跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/08/04 07:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李幼萱
研究生(外文):Yu-Hsuan Lee
論文名稱:侷限固定邊界中顆粒振動對水壓造成之影響
論文名稱(外文):The influence of Particle Vibration on Water Pressure in Fixed Constraining Boundaries
指導教授:葛宇甯
口試委員:廖文正陳柏華
口試日期:2015-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:43
中文關鍵詞:固液二相流模擬沉浸邊界法晶格波茲曼法離散元素法土壤液化
外文關鍵詞:Two-phase simulationImmersed Boundary MethodLattice Boltzmann MethodDiscrete Element MethodLiquefaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:65
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在土壤液化中上升的孔隙水壓扮演了重要的角色。雖然已有諸多理論推測振動時孔隙水壓上升的原因並以實驗佐證,但因水壓上升為瞬間之行為,難以在實驗時進行觀察或量測。本研究為探討振動發生時孔隙水壓上升之原因而提出一侷限固定邊界之振動模型,以晶格波茲曼法(Lattice Boltzmann Method, LBM)計算不可壓縮黏性流場,以離散元素法(Discrete Element Method, DEM)計算固體顆粒之行為及有效應力,並以體積積分函數(volume fraction function)型式的沉浸邊界法(Immersed Boundary Method, IBM)定義流固耦合之邊界。經由模擬及分析後發現水壓上升的原因主要為流體被顆粒擠壓出顆粒之間的孔隙而造成,且侷限顆粒向上發展會使水壓隨深度的變異被消除。水壓和顆粒之間有明顯的交互作用。

The increase of pore water pressure is the critical
condition of liquefaction. Though there are theories and
inference for the reason why the pore water pressure
increases during vibration with experiment to prove it,
it is difficult to observe or measure the immediate
increase of pore water pressure. A vibration model with
fixed constraining boundaries is proposed in this study
to discuss the reason of increasing pressure. The fluid
is solved by Lattice Boltzmann Method and the behavior of particles is solved by Discrete Element Method. The two phases coupling boundary is defined by Direct-forcing Immersed Boundary-LBM in Volume Fraction Function. The result shows that the increasing of pressure is caused by the drainage from the gathering particles during vibration. Also, constraining the particles from upward moving will dispel the difference between behavior of particles with depth. The interaction between particles and water pressure can be observed in the model.

誌謝 i
摘要 ii
Abstract iii
1 Introduction 1
2 Literature Review 3
2.1 Excess pore pressure during shaking . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Lattice Boltzmann Method . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Immersed Boundary - Lattice Boltzmann Method . . . . . . . . . 12
2.2.3 Direct-forcing IB-LBM in Volume Fraction Function . . . . . . . 16
2.2.4 Discrete Element Method . . . . . . . . . . . . . . . . . . . . . 19
3 Simulation 21
3.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Vibration System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Test Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 Basic model and applicability verification . . . . . . . . . . . . . 24
3.3.2 Control of Deposit Volume . . . . . . . . . . . . . . . . . . . . . 25
4 Results and Discussions 27
4.1 Basic model and applicability verification . . . . . . . . . . . . . . . . . 27
4.2 Control of Specimen Volume . . . . . . . . . . . . . . . . . . . . . . . . 35
5 Conclusion 40
Reference 42

[1] Li-Shi Luo-Wei Shyy Dazhi Yu, Renwei Mei. Viscous flow computations with the
method of lattice boltzmann equation. Progress in Aerospace Science, 39:329–367,
2003.
[2] Chatelain P. Koumoutsakos-P. Dupuis, A. An immersed boundary-lattice boltzmann
method for the simulation of the flow past an impulsively started cylinder. J.Comput.
Phys., 227:4486–4498, 2008.
[3] Lin C.T.-Chin Y.-H. Tail Y.-H. Lin, S.-Y. A direct-forcing pressure-based lattice
boltzmann method for solving fluid-particle interaction problems. International
Journal for Numerical Methods in Fluids, 66:648–670, 2010.
[4] Shin-Ruei Lin. Simulation of multi-particle dynamic motion in viscous fluid. Mas-
ter’s thesis, National Taiwan University, Taipei, Taiwan, R.O.C., 2011.
[5] Iaccarino G. Mittal, R. Immersed boundary methods. Annu. Rev. Fluid Mech,
37:239–261, 2005.
[6] C.S. Peskin. The fluid dynamics of heart valves: experimental, theoretical, and
computational methods. Ann. Rev. Fluid Mech., 14:235–259, 1982.
[7] M.Zeghal U.El Shamy. A micro-mechanical investigation of the dynamic response
and liquefaction of saturated granular soils. Soil Dynamics and Earthquake Engi-
neering, 27:712–729, 2007.
[8] T. S. Ueng. Inference of behavior of saturated sandy soils during earthquakes from
laboratory experiments. Journel of GeoEngineering, 1(1):1–9, 2006.
[9] Yasser Abdelhamid Usama El Shamy. Modeling granular soils liquefaction using
coupled lattice boltzmann method and discrete element method. Soil Dynamics and
Earthquake Engineering, 67:119–132, 2014.
[10] C. T. Yang. A Versatile Discrete Object Simulation System. PhD thesis, National
Taiwan University, Taipei, Taiwan, R.O.C., 2005.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top