跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/07/28 04:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃彤
研究生(外文):Tung Huang
論文名稱:束制型與穿孔型鋼板剪力牆耐震設計研究
論文名稱(外文):Seismic Design and Tests of Perforation and Restrainer in Steel Plate Shear Walls
指導教授:蔡克銓蔡克銓引用關係
指導教授(外文):Keh-Chyuan Tsai
口試委員:黃世建周中哲林克強
口試委員(外文):Shyh-Jiann HwangChung-Che ChouKer-Chun Lin
口試日期:2014-07-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:367
中文關鍵詞:鋼板剪力牆束制型鋼板剪力牆穿孔型鋼板剪力牆邊界柱構件束制構件容量設計耐震設計
外文關鍵詞:steel plate shear wallrestrained steel plate shear wallperforated steel plate shear wallboundary columnrestrainercapacity designseismic design
相關次數:
  • 被引用被引用:1
  • 點閱點閱:70
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鋼板剪力牆系統為一新型之鋼結構耐震系統,填入梁柱構件內之薄鋼板可以提供系統高側向勁度、強度及韌性,並藉由薄鋼板受剪挫屈後仍能發展出張力場之塑性變形達到耐震消能的機制。近年來在美、加、日等地區已漸受採用。但在國內之工程應用上仍不多見。主要可能原因為:一、邊界構件的容量設計常需透過複雜的板條模型完成。二、根據現行AISC規範,邊界柱塑鉸高度只能限制在柱底。如此會設計出相當粗重的邊界柱斷面,失去鋼板剪力牆的經濟效益。三、鋼板會擋住了一整面而不易穿通管線,讓建築上的使用機能失去彈性。
束制型鋼板剪力牆可以大幅降低邊界柱之撓區需求,其力學行為乃將束制構件水平設置於邊界柱上,讓束制構件協助邊界柱抵抗強大的張力場,就好像邊界柱上的側向支撐,因此可以降低一般鋼板剪力牆邊界柱被向內拉成漏斗型的趨勢,進而發展出更優越的耐震性能及更經濟的鋼板剪力牆系統。本研究將前人所提出之簡便的底層邊界柱容量設計法延伸至束制型鋼板剪力牆。
穿孔型鋼板剪力牆則可提供鋼板管線通道,增加建築上之使用性,且當鋼板強度或厚度過大時,可利用穿孔技術將鋼板強度折減至設計需求,達到更經濟的設計。本研究利用許多組之ABAQUS有限元素模型分析結果進行參數分析,提出較精準之穿孔型鋼板強度計算公式,並建議穿孔佈設方法。
為進一步驗證束制型鋼板剪力牆與穿孔型鋼板剪力牆的耐震性能,本研究與楊依璇同學合作,設計一座實尺寸兩層樓C型三維鋼板剪力牆試體,在國家地震工程研究中心進行反復側推試驗。整座試體由三面鋼板剪力牆組成,試體長向為跨距五米之未束制型鋼板剪力牆,短向為兩面跨距兩米之制型鋼板剪力牆,三面的二樓皆為穿孔型鋼板剪力牆,一樓高3.41米,使用2.6毫米厚的低降伏鋼板,二樓高3.28米,鋼板穿孔至等效厚度1.8毫米。以此試體來探討束制型鋼板剪力牆底層邊界柱的塑性行為、束制構件的內力需求及其設計方法、以及穿孔型鋼板剪力牆設計公式的準確性,並建立ABAQUS有限元素模型及PISA3D板條模型來模擬試驗反應。
反覆側推試驗至正3.0%位移角與負5.0%位移角的結果顯示,本研究的設計方法可以良好預測底層邊界柱的塑鉸高度、束制構件的內力、以及穿孔後鋼板的有效厚度,分別只低估3%的樓高,束制構件上高估15%的軸力及11%的彎矩,以及高估4%的穿孔強度折減比。數值模型的分析結果也可有效地模擬試體反應,證實本研究提出之束制型與穿孔型鋼板剪力牆的耐震設計方法是可靠的。


Steel Plate S hear Wall (SPSW) is a new type of steel structural seismic system, which has been recognized having high lateral stiffness and ductility. It has gained significant acceptance in the U.S, Canada, and Japan in recent years. However, it has not been adopted wildly in Taiwan for practical use. This could be due to the following reasons: (1) The capacity design of boundary elements requires the complex and time-consuming analysis of a strip model. (2) According to the Seismic Provisions for Structural Steel Buildings, the plastic hinge in the 1st story column is only allowed to form at the bottom end. Consequently, it often leads to a very conservative and uneconomic column design. (3) The steel panel often occupies an entire vertical area in a frame, and not flexible from an architectural point of view.
Restrainers in the Restrained SPSWs (R-SPSWs) are horizontally placed between two columns to help boundary columns and beams in resisting tension field action. Restrainers can significantly reduce flexural moment demands on boundary columns thereby allowing engineers to design SPSWs in a more robust and economic way. This study proposes the capacity design methodology for the R-SPSWs.
Perforated SPSWs (P-SPSWs) provide utility passages, which will increase architecture flexibility. Besides, if all of the available steel panels are too strong or too thick for specific design requirements, perforation can reduce panel strength and achieve the economic design. This study conducts a series of ABAQUS model analyses and carries out linear regression analysis on these analytical results. A more accurate method is proposed for estimating panel strength, and a simplified design procedure is provide for the design of P-SPSWs.
In order to verify the design methodology and the seismic performance of R-SPSWs and P-SPSWs, a full scale 2-story C-type 3D-SPSWs specimen was tested in NCREE in collaboration with another graduate student, Ms. Yi-Hsuan Yang. The specimen consists of one 5-meter long SPSW in the longitudinal side and two 2-meter wide R-SPSWs in the transverse side. The 1st story is 3.41 meter high and using 2.6 mm-thick low yield steel panel. The 2nd story is 3.28 meter high and adopting perforated panel with a strength-equivalent thickness of 1.8mm. In addition, this study conducts numerical analyses using ABAQUS shell and PISA3D strip models to predict the responses of the specimen.
Cyclic loading test results show that the maximum positive and negative roof drift ratios are +3% and -5%, respectively. Tests also confirm that the design methodology can satisfactorily predict the location of in-span plastic hinges, the force demands on the restrainers, and the strength-equivalent thickness of the perforated panel. Therefore, the proposed design methodologies for the R-SPSWs and P-SPSWs are proved to be practical and useful.


目錄
致謝 I
摘要 II
Abstract III
目錄 V
表目錄 X
圖目錄 XI
照片目錄 XXIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 研究方法 2
1.4 論文架構 3
第二章 鋼板剪力牆系統介紹 4
2.1 概述 4
2.2 拉力場角度 5
2.3 數值模型 7
2.3.1 板條模型 7
2.3.2 等效斜撐模型 7
2.3.3 有限元素模型 8
2.4 鋼板剪力牆系統塑性分析 9
2.5 其他相關研究成果 10
2.6 AISC鋼板剪力牆耐震設計規定 13
第三章 束制型鋼板剪力牆邊界構件容量設計 16
3.1 容量設計概念 16
3.2 耐震設計流程 17
3.3 鋼板剪力牆邊界構件之力學行為特性 18
3.3.1 拉力場對邊界構件之載重 18
3.3.2 以疊加法計算邊界構件載重 18
3.3.3 鋼板應變硬化效應 19
3.3.4 超強因子(Overstrength Factor, Ωs) 19
3.3.5 束制型鋼板剪力牆之力學行為特性 20
3.4 邊界梁容量設計方法 21
3.4.1 避免梁跨中產生彎矩塑鉸 21
3.4.2 樑柱接頭樑翼切削(Reduced Beam Section, RBS) 24
3.5 邊界柱容量設計方法 27
3.5.1 底層柱端彎矩比λ 27
3.5.2 底層柱塑鉸高度比 28
3.5.3 底層柱容量設計法 29
3.5.3.1 軸力分布函數 29
3.5.3.2 彎矩分布函數 29
3.5.3.3 全面降伏階段柱中塑鉸位置之彎矩需求 30
3.5.3.4 預測柱中塑鉸高度 31
3.5.3.5 確保全面降伏階段柱中彎矩塑鉸早於柱頂發生 32
3.5.3.6 避免柱頂於全面降伏階段產生彎矩及剪力塑鉸 33
3.5.3.7 避免柱頂於應變硬化階段產生彎矩及剪力塑鉸 36
3.5.3.8 邊界柱塑性機構 38
3.5.3.9 設計流程與建議 39
3.5.4 彎矩需求參數之比較 39
3.5.4.1 放寬塑鉸高度可降低彎矩需求 40
3.5.4.2 束制構件可降低彎矩需求 41
3.5.4.3 參數λ與鋼板剪力牆塑性機構 42
3.5.5 非底層柱容量設計法 43
3.6 束制構件之設計 45
3.6.1 檢核需求容量比 45
3.6.1.1 組合受壓構材 45
3.6.1.2 單元構件受軸力與彎矩共同作用 46
3.6.2 鋼板面外挫屈變形外拱力 47
3.6.2.2 有限元素模型 48
3.6.2.3 估算公式 49
3.7 束制型鋼板剪力牆數值模型分析例 51
3.7.1 有限元素模型 51
3.7.2 板條模型 53
3.7.3 分析結果討論 54
第四章 穿孔型鋼板剪力牆 56
4.1 相關研究成果與研究動機 56
4.2 有限元素模型 58
4.2.1 五種寬高比之單層單跨鋼板剪力牆 58
4.2.2 固定帶寬寬度改變穿孔佈設角度 59
4.2.3 固定穿孔比改變帶寬寬度 59
4.2.4 固定帶寬寬度改變穿孔比 60
4.3 有限元素模型分析結果與討論 60
4.3.1 固定帶寬寬度改變穿孔佈設角度 60
4.3.2 固定穿孔比改變帶寬寬度 61
4.3.3 固定帶寬寬度改變穿孔比 62
4.4 結論與設計建議 63

第五章 試驗計畫 65
5.1 試驗目的 65
5.2 設計介紹 65
5.3 試體設計 66
5.3.1 邊界梁設計(WB及FB) 67
5.3.2 三維鋼板剪力牆邊界柱(BC) 68
5.3.3 二維束制型鋼板剪力牆邊界柱(HC) 68
5.3.4 束制構件(R1及R2) 68
5.3.5 二樓鋼板穿孔佈設方式 69
5.3.6 其他細節 70
5.3.6.1 混凝土鋼承樓版及小梁 70
5.3.6.2 鋼板與邊界構件接合設計 70
5.3.6.3 箱型邊界柱梁柱交會區設計 70
5.3.6.4 寬翼斷面邊界柱梁柱交會區設計 71
5.3.6.5 束制構件接合設計 71
5.3.6.6 底部地梁設計 72
5.4 試體組裝 73
5.5 施力系統與加載歷時 73
5.6 量測計畫 74
5.6.1 量測儀器 74
5.6.2 資料擷取系統 76
第六章 試驗過程記錄 77
6.1 材料試驗 77
6.1.1 金屬材料拉伸試驗 77
6.1.2 混凝土抗壓試驗 78
6.2 彈性試驗紀錄 78
6.3 反覆側推試驗紀錄 79
6.4 疲勞試驗紀錄 84
第七章 試驗與數值模型分析結果與討論 85
7.1 試體之ABAQUS有限元素分析模型 85
7.1.1 單向側推分析(NF側及EW側) 85
7.1.1.1 模型介紹 85
7.1.1.2 分析結果 86
7.1.2 雙向側推分析 87
7.1.2.1 模型介紹 87
7.1.2.2 分析結果 87
7.2 試體之PISA3D板條模型單向側推分析 88
7.3 試體反應討論與數值模型分析結果 89
7.3.1 受力與變形關係 89
7.3.2 底層邊界柱 90
7.3.3 束制構件 91
7.3.3.1 軸力分析及討論 91
7.3.3.2 彎矩分析及討論 92
7.3.4 鋼板穿孔 93
第八章 結論與建議 95
8.1 結論 95
8.2 建議 96
參考文獻 97
附錄A 鋼板剪力牆試體設計圖 333
附錄B 鋼板剪力牆試驗量測儀器位置圖 362
簡歷 367


1.AISC (2010a), Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL.
2.AISC (2010b), Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL.
3.Berman, J. and Bruneau, M. (2003). “Plastic analysis and design of steel plate shear walls”, Journal of Structural Engineering, 129(11), 1448-1456.
4.Berman, J. W. and Bruneau, M. (2008). “Capacity design of vertical boundary elements in steel plate shear walls”, Engineering Journal, 45(1), 57-71.
5.Berman, J. W. (2011). “Seismic behavior of code designed steel plate shear walls”, Engineering Structures, 33(1), 230-244.
6.Berman, J., (March 2011), personal communication in NCREE.
7.Driver, R. G., G.L. Kulak, D.J. Laurie Kennedy and A.E. Elwi, (1998), “Cyclic Test of Four-Story Steel Plate Shear Wall”, Journal of Structural Engineering, Vol. 124, No. 2, pp. 112-130.
8.Driver, R. G., Kulak, G. L., Elwi, A. E. and Kennedy, D. L. (1998). “FE and simplified models of steel plate shear wall”, Journal of Structural Engineering,124(2), 121-130.
9.FEMA (2000), FEMA369 NEHPR Recommended Provisions for Seismic Regulations, for New Buildings and Other Structures, Chapter 5: Structure Design Criteria.
10.FEMA (2001), FEMA350 Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, Chapter 3: Connection Qualification.
11.Li, C. H. and Tsai, K. C. (2008, April). “Experimental responses of four 2-story narrow steel plate shear walls”, Proceedings, structures congress.
12.Li, C. H., Tsai, K. C., Chang, J. T., Lin, C. H., Chen, J. C., Lin, T. H. and Chen, P. C. (2012). “Cyclic test of a coupled steel plate shear wall substructure”, Earthquake Engineering and Structural Dynamics, 41(9), 1277-1299.
13.Li, C.H., Tsai K.C., Lee, H.C. (2013) “Seismic design and tests of the bottom boundary vertical elements in steel plate shear walls. Part 1: Theory”
Under review of Journal of earthquake engineering and structural dynamics.
14.Li, C.H., Tsai K.C., Lee, H.C. (2014) “Seismic design and testing of the bottom vertical boundary elements in steel plate shear walls. Part 2: experimental studies”, Earthquake Engineering and Structural Dynamics, DOI: 10.1002/eqe.2442.
15.Lubell, A. S., Prion, H. G., Ventura, C. E. and Rezai, M. (2000). “Unstiffened steel plate shear wall performance under cyclic loading”, Journal of Structural Engineering, 126(4), 453-460.
16.Purba, R., and Bruneau, M. (2007). “Design recommendations for perforated steel plate shear walls.” Tech. Rep.NO. MCCER-07-0011, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York.
17.Qu, B., Bruneau, M., Lin, C. H. and Tsai, K. C. (2008). “Testing of full-scale two-story steel plate shear wall with reduced beam section connections and composite floors”, Journal of structural engineering, 134(3), 364-373.
18.Qu, B., and Bruneau, M. (2008). “Seismic behavior and design of boundary frame members in steel plate shear walls.” Technical Rep. No.MCEER-08-0012, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York.
19.Qu, B. and Bruneau, M. (2009). “Capacity design of intermediate horizontal boundary elements of steel plate shear walls”, Journal of Structural Engineering,136(6), 665-675.
20.Qu, B. and Bruneau, M. (2010). “Behavior of vertical boundary elements in steel plate shear walls”, Engineering Journal, 47(2), 109-122.
21.Thorburn, L.J., Kulak, G.L. and Montogomer, C.J. (1983), “Analysis of Steel Plate Shear Walls”, Structural Engineering Report No. 107, Department of Civil Engineering, University of Alberta, Edmonton, Alberta, Canada.
22.Timler, P.A. and Kulak, G.L. (1983), “Experimental Study of Steel Plate Shear Walls’’, Structural Engineering Report No. 114, Department of Civil Engineering, University of Alberta, Edmonton, Alberta, Canada.
23.Tsai, K.C., Li, C.H., Lin, C.H., Tsai, C.Y. and Yu, Y.J. (2010) “Cyclic tests of four two-story narrow steel plate shear walls-Part 1: Analytical studies and specimen design.”, Earthquake Engineering & Structural Dynamics, Vol. 39, Issue 7, pp. 775-799.
24.Tsai, K.C., Li, C.H., Lin, C.H., Tsai, C.Y. and Yu, Y.J. (2010) “Cyclic tests of four two-story narrow steel plate shear walls-Part 2: Experimental results and design implications”, Earthquake Engineering & Structural Dynamics, Vol. 39, Issue 7, pp. 801-826.
25.Tsai, K.C., Li, C.H., Lee, H.C. (2014) “Seismic design and testing of the bottom vertical boundary elements in steel plate shear walls. Part 1: design methodology”, Earthquake Engineering and Structural Dynamics, DOI: 10.1002/eqe.2443.
26.Vian, D. and Bruneau, M. (2004). “Testing of special LYS steel plate shear walls”, Proceedings, 13th World Conference on Earthquake Engineering (pp. 1-6).
27.Vian, D., (2005), “Steel plate shear walls for seismic design and retrofit of building structures”, Ph.D. Dissertation, Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY.
28.Vian, D., Bruneau, M., Tsai, K. C. and Lin, Y. C. (2009). “Special perforated steel plate shear walls with reduced beam section anchor beams. I: Experimental investigation”, Journal of structural engineering, 135(3), 211-220.
29.Vian, D., Bruneau, M. and Purba, R. (2009). “Special perforated steel plate shear walls with reduced beam section anchor beams. II: Analysis and design recommendations”, Journal of structural engineering, 135(3), 221-228.
30.Webster, D.J., Berman, J.W., Lowes, L.N., (2012) ”The Elastic and Inelastic Post-Buckling Behavior of Steel Plate Shear Wall Web Plates and their Interaction with Vertical Boundary Elements” Proceedings of the Annual Stability Conference Structural Stability Research Council, Grapevine, Texas
31.內政部營建署(2007),「鋼構造建築物鋼結構設計技術規範-鋼結構極限設計法規範及解說」。
32.朱駿魁 (2010),「多樓層鋼板剪力牆結構耐震分析與設計之研究」,國立台灣大學土木工程學系結構組碩士論文。
33.李弘祺 (2011),「鋼板剪力牆邊界柱構件耐震設計研究」,國立台灣大學土木工程學系結構組碩士論文。
34.李弘祺、李昭賢與蔡克銓(2012),「鋼板剪力牆底層邊界柱耐震設計(一):容量設計方法與試體設計」,中國土木水利工程學刊,二十四卷,第三期,275-283頁。
35.李弘祺、李昭賢與蔡克銓(2012),「鋼板剪力牆底層邊界柱耐震設計(二):試驗結果與分析」,中國土木水利工程學刊,二十四卷,第三期,285-292頁。
36.李昭賢、蔡克銓 (2008),「鋼板剪力牆系統之耐震設計研究」,國家地震工程研究中心研究報告。
37.李昭賢 (2007),「鋼板剪力牆系統之耐震設計研究」,國立台灣大學土木工程學系結構組碩士論文。
38.林志翰 (2005),「實尺寸兩層樓鋼板剪力牆子結構擬動態試驗與分析」,國立台灣大學土木工程學系結構組碩士論文。
39.林盈成 (2004),「低降伏強度鋼板剪力牆之耐震行為研究」,國立台灣大學土木工程學系結構組碩士論文。
40.張景棠 (2009),「連梁式多樓層鋼板剪力牆耐震行為研究」,國立台灣大學土木工程學系結構組碩士論文。
41.黃宣諭 (2012),「填充型與未填充型鋼骨箱型鋼板剪力牆耐震行為研究」,國立台灣大學土木工程學系結構組碩士論文。
42.蘇磊 (2013),「多樓層鋼板剪力牆底層邊界柱構件耐震設計研究」,國立台灣大學土木工程學系結構組碩士論文。
43.楊依璇 (2014),「三維鋼板剪力牆耐震設計研究」,國立台灣大學土木工程學系結構組碩士論文。
44.謝旺達 (2006),「鋼板剪力牆之有限元素分析與設計研究」,國立台灣大學土木工程學系結構組碩士論文。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top