跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/07/28 04:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐雅涵
研究生(外文):Ya-Han Hsu
論文名稱:無圍壓貫入法於張力強度之試驗與分析
論文名稱(外文):Experimental Study and Analysis for Tensile Strength of Compacted Sand-Clay Mixtures through Unconfined Penetration Tests
指導教授:葛宇甯
口試委員:廖文正陳柏華
口試日期:2015-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:89
中文關鍵詞:張力強度無圍壓貫入試驗貫入棒尺寸K值極限平衡分析疊代法力平衡法
外文關鍵詞:tensile strengthunconfined penetration testsize of punchK valuelimit analysisiteration methodforce equilibrium method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於土壤的張力強度遠小於其壓力強度,且至今仍未有適當且精確之方法量測,因此在大地工程中,土壤之張力強度經常被忽略或視為對土壤強度並未有顯著影響。然而在近年的調查研究中發現,土壤之張力強度與道路鋪面、深開挖、邊坡、防坡堤、重力壩等地工結構之張裂破壞具有密切關係,因此土壤張力強度的探討實有其必要性。
決定材料張力強度的方法可分為直接法與間接法,直接法為利用直接張力試驗取得量測值,而間接法如劈裂試驗 (split tension test)、巴西人法 (Brazilian test)、三點彎矩試驗(three-point bending test)、四點彎矩試驗 (four-point bending test)及無圍壓貫入試驗 (unconfined penetration test)等,則是需藉由其理論所推導之公式代入計算而得。
Chen於1969年發展出無圍壓貫入試驗 (unconfined penetration test),並以極限平衡分析為理論以求得材料之張力強度,其參數包含摩擦角、無圍壓縮強度、試體直徑與高度、貫入棒直徑、試驗所得最大軸向壓力及未知之壓力圓錐角度。Chen and Fang (1972) 及 Fang and Fernandez (1981) 均提出建議之K值取代未知的壓力圓錐角度,其中K值為壓力圓錐角度與摩擦角之函數,若代入建議值反算則會有壓力圓錐角度小於其理論限制之最小值的情況發生,因此本研究將以原方法、疊代法、已知壓力圓錐角度下的極限平衡分析及力平衡方法探討土壤之張力強度與其方法之合理性。
本研究以 80% 石英砂與 20% 高嶺土之混合夯實土壤進行兩部分試驗,第一部分試驗為無圍壓縮試驗,均採用直徑10 cm、高度 20 cm之試體進行試驗;而第二部分試驗為無圍壓貫入試驗,試體為直徑10.15 cm、高度10 cm,並使用四種不同直徑之貫入棒進行試驗,結果顯示貫入棒直徑越大、試驗所得之最大軸向壓力也隨之越大,另外於試驗後實際量測壓力圓錐角度發現,對於相同土壤其角度並不隨貫入棒尺寸而改變,即在相同土樣下壓力圓錐角度可視為定值。將兩部分試驗結果及試體基本物理性質代入四種方法後得到張力強度,其結果顯示貫入棒尺寸對四種方法所得之張力強度皆有明顯影響,且貫入棒越大所得之張力強度越大,而四種方法所得之張力強度在貫入棒直徑與試體直徑比為0.22時其值相近具有收斂的現象,但其與官禹 (2015) 利用直接張力試驗所得之張力強度仍有倍數級差距,兩者無法直接進行比較;另外在探討K值之合理性時發現,由原方法與疊代法所得之K值反算壓力圓錐角皆有與假設牴觸之情形,而實驗量測之角度則除了與貫入棒直徑與試體直徑比為0.5時的條件不符外,其餘皆無違反其假設,因此在使用原方法及疊代法計算張力強度時須注意是否具有違反假設之疑慮。


摘要 I
Abstract III
Contents VII
List of Tables X
List of Figures XI
Chapter 1 Introduction 1
1.1 Foreword 1
1.2 Motivation and Purpose 1
1.3 Research Methodology 2
1.4 Thesis Outline 3
Chapter 2 Literatures Review 7
2.1 Direct Tension Tests for Soils 7
2.2 Indirect Tension Tests for Soils 12
2.3 Theoretical Framework of Unconfined Penetration Test 16
2.4 Summary 19
Chapter 3 Experimental Program 39
3.1 Testing Materials 39
3.2 Testing Apparatuses 40
3.2.1 Unconfined Compression Test Apparatus 40
3.2.2 Unconfined Penetration Test Apparatus 41
3.2.3 Instrument Calibration 43
3.3 Testing Program 44
3.3.1 Unconfined Compression Test 44
3.3.2 Unconfined Penetration Test 46
Chapter 4 Results and Discussions 57
4.1 Test Results 57
4.1.1 Test Results of Unconfined Compression Test 57
4.1.2 Test Results of Unconfined Penetration Test 57
4.2 Analysis Methods for Tensile Strength 58
4.2.1 Upper Bound Solution 58
4.2.2 Iteration Method 59
4.2.3 Upper Bound Solution with Measured 61
4.2.4 Force Equilibrium Method 62
4.2.6 Direct Tension Experiments 65
4.3 Discussions 65
4.3.1 Comparison of Tensile Strengths form Different Methods 65
4.3.2 The Rationale of K 66
Chapter 5 Conclusions and Suggestions 83
5.1 Conclusions 83
5.2 Suggestions 84
References 85

ASTM D2166-06. Standard test method for unconfined compressive strength of cohesive Soil. ASTM International, West Conshohocken, PA, USA.
ASTM D2216-05. Standard test method for laboratory determination of water (moisture) content of soil and rock by mass. ASTM International, West Conshohocken, PA, USA.
ASTM D2936-08. Standard test method for direct tensile strength of intact rock core specimens. ASTM International, West Conshohocken, PA, USA.
ASTM D3080-04. Standard test method for direct shear test of soils under consolidated drained conditions. ASTM International, West Conshohocken, PA, USA.
ASTM D422-63. Standard test method for particle-size analysis of soils. ASTM International, West Conshohocken, PA, USA.
ASTM D4318-05. Standard test method for liquid limit, plastic limit, and plasticity index of soils. ASTM International, West Conshohocken, PA, USA.
ASTM D452. Standard test method for sieve analysis of surfacing for asphalt roofing products. ASTM International, West Conshohocken, PA, USA.
ASTM D698-07. Standard test method for laboratory compaction characteristics of Soil using standard effort. ASTM International, West Conshohocken, PA, USA.
ASTM D854-06. Standard test method for specific gravity of soil solids by water pycnometer. ASTM International, West Conshohocken, PA, USA.
Carmona, S. (2009). Effect of specimen size and loading conditions on indirect tensile test results. Materiales de Construcción, 294(59), 7-18.
Chen, W. F. (1969). Double punch test for tensile strength of concrete. Fritz Laboratory Reports.
Chen, W. F. (1970). Double punch test for tensile strength of concrete. Journal of the American Concrete Institute, 67, 993-995.
Chen, W. F., & Fang, H. Y. (1972). Further study of double punch test for tensile strength of soils. Southeast Asian Conference on Soil Engineering, 3rd, 211-215.
Consoli, N., Cruz, R., Floss, M., & Festugato, L. (2009). Parameters controlling tensile and compressive strength of artificially cemented Sand. Journal of Geotechnical and Geoenvironmental Engineering, 136(5), 759-763.
Consoli, N., Prietto, P., Carraro, J., & Heineck, K. (2001). Behavior of compacted soil-fly ash-carbide lime mixtures. Journal of Geotechnical and Geoenvironmental Engineering, 127(9), 774-782.
Das, B. M., & Dass, R. N. (1995). Lightly cemented sand in tension and compression. Geotechnical & Geological Engineering, 13(3), 169-177.
Dupas, J. J., & Pecker, A. (1979) Static and dynamic properties of sand-cement. Journal of the Geotechnical Engineering Division, ASCE, 105(3), 419–36.
Fahimifar, A., & Malekpour, M. (2012). Experimental and numerical analysis of indirect and direct tensile strength using fracture mechanics concepts. Bulletin of Engineering Geology and the Environment, 71(2), 269-283.
Fang, H. Y., & Fernandez, J. (1981). Determination of tensile strength of soils by unconfined-penetration test. ASTM STP, 740, 130-144.
Frydman, S. (1964). The applicability of the Brazilian (indirect tension) test to soils, Australian Journal of Applied Science, 15(4), 335-343
Guan, Y. (2015). Direct tension tests on compacted sand-clay mixture. Thesis, Deparment of Civil Engineering, National Taiwan University.
Hartley, P. A., & Parfitt, G. D. (1984). An improved split-cell apparatus for the measurement of tensile strength of powders. Journal of Physics E: Scientific Instruments, 17(5), 347.
He, G. D. (2013). Tensile strength of lightly cemented sand through unconfined penetration tests. Thesis, Deparment of Civil Engineering, National Taiwan University.
Hector, C. (1993). Factors affecting the tensile strength of soil aggregates. Soil and Tillage Research, 28(1), 15-25.
Ibarra, S. Y., McKyes, E., & Broughton, R. S. (2005). Measurement of tensile strength of unsaturated sandy loam soil. Soil and Tillage Research, 81(1), 15-23.
Kim, T. H., Kim, C. K., Jung, S. J., & Lee, J. H. (2007). Tensile strength characteristics of contaminated and compacted sand-bentonite mixtures. Environmental Geology, 52(4), 653-661.
Kim, T.-H., & Hwang, C. (2003). Modeling of tensile strength on moist granular earth material at low water content. Engineering Geology, 69(3–4), 233-244.
Mitchell, J. K. (1959). A review and evaluation of soil-cement pavements. Journal of the Soil Mechanics and Foundations Division, ASCE, 85(6), 49–73.
Perkins, S.W. (1991). Modeling of regolith structure interaction in extraterrestrial constructed facilities. Ph.D. dissertation, University of Colorado at Boulder.
Pierrat, P., & Caram, H. S. (1997). Tensile strength of wet granula materials. Powder Technology, 91(2), 83-93.
Ramanathan, B., & Raman, V. (1974). Split tensile strength of cohesive soils. Soils and Foundations, 14(1), 71-76.
Saxena, S. K., & Lastrico, R. M. (1978). Static properties of lightly-cemented sand. Journal of the Geotechnical Engineering Division, ASCE, 104(12), 1449–1464.
Tamrakar, S. B., Mitachi, T., & Toyosawa, Y. (2007). Measurement of soil tensile strength and factors affecting its measurements. Soils and Foundations, 47(5), 911-918.
Tang, G. X., & Graham, J. (2000). A method for testing tensile strength in unsaturated soils. Geotechnical Testing Journal, 23(3), 377-382.
Tang, G. X., Graham, J., & Wan, A. (1997) Measuring total suctions by psychrometers in triaxial tests. Proceedings, 14th International Conference on Soil Mechanics and Foundation Engineering, Hamburg, Germany, 213-216
Timoshenko, S., & Goodier, J. N. (1951). Theory of elasticity, 2 nd edition, McGraw Hill Book Co. Inc., New York
Zeh, R., & Witt, K. (2007). The tensile strength of compacted clays as affected by suction and soil structure. Experimental Unsaturated Soil Mechanics, 112, 219-226.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top