跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/27 21:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊甫
研究生(外文):Jiun-Fu Chen
論文名稱:地形對地表放大效應之影響
論文名稱(外文):The Effects of Topography on Ground Surface Amplification
指導教授:林美聆林美聆引用關係
口試委員:陳天健王國隆
口試日期:2015-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:121
中文關鍵詞:地震土層放大效應地形起伏FLACSHAKE
外文關鍵詞:earthquakesoil amplificationtopographyFLACSHAKE
相關次數:
  • 被引用被引用:2
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
地球歷史上有許多的案例記載中指出不規則地形的地震波放大效應以及軟弱的地層可能是造成地震破壞的主因之一,例如:1989年Loma prieta地震、1983 年Coalinga 地震、1985 年Chilean 地震以及1987年Supersition Hill等等,藉由量化地震的紀錄後可以知道在一些較陡的地形以及較軟弱的地形中,其地震振幅會放大數倍以上,因此,震波的土層放大效應及地址的地形影響兩者對於地震破壞中之影響是需要去探討研究的。
台灣的地形山多平原少,山地及丘陵及占全島總面積的三分之二,並且位於歐亞大陸板塊與菲律賓海板塊的交接帶,大小地震頻繁,地形的起伏可能會使得強度小的地震在不同的地形被放大,而造成破壞。在本研究中,先利用SHAKE軟體土層之模型進行地震分析,得到在基盤的加速度歷時,再利用FLAC程式進行地震分析。
建立簡化的山峰、山谷模型,從地形上各點的分佈找到地震振幅的放大比率分佈與地震震波的波長之間得相關性,應用於實際案例中。本研究收集在高雄甲仙地震下的南投山區測站的地質環境、地形變化及地震資料等,分出日月潭測站–魚池國小測站、魚池測站–北山國小測站以及暨南大學測站–北山國小測站,三個現地地形剖面進行數值分析模擬,雖然因山區地層資料不足無法完整模擬自然條件,在現地案例中,土層厚度因子仍然具有顯著得影響,而模擬測站則會因為鄰近的地形起伏因子,影響到地震加速度歷時放大比率的變化。


There are lots of cases indicating the irregular terrain and the fragile strata might be the major cause of amplification earthquake damage. For instance, the Loma Prieta earthquake in 1986, the Coalinga earthquake in 1983, the Chilean earthquake in 1986, and the Supersition Hill earthquake in 1987. By collecting those seismic records , it shows that in some topography like the steep ones and fragile geologic formation, the seismic amplitude will be enlarged several times. As a result, the amplification of soil and the orographic influence of local sites needed to be explore and research.
Two thirds of its area is mountains and hills in Taiwan. Moreover, locating in convergence Zone of Eurasian Plate and the Philippine Sea plate makes earthquakes occur frequently and the undulate of terrain may cause those low intensity seismicities become stronger which cause damage. In this research I first use SHAKE for getting the acceleration on base for input to FLAC model during simulation.
The simplified models of mountain peak and valley were constructed , we can find out the relationship between seismic amplification ratio distribution versus the wavelength of seismic wave. The research collects the geological environment, topography, and seismic data of the Chiahsien earthquake recorded from Nantou mountain stations TCU084–TCU080 , TCU089–TCU142 and TCU148–TCU142 ,and three terrain profiles were used to simulate seismic amplification. In field site case, the thickness of soil still have notable effects on the change of seismic amplification ratio distribution , and the influence by topography nearby also affects simulate on results.


口試委員審定書 I
誌謝 III
摘要 V
Abstract VII
目錄 IX
表目錄 XII
圖目錄 XIII
第一章 緒論 1
1.1研究背景 1
1.2研究動機與目的 1
1.3研究方法與內容 2
第二章 文獻回顧 5
2.1地震放大效應之形態 5
2.2地震反應影響評估 8
2.2.1 歷史災害統計分析法 8
2.2.2 模型試驗法 9
2.2.3 數值分析法 10
2.3連續地形起伏的影響 12
第三章 研究原理以及分析方法 31
3.1波傳原理 31
3.2分析方法 31
3.2.1 一維波傳-SHAKE程式 31
3.2.2 土壤動態參數曲線 35
3.3輸入加速度資料 35
3.4分析流程 36
第四章 土層模型的驗證以及簡化受震模型的建立 45
4.1研究區域介紹 45
4.1.1 研究區域以及地震的選取 45
4.1.2 地質背景 46
4.1.3 材料參數 47
4.2地震資料分析 47
4.2.1 時間域分析 47
4.2.2 反應譜 48
4.2.3 頻率域分析 49
4.3建立FLAC土層模型進行驗證 50
4.3.1 FLAC程式介紹 50
4.3.2 模型模式 51
4.3.3 邊界條件以及網格設定 52
4.3.4 土層模型建立與驗證 53
4.4簡化模型的建立 54
4.4.1 邊坡模型 54
4.4.2 山峰模型 54
4.4.3 山谷模型 57
第五章 現地地形受震案例分析 83
5.1測站地形狀況 83
5.2現地案例資料處理 84
5.2.1 加速度歷時處理 84
5.2.2 現地地形模型建立 85
5.2.3 輸入資料與模型驗證 85
5.3數值模擬結果 86
5.3.1 日月潭氣象站–魚池國小 86
5.3.2 魚池–北山國小 87
5.3.3 國立暨南國際大學–北山國小 88
5.3.4 數值模擬與實際测站比較 90
5.4綜合比較 91
第六章 結論與建議 113
6.1結論 113
6.2建議 115
參考文獻 117



[1]ArcGIS Desktop Help 10.1(2012). Environmental Systems Research Institute, Inc.
[2]Ashford, S. A., & Sitar, N. (1997). Analysis of topographic amplification of inclined shear waves in a steep coastal bluff. Bulletin of the Seismological Society of America, Vol.87, 692-700.
[3]Ashford, S. A., Sitar, N., Lysmer, J., & Deng, N. (1997). Topographic effects on the seismic response of steep slopes. Bulletin of the Seismological Society of America, Vol.87, 701-709.
[4]Ariane Ducellier · Hideo Aochi (2012). Interactions between topographic irregularities andseismic ground motion investigated using a hybrid FD-FEmethod. Bull Earthquake Eng Vol.10 ,773–792
[5]Celebi, M. (1987). Topographical and geological amplifications determined from strong-motion and aftershock records of the 3 March 1985 Chile earthquake.Bulletin of the Seismological Society of America, Vol. 77, 1147-1167.
[6]Celebi, M. (1991).Topographical and geological amplification: case studies and engineering implications.Structural Safety, Vol.10, 199-217.
[7]Das, B. M. (2001). Principles of geotechnical engineering, 5th ed., Thomson.
[8]Davis, L. L. and West, L. R. (1973). Observed Effect of topography on ground motion , Bulletin of Seismological Society of America, Vol. 63, 283-298.
[9]FLAC Version 4.0 manual (2000), ITASCA Consulting Group, Inc.

[10]Geli, L., Bard, P. Y. and Jullien, B. (1988). The Effect of topography on Earthquake ground motion: a review and new results, Bulletin of Seismological Society of America, Vol. 78, 42-63.
[11]G.A. Athanasopoulos, P.C. Pelekis, E.A. Leonidou(1999). Effects of surface topography on seismic ground response in the Egion(Greece) 15 June 1995 earthquake. Soil Dynamics and Earthquake Engineering Vol. 18 ,135-149.
[12]George D. Bouckovalas , Achilleas G. Papadimitriou (2005). Numerical evaluation of slope topography effects on seismic ground motion. Soil Dynamics and Earthquake Engineering,Vol. 25, 547–558
[13]Hardin, B. O. and V. P. Drnevich (1972). Shear modulus and damping in soils: design equations and curves, Journal of the soil mechanics and foundations division, ASCE, Vol. 98, No. SM7, Proc. Paper 9006, 667-692.
[14]Hoek, E., and Bray, J.(1981). Rock Slope Engineering 3nd ed., The Institution of Mining and Metallurgy.
[15]Idriss, I.M.(1990). Response of Soft Soil Sites During Earthquakes, Volume 2, Proceedings: H. Bolton Seed Memorial Symposium, (J.M. Duncan, ed.), University of California, Berkeley, May 1990. 273-289.
[16]Kuhlemeyer, R. L., & Lysmer, J. (1973). Finite element method accuracy for wave propagation problems. Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 99, No. SM5, 421-427.
[17]Khoa-Van Nguyen , Behrouz Gatmiri (2007). Evaluation of seismic ground motion induced by topographic irregularity. Soil Dynamics and earthquake Engineering, Vol. 27, 183-188.
[18]L.H. Mejia , E.M. Dawson (2006). Earthquake deconvolution for FLAC. International FLAC Symposium on Numerical Modeling in Geomechanics.
[19]Lee, S. J., Chan, Y. C., Komatitsch, D., Huang, B. S., & Tromp, J. (2009). Effects of realistic surface topography on seismic ground motion in the Yangminshan region of Taiwan based upon the spectral-element method and LiDAR DTM. Bulletin of the Seismological Society of America, Vol.99, 681-693.
[20]Moncarz, P. D. and Krawinkler, H. (1981). Theory and application of experimental model analysis in earthquake engineering, Rpt. No. 50, John Blume Earthquake Eng. Ctr., Stanford Univ.
[21]Okawa, I., Kashima,T., and Kitagawa,Y. (1992). Site effect characterization using records of dense strong motion earthquake seismometer array in Sendai, Earthquake Engineering Tenth World Conference, Japan, 1009-1014.
[22]Paolucci, R. (2002). Amplification of earthquake ground motion by steep topographic irregularities. Earthquake engineering & structural dynamics,Vol.31, 1831-1853.
[23]Pedersen, H., Le Brun, B., Hatzfeld, D., Campillo, M., & Bard, P. Y. (1994). Ground-motion amplitude across ridges. Bulletin of the Seismological Society of America, Vol. 84, 1786-1800.
[24]Rocha, M. (1957). The Possibility of Solving Soil Mechanics Problems by Use of Models, Proc. 4th Intl. Conf. Soil Mech. Fdn. Eng., London, Vol. 1, 183-188.
[25]Sánchez-Sesma, F. J. (1990). Elementary solutions for response of a wedge-shaped medium to incident SH and SV waves, Bulletin of the Seismological Society of America, Vol. 80, 737-742.
[26]Sanchez-Sesma, F.J., Herrera, I. and Aviles, J.(1982). A boundary method for elastic wave diffraction: application to scattering of SH waves by surface irregularities, Bulletin of the Seismological Society of America, Vol. 72, 473-490.
[27]Spudich, P., Hellweg, M., & Lee, W. H. K. (1996). Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: implications for mainshock motions. Bulletin of the Seismological Society of America, Vol.86, S193-S208.
[28]Wang, K.-L. and M.-L. Lin (2011). Initiation and displacement of landslide induced by earthquake-a study of shaking table model slope test. Engineering Geology , 2011(SCI), doi:10.1016/j.enggeo.2011.04.008
[29]王元度(2005),小型振動台之模型邊坡動態試驗研究,國立台灣大學土木工程研究所碩士論文。
[30]王國隆(2006),區域性邊坡受震反應分析-以集集地震為例,國立台灣大學土木工程研究所博士論文。
[31]王國隆,林美聆(2010),1-g條件下之大型邊坡模型受震行為,地工技術,第125期,第23-34頁。
[32]交通部中央氣象局(2010),高雄甲仙大地震報告,中央氣象局地球物理資料館理系統。
[33]江定國(2013),集集地震後多時序邊坡崩塌特性變遷分析,國立台灣大學土木工程研究所碩士論文。
[34]李忠憲(2007),三維地震波模擬:談台北都會區的地形與盆地效應,中央研究院週報,第140期。

[35]林京翰(2007),利用小型振動台模擬邊坡受震情形之研究,國立台灣大學土木工程研究所碩士論文。
[36]林彥志(2010),利用數值模式模擬地震引致的邊坡滑動行為,國立台灣大學土木工程研究所碩士論文。
[37]林美聆,王國隆(2006),區域性邊坡受震反應分析及振動台模型試驗(III),行政院國家科學委員會研究計畫報告。
[38]黃靖雅(2013),地震引致邊坡崩塌之影響範圍與滑動量數值模擬,國立台灣大學土木工程研究所碩士論文。
[39]經濟部中央地質調查所(2001),數值地質圖層資料規範(第三版)。
[40]經濟部中央地質調查所(2008),高山聚落地區地質災害基本調查,地質敏感區災害潛勢評估與監測計畫。
[41]鄒銘徽(2011),振動台模型相似律及滑移行為分析,國立台灣大學土木工程研究所碩士論文。
[42]鄭巽澤(2006),小型振動台模擬邊坡受震行為之研究,國立台灣大學土木工程研究所碩士論文。
[43]藍詩婷(2014),地形對地震震波反應之影響,國立台灣大學土木工程研究所碩士論文。
[44]謝昭輝(1992),地形效應對地震波形影響之物理模型研究,中央氣象局地震技術,第3期,第157-185頁。
[45]謝凱旋,陳勉銘(2011),臺灣中部地區佳陽層、眉溪砂岩中段與廬山層底部之化石研究:雪山山脈南段東翼地層的年代制約,經濟部中央地質調查所特刊,第二十五號,第133-166頁。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top