後,再以最適用的半變異圖模型與最佳參數組合輸入去趨勢-簡單克利金(SK)法作空間面化估計。


This study applied coefficient of efficiency from leave-one-out (LOO) interpolation to evaluate the pros and cons of using three types of Kriging methods, regression Kriging (RK), simple Kriging (SK), and universal Kriging (UK), with different statistic structure models and parameter identification methods. According to the results of analysis, objective evaluation method has been proposed to select the appropriate methods in estimate procedure.
This study compared four statistic structure parameter identification methods, which include first order and second order: 1.Applying RK procedure, which first estimates trend then follows the traditional procedure to establish variogram model with regression residual, compute statistical model parameters in second order; 2.Applying intrinsic hypothesis concept to estimate the parameter of variogram model. This method does not remove the temperature trend in the raw variogram, but identifies variogram parameters with raw variogram which is controlled by spatial trends squared difference term. Spatial trends squared difference term is the sum of the product of difference of latitude and longitude of any two stations and the first order trend function parameters; 3.Applying maximum-likelihood estimation (MLE) to identify variogram parameters; 4.Applying cross validation methods, uses assessment indicator, which is computed with Kriging error variance, as objective function. This method determines the statistical structure parameters with optimizing objective function by perturbing variogram parameters.
Among these four parameter identification methods, only method #2 can only apply on UK. The remaining three methods can both apply on UK and the procedure which first removes trend, uses residual from SK, and ultimate add trend on. At last, this study used the ratio of Kriging error variance and Kriging expected error variance to judge the quality of temperature estimation.
The five years (2008 to 2012) temperature hourly-data has been used to test in this study. This study only used the data from the station with high percentage of valid observations, and the data has been converted to hourly data, average daily data, and monthly average data to test. The test result shows the first order statistical model is a linear model with longitude, latitude, and height variables. After testing, exponential model and spherical model performed the most stable and best among four kinds of second order statistical models.
This study used hourly data from 2003 to 2009 for validation. The validation results show that both MLE and iteration for optimal cross validation (IOCV) method performs better than traditional parameter identification methods. From a theoretical point of view, there are concerns about IOCV methods. Since there is only a little difference the performance between IOCV and MLE methods, the study recommends using MLE as parameter identification method for Kriging method.
The results of test of estimation procedure show that applied MLE method in identified procedure produces better and more stable CoE compares with the other methods above-mentioned. In addition, among the procedure, which identify parameters by MLE, SK method produced CoE with better performance than UK.
This study provides some recommendations of applying Kriging. First, exponential model and spherical model are preferences of second order model. Second, it is preferred to apply MLE method to identify parameters. Third, it is recommended to use SK method for interpolation.


誌謝 i
中文摘要 ii
ABSTRACT iv
目錄 vi
圖目錄 viii
表目錄 xi
第 1 章 緒論 1
1.1 動機與背景 1
1.2 文獻回顧 3
1.3 研究目標 6
1.4 章節介紹 8
第 2 章 研究流程與方法論 9
2.1 研究流程概述 9
2.2 參數檢定程序說明 13
2.2.1 迴歸+傳統法參數檢定程序 13
2.2.2 最大概似估計 (Maximum Likelihood Estimation, MLE)法檢定參數程序 19
2.2.3 交叉驗證迭代最佳化法(Iteration for Optimal Cross Validation, IOCV)法再搜尋二階統計結構參數程序 23
2.3 克利金方法去一估計程序說明 25
第 3 章 經應用實際資料測試決定方法論 27
3.1 一階統計結構 27
3.2 利用溫度觀測資料決定參數檢定程序與估計方法 34
3.2.1 應用資料 34
3.2.2 利用迴歸+傳統(Rg+Tr)法參數檢定程序檢定統計結構參數 36
3.2.3 利用最大概似(MLE)法參數檢定程序檢定統計結構參數 46
3.2.4 利用最交叉驗證迭代最佳化(IOCV)法參數檢定程序檢定統計結構參數 50
3.2.5 分析與比較半變異圖模型、參數檢定程序以及克利金方法 55
第 4 章 參數檢定程序與克利金估計方法驗證 73
4.1 利用30組不同季節、時間的小時資料進行方法驗證 73
4.1.1 簡介應用資料 73
4.1.2 驗證參數檢定方法 75
4.1.3 克利金估計方法驗證 82
第 5 章 結論與建議 85
5.1 結論 85
5.2 建議 86
參考文獻 87
附錄1 證明克利金法的估計只會和 的比率有關 88
附錄2 2003-2009年間具有90%以上有效觀測值的島內測站 90
附錄3 30小時資料以迴歸+傳統(Rg+Tr)法與MLE法程序檢定的參數與效率係數 94


[1]S. Ahmed, G. De Marsily, Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity. Water resources research 23, 1717-1737 (1987).
[2]K. Baumann, Cross-validation as the objective function for variable-selection techniques. TrAC Trends in Analytical Chemistry 22, 395-406 (2003).
[3]M. Bezzi, A. Vitti, A comparison of some kriging interpolation methods for the production of solar radiation maps. Geomatics Workbooks, (2005).
[4]N. A. C. Cressie, N. A. Cassie, Statistics for spatial data. (Wiley New York, 1993), vol. 900.
[5]C. Currin, T. Mitchell, M. Morris, D. Ylvisaker, Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments. Journal of the American Statistical Association 86, 953-963 (1991).
[6]E. G. M. de Lacerda, A. de Carvalho, T. B. Ludermir. (IEEE), pp. 118-123.
[7]O. Dubrule, Two methods with different objectives: splines and kriging. Journal of the International Association for Mathematical Geology 15, 245-257 (1983).
[8]R. M. Endlich, R. L. Mancuso, in Monthly Weather Review. (Citeseer, 1968).
[9]T. Hengl, G. B. Heuvelink, A. Stein, Comparison of kriging with external drift and regression-kriging. Technical note, ITC 51, (2003).
[10]T. A. Jones, Y. Z. Ma, Teacher''s aide: geologic characteristics of hole-effect variograms calculated from lithology-indicator variables. Mathematical Geology 33, 615-629 (2001).
[11]R. H. Jongman, C. J. Ter Braak, O. F. Van Tongeren, Data analysis in community and landscape ecology. (Cambridge university press, 1995).
[12]P. K. Kitanidis, Generalized covariance functions in estimation. Mathematical Geology 25, 525-540 (1993).
[13]P. K. Kitanidis, The concept of the dilution index. Water resources research 30, 2011-2026 (1994).
[14]P. Krasilnikov, F. Carré, L. Montanarella, Soil geography and geostatistics. Concepts and Applications. JRC Scientific and Technical Reports. EUR 23390, (2008).
[15]D. Krige, A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of South Africa 52, 119-139 (1951).
[16]J. D. Martin, T. W. Simpson. (American Society of Mechanical Engineers), pp. 481-492.
[17]G. Matheron, Le krigeage universal: Cah. Centre Morphol. Math 1, (1969).
[18]I. O. A. Odeha, A. B. McBratney, D. J. Chittleborough, Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geoderma 63, 197-214 (1994).
[19]R. Sunila, K. Kollo, A comparison of geostatistics and fuzzy application for digital elevation model. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 36, 2 (2007).
[20]E. Todini, Influence of parameter estimation uncertainty in Kriging: Part 1-Theoretical Development. Hydrology and Earth System Sciences 5, 215-223 (1999).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top