跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 20:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭唯倫
研究生(外文):Wei-Lun Hsiao
論文名稱:應用資料探勘技術針對肇事碰撞型態建立路口分支風險和肇事因子模型
論文名稱(外文):Accident type-based analysis of risk and collision factors using data mining techniques
指導教授:許添本許添本引用關係
指導教授(外文):Tien-Pen Hsu
口試委員:胡守任吳昆
口試委員(外文):Shou-Ren HuKun-Feng Wu
口試日期:2015-07-02
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:107
中文關鍵詞:路口安全主動式安全分析後侵佔時間資料探勘肇事因子分析
外文關鍵詞:Traffic safetySurrogate safety analysisPost encroachment timeData miningCollision factors
相關次數:
  • 被引用被引用:7
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
據統計,在台灣發生於交叉路口的肇事事故佔總體事故的60%。若進一步調查各肇事類型的成因,可發現因各肇事類型所涉及車流動向不同,對應到影響其發生的道路設計也不相同。因此以路口為單位的肇事分析可能隱藏了各類肇事間的差異性,以致無法具體針對各肇事類型提出成因分析與改善策略,顯現以分支為單位,分析各肇事類型的必要性。另外,以肇事資料為基礎評估道路安全面臨的問題有,肇事資料不完整,輕微事件可能無紀錄、資料所須蒐集時間較長且肇事資料同時也代表所有事件「已發生」。以衝突資料判斷路口安全,能減少資料的蒐集時間,在事件發生前做出主動式安全分析。
本研究以衝突參數後侵佔時間描述三穿越型碰撞交叉撞、右轉側撞與左轉穿越側撞之車流交會,以K平均演算法將路口分支依衝突參數和肇事率分成三風險等級,最後以決策樹CART和隨機森林分析影響分支風險的道路設計因子。
研究結果顯示,後侵佔時間定為3秒適合描述交叉撞與右轉側撞之衝突。在道路設計上,道路交角、路型配置、標線位置、號誌設計等為影響三類肇事的重要變數。同時,本研究也建立了衝突門檻,做為以衝突評估路口分支風險的標準。


The conclusion of the past traffic safety study revealed that safety diagnosis and collision factors study on the basis of intersection faced the problem of detail lost for each collision type. It is essential to analysis traffic safety based on collision types and approaches. In addition, safety analysis using collision factors is reactive, the shortcomings include the less damaging collision may not be reported, small data quantity and the analysts need to wait for accidents to take place in order to prevent. Conflict events are more frequent than collisions and it brings complementary information. With surrogate safety measures, the road safety analysis can be proactive.
This thesis presents a collision type based study on approaches using conflict and collision data. K-means algorithm is used to identify risk groups of approaches with similar conflict and collision attribute, decision tree and random forest are used to analyze the relationship between road attribute and risks outcome.
The result shows the effectiveness of post encroachment time as a surrogate measure in right angle collision and right turn with through collision, with the best results at a threshold as 3s. In road design, the decision tree and random forest confirms the importance of collision factors: intersection angle, lane design, road markings and signal timing design. The thesis also established risk thresholds for post encroachment time and conflict rate as a diagnosis tool to evaluate traffic safety of approaches.


目錄
致謝
摘要 I
ABSTRACT II
目錄 III
圖目錄 VI
表目錄 XI
第一章 緒論 1
1.1 研究動機與背景 1
1.2 研究目的 2
1.3 研究範圍 3
1.4 研究內容與流程 3
第二章 文獻回顧 6
2.1 交通安全分析概要 6
2.2 交通安全模型 9
2.2.1 古典統計模型 9
2.2.2 貝氏統計模型 10
2.2.3 資料探勘 14
2.3 交通衝突法 15
2.3.1 交通衝突參數 18
2.3.2 交通衝突參數小結與分析 23
2.4 交通衝突參數之交通安全分析 25
第三章 肇事影響因子分析 32
3.1 肇事型態分類 32
3.2 肇事影響因子 33
3.2.1 交叉撞 33
3.2.2 右轉側撞 37
3.2.3 左轉穿越側撞 42
第四章 資料蒐集 44
4.1 肇事資料整理 44
4.2 衝突參數處理 48
4.2.1 交叉撞 49
4.2.2 右轉側撞 52
4.2.3 左轉穿越側撞 54
4.3 路口設計、控制與車流資料統計 56
4.3.1 交叉撞 57
4.3.2 右轉側撞 59
4.3.3 左轉穿越側撞 63
第五章 模式建構 65
5.1 資料探勘 65
5.1.1 K平均演算法(K-means algorithm) 67
5.1.2 決策樹 (Decision Tree) 67
5.1.3 隨機森林 (Random Forest) 69
5.2 使用軟體 70
5.3 風險分群模式 71
5.3.1 交叉撞 72
5.3.2 右轉側撞 77
5.3.3 左轉穿越側撞 81
5.4 風險因子模式 83
5.4.1 交叉撞 84
5.4.2 右轉側撞 89
5.4.3 左轉穿越側撞 92
第六章 結論與建議 96
6.1 結論 96
6.2 應用建議 99
6.3 後續工作建議 100
參考文獻 101


1.AASHTO. (2010). Highway Safety Manual. Washington, DC, 529.
2.Abdel-Aty, M. A., & Radwan, A. E. (2000). Modeling traffic accident occurrence and involvement. Accident Analysis & Prevention, 32(5), 633-642.
3.Alenezi, A., Moses, S. A., & Trafalis, T. B. (2008). Real-time prediction of order flowtimes using support vector regression. Computers & Operations Research, 35(11), 3489-3503.
4.Allen, B. L., Shin, B. T., & Cooper, P. J. (1978). Analysis of traffic conflicts and collisions (No. HS-025 846).
5.Amundsen, F., & Hyden, C. (1977). The Swedish traffic conflict technique. InProceedings of First Workshop on Traffic Conflicts, Institute of Transport Economics, Oslo (pp. 1-5).
6.Ang, A. H. S., & Tang, W. H. (1984). Probability concepts in engineering planning and design.
7.Archer, J. (2005). Indicators for traffic safety assessment and prediction and their application in micro-simulation modelling: A study of urban and suburban intersections.
8.Besag, J., York, J., & Mollié, A. (1991). Bayesian image restoration, with two applications in spatial statistics. Annals of the institute of statistical mathematics, 43(1), 1-20.
9.Blumenthal, M. (1967). Dimensions of the traffic safety problem (No. 670011). SAE Technical Paper.
10.Brezillon, J., & Tijus, C. (2007). New representation of GADGET''s matrix for a driver typology. In Driving Simulation Conference, North America 2007 (DSC-NA 2007).
11.Carriquiry, A., & Pawlovich, M. D. (2004). From empirical Bayes to full Bayes: methods for analyzing traffic safety data. White Paper, Iowa State University.
12.Calle, M. L., & Urrea, V. (2011). Letter to the Editor: Stability of Random Forest importance measures. Briefings in bioinformatics, 12(1), 86-89.
13.Carsten, O. M. J., Sherborne, D. J., & Rothengatter, J. A. (1998). Intelligent traffic signals for pedestrians: evaluation of trials in three countries. Transportation Research Part C: Emerging Technologies, 6(4), 213-229.
14.Chang, L. Y. (2005). Analysis of freeway accident frequencies: negative binomial regression versus artificial neural network. Safety science, 43(8), 541-557.
15.Chang, L. Y., & Chen, W. C. (2005). Data mining of tree-based models to analyze freeway accident frequency. Journal of Safety Research, 36(4), 365-375.
16.Chang, L. Y., & Wang, H. W. (2006). Analysis of traffic injury severity: An application of non-parametric classification tree techniques. Accident Analysis & Prevention, 38(5), 1019-1027.
17.Chin, H. C., & Quddus, M. A. (2003). Applying the random effect negative binomial model to examine traffic accident occurrence at signalized intersections. Accident Analysis & Prevention, 35(2), 253-259.
18.Ericsson, E. (2000). Variability in urban driving patterns. Transportation Research Part D: Transport and Environment, 5(5), 337-354.
19.Fridstrワm, L., Ifver, J., Ingebrigtsen, S., Kulmala, R., & Thomsen, L. K. (1995). Measuring the contribution of randomness, exposure, weather, and daylight to the variation in road accident counts. Accident Analysis & Prevention, 27(1), 1-20.
20.Gang, R., & Zhuping, Z. (2011). Traffic safety forecasting method by particle swarm optimization and support vector machine. Expert Systems with Applications, 38(8), 10420-10424.
21.Hakkert, A. S., Gitelman, V., & Ben-Shabat, E. (2002). An evaluation of crosswalk warning systems: effects on pedestrian and vehicle behaviour. Transportation Research Part F: Traffic Psychology and Behaviour, 5(4), 275-292.
22.Han, J., Kamber, M., & Pei, J. (2011). Data mining: concepts and techniques: concepts and techniques. Elsevier.
23.Hansson, A. (1975). Studies in Driver Behaviour, With Applications in Traffic Design and Planning: Two Examples (No. Bulletin 9 Monograph).
24.Hatakka, M., Keskinen, E., Gregersen, N. P., Glad, A., & Hernetkoski, K. (2002). From control of the vehicle to personal self-control; broadening the perspectives to driver education. Transportation Research Part F: Traffic Psychology and Behaviour, 5(3), 201-215.
25.Hayward, J. C. (1972). Near-miss determination through use of a scale of danger. Highway Research Record, (384).
26.Hu, W., Xiao, X., Xie, D., Tan, T., & Maybank, S. (2004). Traffic accident prediction using 3-D model-based vehicle tracking. Vehicular Technology, IEEE Transactions on, 53(3), 677-694.
27.James, B., Chen, Y., & Persaud, B. (2010). Assessment of the Crash Modification Factors in the Highway Safety Manual for use in Canada. InAnnual Conference of the Transportation Association of Canada.
28.Jovanis, P. P., & Chang, H. L. (1986). Modeling the relationship of accidents to miles traveled. Transportation Research Record, 1068, 42-51.
29.Joshua, S. C., & Garber, N. J. (1990). Estimating truck accident rate and involvements using linear and Poisson regression models. Transportation planning and Technology, 15(1), 41-58.
30.Laureshyn, A., Svensson, Å., & Hydén, C. (2010). Evaluation of traffic safety, based on micro-level behavioural data: Theoretical framework and first implementation. Accident Analysis & Prevention, 42(6), 1637-1646.
31.Laureshyn, A. (2010). Application of automated video analysis to road user behaviour. Lund University.
32.Li, X., Lord, D., Zhang, Y., & Xie, Y. (2008). Predicting motor vehicle crashes using support vector machine models. Accident Analysis & Prevention, 40(4), 1611-1618.
33.Little, A. D. (1966). The State of The Art of Traffic Safety-A Critical Review and Analysis of the Technical Information on Factors Affecting Traffic Safety.
34.Lord, D., Washington, S. P., & Ivan, J. N. (2005). Poisson, Poisson-gamma and zero-inflated regression models of motor vehicle crashes: balancing statistical fit and theory. Accident Analysis & Prevention, 37(1), 35-46.
35.Miaou, S. P., & Lum, H. (1993). Modeling vehicle accidents and highway geometric design relationships. Accident Analysis & Prevention, 25(6), 689-709.
36.Miaou, S. P. (1994). The relationship between truck accidents and geometric design of road sections: Poisson versus negative binomial regressions. Accident Analysis & Prevention, 26(4), 471-482.
37.Minderhoud, M. M., & Bovy, P. H. (2001). Extended time-to-collision measures for road traffic safety assessment. Accident Analysis & Prevention, 33(1), 89-97.
38.Peräaho, M., Keskinen, E., & Hatakka, M. (2003). Driver competence in a hierarchical perspective; Implications for driver education. Report to Swedish Road Administration.
39.Perkins, S. R., & Harris, J. I. (1967). Traffic conflict characteristics accident potential at intersections. Research Laboratories, General Motors Corporation.
40.Persaud, B., Lan, B., Lyon, C., & Bhim, R. (2010). Comparison of empirical Bayes and full Bayes approaches for before–after road safety evaluations.Accident Analysis & Prevention, 42(1), 38-43.
41.Poch, M., & Mannering, F. (1996). Negative binomial analysis of intersection-accident frequencies. Journal of Transportation Engineering, 122(2), 105-113.
42.Road Safety Manual: Recommendations from the World Road Association (PIARC). Route 2 Market, 2003.
43.Saunier, N. (2011). Investigating Collision factors by mining microscopic data of vehicle conflicts and collisions (Doctoral dissertation, École Polytechnique de Montréal). 
44.Saunier, N., Agard, B., & Mourji, N. (2011). Using Data Mining Techniques to Understand Collision Processes. CIRRELT.
45.Saunier, N., & Mohamed, M. G. (2014). Clustering Surrogate Safety Indicators to Understand Collision Processes. In Transportation Research Board 93rd Annual Meeting (No. 14-2380).
46.Saunier, N., & Sayed, T. (2008). Probabilistic framework for automated analysis of exposure to road collisions. Transportation Research Record: Journal of the Transportation Research Board, 2083(1), 96-104.
47.Saunier, N., & Sayed, T. (2010). Surrogate Safety Analysis.
48.Shbeeb, L. (2000). Development of traffic conflicts technique for different environments: A comparative study of pedestrian conflicts in Sweden and Jordan (Doctoral dissertation, Lund University).
49.Smith, B. L., & Demetsky, M. J. (1994). Short-term traffic flow prediction: neural network approach. Transportation Research Record, (1453).
50.St-Aubin, P., Miranda-Moreno, L., & Saunier, N. (2012). A Surrogate Safety Analysis at Protected Freeway Ramps Using Cross-Sectional and Before-After Video Data. In Transportation Research Board 91st Annual Meeting (No. 12-2955).
51.St-Aubin, P., Saunier, N., Miranda-Moreno, L. F., & Ismail, K. (2013). Detailed Driver Behaviour Analysis and Trajectory Interpretation at Roundabouts Using Computer Vision Data. In Transportation Research Board-92nd Annual Meeting. Washigton DC, USA.
52.Sun, X., Li, Y., Magri, D., and Shirazi, H. (2006). “Application of ‘highway safety manual’ draft chapter: Louisiana experience.” Transortation Research Record 1950, Transportation Research Board, Washington, DC, 55–64.
53.Van der Horst, A. R. A. (1990). A time-based analysis of road user behaviour in normal and critical encounters. TU Delft, Delft University of Technology.
54.Vogel, K. (2002). What characterizes a “free vehicle” in an urban area?. Transportation Research Part F: Traffic Psychology and Behaviour, 5(1), 15-29.
55.Washington, S. P., Karlaftis, M. G., & Mannering, F. L. (2010). Statistical and econometric methods for transportation data analysis. CRC press.
56.Williams, G. J. (2009). Rattle: a data mining GUI for R. The R Journal, 1(2), 45-55.
57.Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., ... & Steinberg, D. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1), 1-37.
58.Zhang, Y., Yao, D., Qiu, T. Z., Peng, L., & Zhang, Y. (2012). Pedestrian safety analysis in mixed traffic conditions using video data. Intelligent Transportation Systems, IEEE Transactions on, 13(4), 1832-1844.
59.Zimmerman, G., Zimolong, B., & Erke, H. (1977). The development of the traffic conflicts technique in the Federal Republic of Germany. In Proc., First Workshop on Traffic Conflicts.
60.张盈盈, 刘帅, 邱志军, 姚丹亚, & 彭黎辉. (2012). 行人车辆
61.安全人机工程. 天津大学出版社, 1999.
62.資料探勘理論與應用: 以 IBM SPSS Modeler 為範例. 新北市: 博碩文化股份有限公司, 2012.
63.2014年高雄市易肇事路口改善委託研究案. 高雄市:高雄市政府交通局, 2014.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top