跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 08:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張文婕
研究生(外文):Wen-Chieh Chang
論文名稱:核能電廠餘熱移除系統耐震行為之試驗與分析
論文名稱(外文):Experimental and Analytical Studies for Seismic Behavior of Residual Heat Removal System in Nuclear Power Plants
指導教授:黃尹男黃尹男引用關係
指導教授(外文):Yin-Nan Huang
口試委員:柴駿甫廖文義
口試日期:2015-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:269
中文關鍵詞:餘熱移除系統元件易損性分析非線性動力分析振動台試驗機率式地震風險評估
外文關鍵詞:seismic probabilistic risk assessmentnonlinear response-history analysisresidual heat removal piping systemcomponent fragility analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Huang, Whittaker 與 Luco等人綜合核電廠既存的機率式地震風險評估 (Seismic Probabilistic Risk Assessment, SPRA) 方法與地震工程學界在耐震性能評估上的新做法,發展出一套新的SPRA方法(簡稱為HWL-typed SPRA)。在HWL-typed SPRA方法中,包含五個步驟,分別為:(一)、系統分析及元件易損性分析,(二)、危害度分析,(三)、結構動力歷時反應分析,(四)、元件損傷評估,(五)、地震風險量化計算。其中在建立元件易損性曲線程序上,不同於傳統SPRA之易損性曲線為地表運動參數之函數,而為結構元件反應參數之函數,且配合結構非線性動力歷時反應分析,藉由分析直接將原本傳統易損性分析時須要考慮之結構反應參數之保守性及變異性納入考量。
本研究針對元件易損性分析方法進行探討,在建立元件易損性曲線之程序上,以實驗方式評估數值模型與數值分析之合理性,再以數值分析方式來建立以元件反應為參數之易損性曲線。以案例電廠之餘熱移除(Residual Heat Removal, RHR)C串管線系統為例,除了以設計分析資料建立其傳統地震易損性曲線,亦依本研究發展之易損性分析方法,對RHR-C管線系統進行振動台耐震性能試驗,以實驗資料建立可靠之數值模型,再藉由多筆管線數值模型之非線性動力歷時分析資料,建立RHR-C管線系統之以元件反應參數為函數之地震易損性曲線,並討論以地表運動及結構反應參數為函數之易損性曲線之差異。本研究結果顯示與傳統地震易損性分析方法之結果相比,以元件反應為參數之地震易損性分析結果較為保守,且對數標準差較小,故建議使用HWL-typed SPRA之以元件反應為參數之地震易損性分析方法進行核電廠元件耐震容量之評估。


Seismic probabilistic risk assessment (SPRA) has been widely used to compute the frequencies of core damage and release of radiation of nuclear power plant (NNP).In 2011, Huang, Whittaker, and Luco published a new SPRA methodology, different from existing SPRA, including nonlinear response-history analysis of structure to estimate seismic demands for component and the component fragility curves are functions of component response parameters.
In the study presented in this thesis, the methodologies of developing ground-motion-based and response-based component fragility curves with numerical models are presented. A residual heat removal (RHR) piping system which contributes significantly to the seismic risk of a sample NPP has been analyzed experimentally and numerically. Then, the numerical model based on experimental result is used to develop a response-based fragility curve for the system. Comparing to the ground-motion-based component fragility analysis result, the response-based fragility analysis result is more conservative and reliable, so recommendation is using response-based fragility curves in seismic probabilistic risk assessment.


口試委員會審定書 I
致謝 II
摘要 III
ABSTRACT IV
目錄 V
表目錄 IX
圖目錄 XII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 文獻回顧 3
1.3.1 地震機率式風險評估 3
1.3.2 易損性分析 4
1.3.3 管線系統試驗與模擬 6
1.4 論文結構 8
第二章 元件地震易損性分析 12
2.1 地震易損性曲線模型 12
2.2 傳統地震易損性分析 14
2.2.1 傳統地震易損性分析之介紹 14
2.2.2 基於分析方法之設備元件易損性分析考量因子 15
2.2.3 地震易損性曲線中位數及對數標準差之計算 28
2.3 以元件反應為參數之地震易損性分析 29
2.3.1 以設備元件反應為參數之地震易損性分析介紹 29
2.3.2 基於分析方法之設備元件易損性分析考量因子 30
第三章 餘熱移除管線系統振動台試驗設計 46
3.1 試驗管線系統介紹-餘熱移除管線系統 46
3.1.1 試驗管線系統選定依據 46
3.1.2 餘熱移除管線系統功能說明 46
3.2 試驗管線段介紹 48
3.3 試驗測試波之輸入歷時之建立 50
3.4 試驗配置設計 51
3.4.1 試體規格說明 52
3.4.2 管線系統反力構架 53
3.4.3 彈簧支撐架 53
3.4.4 水壓控制設備 54
3.5 量測系統與儀器擺置 54
3.5.1 角度計 55
3.5.2 應變計 55
3.5.3 荷重計 56
3.5.4 水壓計 56
3.5.5 影像量測系統 56
3.5.6 磁環式位移計 57
3.5.7 加速規 57
3.6 試驗步驟 57
第四章 試驗結果分析與數值模擬比較 115
4.1 試驗結果與分析 115
4.1.1 模擬一次圍阻體之反力構架 115
4.1.2 含水管線系統 115
4.1.3 不含水管線系統 117
4.2 數值模型建立 117
4.2.1 試驗範圍管線系統模型 117
4.2.2 邊界條件之模型參數設定 118
4.3 數值模擬與試驗結果比較 120
4.3.1 結構動態特性之比較 120
4.3.2 管線系統動態反應及受力狀態比較 120
第五章 餘熱移除系統之管線地震易損性分析 231
5.1 傳統地震易損性分析 231
5.1.1 結構反應 231
5.1.2 管線支撐破壞之容量 236
5.1.3 管線破壞之容量 236
5.1.4 設備反應 238
5.1.5 易損性分析結果 240
5.2 以元件反應為參數之地震易損性分析 241
5.2.1 分析之輸入歷時 242
5.2.2 管線損性分析 244
5.2.3 易損性分析結果 247
5.3 管線地震易損性分析結果比較 247
5.3.1 反應參數之選定與轉換 247
5.3.2 分析結果比較 248
第六章 結論與建議 264
6.1 結論 264
6.2 建議 265
參考文獻 266


American Society of Civil Engineers (ASCE). (2014). “Seismic analysis of safety-related nuclear structures.” ASCE 4-14, American Society of Civil Engineers , Reston, Virginia.

Baker, J. W., and Cornell, C. A. (2006). “Correlation of response spectral values for multicomponent ground motions.” Bulletin of the Seismological Society of America, 96(1), 215-227.

Block C., Henkel F.-O., and Messerer, W. (2013). “Seismic assessment of a RHR piping system” Smirt-22, 18-23 August, 2013, San Francisco, California, US.

Bu, S. J., and Woo Y. J. (2013). “Evaluation of Performance Requirements for Seismic Design of Piping System.” World Academy of Science, Engineering and Technology International Journal of Civil, Architectural, Structural, Urban Science and Engineering Vol:7 No:2.

Chen, J. T., Chokshi, N. C., Kenneally, R. M., Kelly, G. B., Beckner, W. D., McCracken, C., Murphy, A. J., Reiter, L., and Jeng, D. (1991). “Procedural and submittal guidance of individual plant examination of external events (IPEEE) for severe accident vulnerabilities.” NUREG-1407, U.S. Nuclear Regulatory Commission, Washington, D.C.


Campbell, R., Hardy, G., and Merz, K. (2002). “Seismic fragility application guide.” TR-1002988, Electric Power Research Institute, Palo Alto, CA.

dei Lavori Pubblici, C. S. (2008). "Norme tecniche per le costruzioni." Gazzetta Ufficiale della Repubblica Italiana

Gulec, C. K., Whittaker, A. S., and Hooper, J. D. (2010). “Fragility functions for low aspect ratio reinforced concrete walls.” Engineering Structures, 32(9), 2894-2901.

Huang, Y.-N., Whittaker, A. S., and Luco N. (2011a). “A probabilistic seismic risk assessment procedure for nuclear power plants: (I) Methodology.” Nuclear Engineering and Design, 241(9), 3996-4003.

Huang, Y.-N., Whittaker, A. S., and Luco N. (2011b). “A probabilistic seismic risk assessment procedure for nuclear power plants: (II) Application.” Nuclear Engineering and Design, 241(9), 3985-3995.

Jayaram, N., Lin, T., and Baker, J. W. (2011). “A Computationally efficient ground-motion selection algorithm for matching a target response spectrum mean and variance.” Earthquake Spectra, 27(3), 797-815.

Kennedy, R., Hardy, G., Merz, K. (2009). “Seismic fragility application guide update.” TR-1019200,Electric Power Research Institute, Palo Alto, CA.


Pacific Earthquake Engineering Research Center (PEER) (2011). “PEER Ground Motion Database.”
<http://peer.berkeley.edu/products/strong_ground_motion_db.html>

Nakamura, I., Otani, A., and Shiratori, M. "FAILURE BEHAVIOR OF PIPING SYSTEMS WITH LOCAL DEGRADATION UNDER EXCESSIVE SEISMIC LOAD."

Reed, J., Kennedy, R., Buttemer, D., Idriss, I., Moore, D., Barr, T., Wooten, K., and Smith, J. (1991). "A methodology for assessment of nuclear power plant seismic margin." Electric Power Research Inst., Palo Alto, CA ; Benjamin (JR) and Associates, Inc., Mountain View, CA ; Structural Mechanics Consulting, Inc., Yorba Linda, CA; Pickard, Lowe and Garrick, Inc., Newport Beach, CA; California Univ., Davis, CA. Dept. of Civil Engineering; Southern Co. Services, Inc., Birmingham, AL.

Reed, J. W., and Kennedy, R. P. (1994). "Methodology for developing seismic fragilities." Final Report TR-103959, EPRI.

Reza, M. S., Bursi, O. S., Abbiati, G., and Bonelli, A. (2013) "Pseudo-Dynamic Heterogeneous Testing With Dynamic Substructuring of a Piping System Under Earthquake Loading." Proc., ASME 2013 Pressure Vessels and Piping Conference, American Society of Mechanical Engineers, V008T008A016-V008T008A016.

Shinozuka, M., Feng, M. Q., Lee, J., and Naganuma, T. (2000). "Statistical analysis of fragility curves." Journal of Engineering Mechanics, 126(12), 1224-1231.
U.S. Nuclear Regulatory Commission (USNRC). (1983). “PRA procedures guide.” NUREG/CR-2300, USNRC, Washington, D.C.

U.S. Nuclear Regulatory Commission (USNRC). (1991). “Individual plant examination of external events (IPEEE) for severe accident vulnerabilities.” Generic Letter No. 88-20, Supplement 4, USNRC, Washington, D.C.

Vishnuvardhan, S., Gandhi, P., Raghava, G., Saravanan, M., Pukazhendhi, D., Goyal, S., Satpute, S., Gupta, S. K., Bhasin, V., and Vaze, K. (2011) "Quasi-Cyclic Fracture Studies on Narrow Gap Welded Stainless Steel Straight Pipes." Proc., Proceedings of the 21st International Conference on Structural Mechanics in Reactor Technology (SMiRT 21), New Delhi, India.

Wood, S. L. (1990). "Shear strength of low-rise reinforced concrete walls." ACI Structural Journal, 87(1).

Zhang, T., Brust, F. W., Wilkowski, G., Shim, D.-J., Nie, J., Hofmayer, C. H., and Ali, S. A. (2010) "Analysis of JNES Seismic Tests on Degraded Piping." Proc., ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference, American Society of Mechanical Engineers, 17-29.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top