跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 18:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳韋帆
研究生(外文):Wei-Fan Chen
論文名稱:車輛動態特性對於橋梁頻率攫取的影響
論文名稱(外文):Effect of vehicle dynamic properties on extraction of bridge frequencies
指導教授:楊永斌楊永斌引用關係
口試委員:王寶璽呂良正張荻薇朱聖浩羅俊雄姚忠達
口試日期:2015-07-03
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:201
中文關鍵詞:橋梁間接量測量測車輛參數分析現地實驗
外文關鍵詞:bridgeindirect approachmeasuring vehicleparameter studyfield test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用一移動車輛通過橋梁,以攫取橋梁頻率的量測方式,稱之為橋梁間接量測法,此法係Yang和其研究團隊於2004年所提出,只須感應器安裝在量測車上,相對而言,傳統的直接量測法則須將感測器安裝於待測橋梁上。本研究係以間接量測法中所使用的量測車的動態特性,作為研究主軸,同時亦探討地面粗糙度和橋上隨機車流,對於該法的影響。
本文首先對橋梁直接振動量測法的研究,進行一定程度的回顧,從中吸取相關技術,特別是有關訊號處理方面的,以利間接量測法之發展;其次,將對橋梁的間接量測法的發展,進行全面性的回顧。接著,將對具備自身阻尼之量測車,進行兩階段的分析,藉由量測車的動態特性的參數分析,來評估車輛阻尼和頻率對於間接量測法的影響。其次,將運用隨機子空間識別法(stochastic subspace identification, SSI),考慮其在統計學上不同訊號源的非正交性,來分離量測車所得到的訊號,推導出涵蓋車橋互制效應 (vehicle-bridge interaction)的VBI-SSI識別法,可提升橋頻之識別效能。
接下來,將針對Yang的研究團隊在量測車和現地實驗方面的研究,進行詳細的回顧,並對量測車輪胎的力學特性進行探討。吾人採用充氣式輪胎與彈性剛輪兩種型式,進行實際測試分析,並提出懸浮質量模型的修正模式,以便能更精準的模擬彈性剛輪通過粗糙路面的情況。最後,吾人將使用彈性剛輪作為量測輪胎,進行現地實驗,考慮三種不同的控制參數,即量測車質量、行進速度、以及外在隨機車流量,以驗證其在實際應用的可行性。依據本文的理論模擬和現地實驗可知:間接量測法所面臨的最大難題,為路面粗糙度之存在,路面粗糙度會激盪量測車的振動,使其在頻率域中的幅值過大而影響橋頻的識別。若要增進橋梁間接量測法的工作效益,有效地提升量測車的行進速度,則唯有提高量測車的穩定性,此點可藉車重之增加達成,同時並增加橋梁本身、而非量測車的振盪能量,此點可經由橋上車流之引進而達成。


Using the vibration data recorded by a moving vehicle during its passage over a bridge to detect the frequencies of the bridge is a technique proposed by Yang and co-workers in 2004. This technique has been referred to as the “indirect approach” for measuring the bridge frequencies, which this requires the vibration sensors to be mounted only on the test vehicle. In contrast, the conventional approach relies on vibration sensors directly mounted on the bridge for measuring the bridge respone, for which the name “direct approach” is given. The objective of this study is focused on the dynamic properties of the test vehicle for use in the indirect bridge measurement. Also investigated are the effects of pavement roughness and existing random traffic flows on the identification of bridge frequencies.
First, a brief review will be given of the researches on measurement of bridge dynamic properties using the direct approach. From this review, techniques that have been used in the direct approach, especially those for signal processing, will be adopted in developing the indirect approach. Next, a comprehensive review will be given of the previous studies on the indirect approach. After this, for a test vehicle equipped with internal damping, a parametric study based on a two-stage analysis technique will be carried out to process the vehicle response collected, aimed at evaluating the effect of damping and frequencies of the test vehicle on bridge frequency identification. Furthermore, the stochastic subspace identification (SSI) algorithm is modified to include the vehicle-bridge interaction (VBI) effect, resulting in the proposed so-called VBI-SSI approach, by which the noises associated with the vehicle and roughness are filtered out and the identifiability of the bridge frequencies is enhanced.
Then, a detailed review will be given of the progress by Yang’s research group in designing the test vehicle and in conducting the field test, with attention paid to the mechanics properties of the tires of the test vehicle. Two types of tires will be adopted in the field measurement, i.e., the inflatable wheel and the rigid wheel with elastic surface. Meanwhile, a modified sprung mass model is proposed for the simulation of elastic-surface rigid wheels running over rough pavements. Finally, the test cart equipped with elastic-surface wheels will be used in the field test considering various control factors to analyze its applicability. From the numerical studies and field tests, it is understood that pavement roughenss is the key factor determining the efficacy of the indirect approach for identifying the bridge frequencies. The existence of pavement roughenss may amplify the vehicle-frequency peaks in the acceleration spectrum of the vehicle response, making it difficult to identify the bridge frequency peaks. Thus, in order to enhance the workability of the indirect approach under higher moving speeds, it is necessary to increase the stability of the test vehicle, say, by adding the vehicle weight, while enlarging the vibration amplitude of the bridge (rather than the vehicle), say, by allowing lagre traffic flows to exist on the bridge at the moment when the measurement is taken.

致謝 I
摘要 III
Abstract V
圖目錄 VII
表目錄 XI
目錄 XIII
1 導論 1
1.1 研究背景 1
1.2 研究目的 4
1.3 論文架構 4
2 文獻回顧 7
2.1 導論 7
2.2 橋梁直接量測技術 8
2.2.1 橋梁結構量測參數 9
2.2.2 橋梁損傷診斷技術 11
2.3 橋梁間接量測技術 17
2.3.1 車輛─橋梁互制系統 19
2.3.2 間接量測的外部效應 24
2.3.3 間接量測研究回顧:Yang的研究團隊 27
2.3.4 間接量測研究回顧:其他學者 29
2.4 小結 32
3 車橋互制運動系統推導 33
3.1 簡介 33
3.2 解析解法 35
3.3 狀態空間法 41
3.4 數值模擬法 46
3.5 小結 49
4 實驗車輛動態參數分析 51
4.1 簡介 51
4.2 解析解準確性分析與有限元素模擬法 53
4.3 車輛動態參數分析 55
4.3.1 車輛頻率之最大加速度值 57
4.3.2 車輛阻尼指數衰減效應 62
4.4 結論探討 70
5 隨機子空間識別技術於橋梁頻率間接量測之研究 71
5.1 導論 71
5.2 隨機子空間識別技術回顧 72
5.3 隨機子空間識別計算流程 75
5.4 隨機子空間識別法於車橋互制系統之識別 80
5.5 數值案例分析 85
Case 1: VBI- SSI和傳統SSI分析結果之比較 87
Case 2: 外在隨機車輛影響案例 89
Case 3: 移動量測車之自身阻尼效應 92
Case 4: 量測車移動速度之影響 95
Case 5: 量測車參數誤差量對於識別效果之影響 98
5.6 結論 108
6 實驗車體發展及研究 111
6.1 簡介 111
6.2 實驗車體研究回顧 112
6.2.1第一代實驗車體 113
6.2.2第二代實驗車體 114
6.2.3第三代實驗車體 115
6.2.4第四代實驗車體 116
6.2.5第五代實驗車體 118
6.2.6第六代實驗車體 119
6.2.7第七代實驗車體 120
6.3 實驗車體輪胎之影響 124
6.4 彈性剛輪之車橋互制接觸模型 131
6.5 小結 139
7 現地試驗研究 141
7.1 簡介 141
7.2 實驗儀器與待測橋梁介紹 142
7.2.1 實驗設備介紹 142
7.2.2 新北市深坑區─平埔橋介紹 143
7.2.3 新北市瑞芳區─介壽橋介紹 145
7.2.4 台北市士林區─士林橋介紹 147
7.3 間接量測實驗 148
7.3.1 量測車重量影響 149
7.3.2 量測車行進速度影響 152
7.3.3 外在車流影響 156
7.4 結論與探討 158
8 結論與未來展望 161
8.1 結論 161
8.2 未來展望 165
Reference 167
Appendix I. 193
Appendix II. 195
Biographical Information 199

Adams, R.D., Cawley, P., Pye, C.J., and Stone, B.J. (1978). "A vibration technique for non-destructively assessing the integrity of structures." J. Mech. Eng. Science, 120(2), 93-100.
Akin, J.E. and Mofid, M. (1989). "Numerical solution for response of beams with moving mass." J. Struct. Eng., ASCE, 115(1), 120-131.
Alvandi, A., and Cremona, C. (2006). "Assessment of vibration-based damage identification techniques." J. Sound & Vibr., 292, 179-202.
Åström, K. J., and Bohlin, T. (1965). “Numerical identification of linear dynamic systems for normal operating records.” Proc. 2nd IFAC Symp. Theory of Self-Adaptive Systems, Teddington, 96–111.
Au, F.T.K., Jiang, R.J. and Cheung, Y.K. (2004). "Parameter identification of vehicles moving on continuous bridges" J. Sound & Vibr., 269, 91–111.
Au, F.T.K., Wang, J.J., and Cheung, Y.K. (2002). "Impact study of cable-stayed railway bridges with random rail irregularities." Eng. Struct., 24, 529-541.
Azama, S.E., Mofid, M., and Khoraskani, R.A. (2013). "Dynamic response of Timoshenko beam under moving mass." Scientia Iranica A, 20(1), 50-56.
Baghiee, N., Esfahani, M.R., and Moslem, K. (2009). "Studies on damage and FRP strengthening of reinforced concrete beams by vibration monitoring." Eng. Struct., 31, 875-893.
Bayraktar, A., Türker, T., and Altunisik, A.C. (2015). "Experimental frequencies and damping ratios for historical masonry arch bridges." Construct. & Building Materials, 75, 234-241.
Bessho, K., Hattori, H., Okano, M., Shirato, H., Yagi, T. and Matsuyama, T. (2013),“Damage Detection of a Bridge Structure using the Vehicle Induced Vibration Response.” Proceedings of the Twenty-Sixth KKHTCNN Symposium on Civil Engineering, Singapore.
Blejwas, T.E., Feng, C.C, and Ayre, R.S. (1979). “Dynamic interaction of moving vehicles and structures.” J. Sound & Vibr., 67(4), 513-521.
Bu, J.Q., Law, S.S., and Zhu, X.Q. (2006). “Innovative bridge condition assessment from dynamic response of a passing vehicle.” J. Eng. Mech., ASCE, 132(12), 1372-1379.
Bulut, H., and Kelesoglu, O. (2010). "Comparing numerical methods for response of beams with moving mass." Advances in Eng. Soft., 41, 976-980.
Cao, M., and Qiao, P. (2009). "Novel Laplacian scheme and multi resolution modal curvatures for structural damage identification." Mechanical Systems & Signal Processing, 23, 1223-1242.
Carden, E.P. and Fanning, P. (2004). "Vibration Based Condition Monitoring: A Review." J. Struct. Health Monitoring, 3(4), 0355-377.
Cawley, P. and Adams, R.D. (1979). "The location of defects in structures from measurements of natural frequencies." J. Strain Analysis, 14(2), 49-57.
Cerda, F., Chen, S., Bielak, J., Garrett, J.H., Rizzo, P., and Kovačević, J. (2014). “Indirect structural health monitoring of a simplified laboratory-scale bridge model.” J. Smart Struct. & Systems, 13(5), 849-868.
Chae, M.J. , Yoo, H.S., Kim, J.Y., and Cho, M.Y. (2012). "Development of a wireless sensor network system for suspension bridge health monitoring." J. Automation in Construction, 21, 237-252.
Chang, K.C., Wu, F.B., and Yang, Y.B. (2011). “Disk model for wheels moving over highway bridges with rough surfaces.” J. Sound & Vibr., 330, 4930-4944.
Chang, K.C., Wu, F.B., and Yang, Y.B. (2010). "Effect of Road Surface Roughness on Indirect Approach for Measuring Bridge Frequencies from a Passing Vehicle." Int. J. Interaction and Multiscale Mechanics, 3(4), 299-308.
Chang, K.C., Kim, C.W., and Borjigin, S. (2014). "Variability in bridge frequency induced by a parked vehicle." J. Smart Structures and Systems, 13(5), 755-773.
Chang, P.C., Flatau, A. and Liu, S.C. (2003). "Review Paper: Health Monitoring of Civil Infrastructure." J. Struct. Health Monitoring, 2(3), 257-267.
Cheng, Y.S., Au, F.T.K., and Cheung, Y.K. (2001.) "Vibration of railway bridges under a moving train by using bridge-track-vehicle element." Eng. Struct., 23, 1597-1606.
Cheng, Y.S., Au, F.T.K., Cheung, Y.K., and Zheng, D.Y. (1999). "On the separation between moving vehicles and bridge." J. Sound & Vibr., 222(5), 781-801.
Cheung, Y.K., Au, F.T.K., and Cheng, Y.S. (1999). "Vibration of multi-span non-uniform bridges under moving vehicles and trains by using modified beam vibration functions." J. Sound & Vibr., 228(3), 611-628.
Costa, B.J.A., and Figueiras, J.A. (2012). "Fiber optic based monitoring system applied to a centenary metallic arch bridge: Design and installation." Eng. Struct., 44, 271-280.
Cross, E.J., Koo, K.Y., Brownjohn, J.M.W., and Worden, K. (2013). "Long-term monitoring and data analysis of the Tamar Bridge." J. Mech. Systems & Signal Processing, 35, 16-34.
Cury, A., Cremona, C., and Dumoulin, J. (2012). "Long-term monitoring of a PSC box girder bridge: Operational modal analysis, data normalization and structural modification assessment." Mechanical Systems and Signal Processing, 33, 13-37.
Dawari, V.B. and Vesmawala, G.R. (2013). "Modal curvature and modal flexibility methods for honeycomb damage identification in reinforced concrete beams." Procedia Eng., 51, 119-124.
Dehestani, M., Mofid, M., and Vafai, A. (2009). "Investigation of critical influential speed for moving mass problems on beams." Applied Math. Modelling, 33, 3885-3895.
Dessi, D., and Camerlengo, G. (2015). "Damage identification techniques via modal curvature analysis: Overview and comparison." Mech. Syst. & Signal Processing, 52-53, 181-205.
DeWolf, J.T., Lauzon, R.G. and Culmo, M.P. (2002). "Monitoring Bridge Performance." J. Struct. Health Monitoring, 1(2), 129-138.
Dilena, M., Limongelli, M.P., and Morassi, A. (2015). "Damage localization in bridges via the FRF interpolation method." J. Mech. Syst. & Signal Processing, 52-53, 162-180.
Dilena, M., Morassi, A., and Perin, M. (2011). "Dynamic identification of a reinforced concrete damaged bridge." J. Mech. Syst. & Signal Processing, 25, 2990-3009.
Doménech, A., Museros, P., and Martínez-Rodrigo, M.D. (2014). "Influence of the vehicle model on the prediction of the maximum bending response of simply-supported bridges under high-speed railway traffic." Eng. Struct., 72, 123-139.
Douka, E., Loutridis, S., and Trochidis, A. (2003), "Crack identification in beams using wavelet analysis." Int. J. Solids & Struct., 40, 3557-3569.
Esen, I. (2013). "A new finite element for transverse vibration of rectangular thin plates under a moving mass." Finite Elements in Analysis & Design, 66, 26-35.
Esfandiari, A., Bakhtiari-Nejad, F., and Rahai, A. (2013). "Theoretical and experimental structural damage diagnosis method using natural frequencies through an improved sensitivity equation." Int. J. Mech. Sciences, 70, 79-89.
Fan, W. and Qiao, P. (2011). "Vibration-based Damage Identification Methods: A Review and Comparative Study." J. Struct. Health Monitoring, 10(1), 83-111.
Fang, S.E., and Perera, R. (2009). "Power mode shapes for early damage detection in linear structures." J. Sound & Vibr., 324, 40-56.
Foda, M.A. and Abduljabbar, Z. (1998). "A dynamic green function formulation for the response of a beam structure to a moving mass", J. Sound & Vibr., 210(3), 295-306.
Fryba, L. (1972), Vibration of Solids and Structures under moving loads, Groningen. Netherlands: Noordhoff International Publishing.
González, A., O''Brien, E.J., Li, Y., and Cashell, K. (2008). "The use of vehicle acceleration measurements to estimate road roughness." J. Vehicle System Dynamics, 46(6), 483-499.
Gonzalez, A., OBrien, E.J., and McGetrick, P.J. (2012). "Identification of damping in a bridge using a moving instrumented vehicle." J. Sound & Vibr., 331, 4115–4131.
Gomez, H.C., Fanning, P.J., Feng, M.Q., and Lee, S. (2011). “Testing and long-term monitoring of a curved concrete box girder bridge.” Eng. Struct., 33, 2861–2869.
Hester, D., and Gonzalez, A. (2012). "A wavelet-based damage detection algorithm based on bridge acceleration response to a vehicle." J. Mech. Systems & Signal Processing, 28, 145-166.
Hino, J., Yoshimura, T., Konishi, K., and Ananthanarayana, N. (1984). “A finite element method prediction of the vibration of a bridge subjected to a moving vehicle load.” J. Sound & Vibr., 96(1), 45-53.
Hino, J., Yoshimura, T. and Ananthanarayana, N. (1985). "Vibration analysis of non-linear beams subjected to a moving load using the finite element method." J. Sound & Vibr., 100(4), 477-491.
Ho, B.L., and Kalman, R.E. (1966). “Effective construction of linear state-variable models from input/output functions.” Regelungstechnik, 14(12), 545–548.
Huang, C. S., Yang, Y. B., Lu, L. Y., and Chen, C. H. (1999). “Dynamic Testing and System Identification of a Multi-Span Highway Bridge.” Earthquake Eng. & Struct. Dyn., 28, 857-878.
Inbanathan, M.J. and Wieland, M. (1987). "Bridge vibrations due to vehicle moving over rough surface." J. Struct. Eng., 113, 1994-2008.
Inglis, C.E. (1934). A Mathematical Treatise on Vibration in Railway Bridges. Cambridge UK: Cambridge University Press.
ISO 8608 (1995). Mechanical Vibration-Road Surface Profiles-Reporting of Measured Data. International Organization for Standardization.
Jaksic, V., Connor, A.O'', and Pakrashi, V. (2014). "Damage detection and calibration from beam-moving oscillator interaction employing surface roughness." J. Sound & Vibr., 333, 3917-3930.
Jiang, R.J., Au, F.T.K., and Cheung, Y.K. (2004). "Identification of vehicles moving on continuous bridges with rough surface." J. Sound & Vibr., 274, 1045-1063.
Ju, S.H., and Lin, H.T. (2007). "A finite element model of vehicle–bridge interaction considering braking and acceleration." J. Sound & Vibr., 303, 46-57.
Kaloop, M.R. Li, H. (2014). "Multi input–single output models identification of tower bridge movements using GPS monitoring system." Measurement, 47, 531-539.
Katayama, T. (2005), Subspace Methods for System Identification. Springer-Verlag, London.
Keenahan, J., McGetrick, P., OBrien, E. and Gonzalez, A. (2012). "Using Instrumented Vehicles to Detect Damage in Bridges." Faculty of Engineering, University of Porto.
Keenahan, J., OBrien, E.J., McGetrick, P.J., and Gonzalez, A. (2014). "The use of a dynamic truck–trailer drive-by system to monitor bridge damping." J. Struct. Health Monitoring, 13(2), 143-157.
Kim, C.W., Kawatani, M. (2008). “Pseudo-static approach for damage identification of bridges based on coupling vibration with a moving vehicle.” J. Struct. & Infrastructure Eng., 4(5), 371-379.
Kim, C.W., Kawatani, M., and Kim, K.B. (2005). "Three-dimensional dynamic analysis for bridge–vehicle interaction with roadway roughness." J. Computers and Struct., 83, 1627-1645.
Kim, J., and Lynch, J.P. (2012). “Experimental analysis of vehicle–bridge interaction using a wireless monitoring system and a two-stage system identification technique.” J. Mech. Systems & Signal Processing, 28, 3-19.
Kim, J.T., Ryu, Y.S., Cho, H.M., Stubbs, N. (2003). "Damage identification in beam-type structures: frequency-based method vs mode-shape-based method." Eng. Struct., 25, 57-67.
Ko, J.M. and Ni, Y.Q. (2005). "Technology developments in structural health monitoring of large-scale bridges." Eng. Struct., 27, 1715-1725.
Ko, J.M., Sun, Z.G., and Ni, Y.Q. (2002). "Multi-stage identification scheme for detecting damage in cablestayed Kap Shui Mun Bridge." Eng. Struct., 24, 857–868.
Kong, X., Cai, C.S., and Kong, B. (2014). "Damage Detection Based on Transmissibility of a Vehicle and Bridge Coupled System." J. Eng. Mech., ASCE, 04014102.
Kozar, I., and Malic, N.T. (2013). "Spectral method in realistic modelling of bridges under moving vehicles." Eng. Struct., 50 , 149-157.
Kropac, O. and Mucka, P. (2005)."Be careful when using the International Roughness Index as an indicator of road unevenness." J. Sound & Vibr., 287, 989–1003.
Kropac, O. and Mucka, P. (2009)."Effects of longitudinal road waviness on vehicle vibration response." Vehicle System Dynamics, 47(2), 135–153.
Lee, H.P. (1996). "Dynamic response of a beam with a moving mass." J. Sound & Vibr., 191(2), 289-294.
Lee, R.G., Chen, K.C., Lai, C.C., Chiang, S.S., Liu, H.S., Wei, M.S. (2007). "A backup routing with wireless sensor network for bridge monitoring system." Measurement, 40, 55-63.
Lekidis, V., Tsakiri, M., Makra, K., Karakostas, C., Klimis, N., and Sous, I. (2005). "Evaluation of dynamic response and local soil effects of the Evripos cable-stayed bridge using multi-sensor monitoring systems." J. Eng. Geology, 79, 43-59.
Li, D., Zhou, Z., and Ou, J. (2012). "Dynamic behavior monitoring and damage evaluation for arch bridge suspender using GFRP optical fiber Bragg grating sensors." Optics & Laser Technology, 44, 1031-1038.
Li, H., Ou, J., Zhao, X., Zhou, W., Li, H. and Zhou, Z. (2006). "Structural Health Monitoring System for the Shandong Binzhou Yellow River Highway Bridge." Computer-Aided Civil and Infras. Eng., 21, 306-317.
Li, W.M., Jiang, Z.H., Wang, T.L., and Zhu, H.P. (2014). “Optimization method based on generalized pattern search algorithm to identify bridge parameters indirectly by a passing vehicle.” J. Sound & Vibr., 333, 364–380.
Li, Z.H. and Au, F.T.K. (2014). "Damage Detection of a Continuous Bridge from Response of a Moving Vehicle." Shock and Vibr., 146802.
Li, Z.H. and Au, F.T.K. (2015). "Damage Detection of Bridges Using Response of Vehicle Considering Road Surface Roughness." Int. J. Struct. Stab. and Dyn., 15(3), 1450057.
Li, Z.X., Wu, B.J., and Wang, Y. (2009). "Statistical analyses on multi-scale features of monitoring data from health monitoring system in long cable supported bridges" Procedia Eng., 1, 123-127.
Lin, C.W., and Yang, Y.B. (2005). “Use of a passing vehicle to scan the bridge frequencies - an experimental verification.” Eng. Struct., 27(13), 1865-1878.
Liu, N., Gao, W., Song, C.M., and Zhang, N. (2011). "Probabilistic Dynamic Analysis of Vehicle-Bridge Interaction System with Uncertain Parameters." Computer Modelling in Engineering & Sciences, 72(2), 79-102.
Lou, P. (2005). "A vehicle-track-bridge interaction element considering vehicle''s pitching effect." Finite Elements in Analysis and Design, 41, 397-427.
Lu, Z.R., Huang, M., Chen, W.H., Liu, J.K., and Ni, Y.Q. (2010). "Assessment of Local Damages in Box-girder Bridges Using Measured Dynamic Responses by Passing Vehicle." 2010 Prognostics & System Health Management Conference.
Neves, S.G.M., Montenegro, P.A., Azevedo, A.F.M., and Calçada, R. (2014). "A direct method for analyzing the nonlinear vehicle-structure interaction." Eng. Struct., 69, 83-89.
Nguyen, K.V., and Tran, H.T. (2010). “Multi-cracks detection of a beam-like structure based on the on-vehicle vibration signal and wavelet analysis.” J. Sound & Vibr., 329, 4455–4465.
Ngwangwa, H.M., Heyns, P.S., Labuschagne, F.J.J., and Kululanga, G.K. (2010). "Reconstruction of road defects and road roughness classification using vehicle responses with artificial neural networks simulation." J. Terramechanics, 47, 97-111.
Nikkhoo, A., Rofooei, F.R., and Shadnam, M.R. (2007). "Dynamic behavior and modal control of beams under moving mass." J. Sound & Vibr., 306, 712-724.
Magalhães, F., Cunha, A., and Caetano, E. (2008). "Dynamic monitoring of a long span arch bridge." J. Eng. Struct., 30, 3034-3044.
Magalhães, F., Cunha, A., and Caetano, E. (2009). "Online automatic identification of the modal parameters of a long span arch bridge." J. Mech. Syst. & Signal Processing, 23, 316-329.
Majumdar, A., Maiti, D.K., and Maity, D. (2012). "Damage assessment of truss structures from changes in natural frequencies using ant colony optimization." Applied Math. & Computation, 218, 9759-9772.
Malekjafarian, A. and OBrien, E.J. (2014). "Identification of bridge mode shapes using Short Time Frequency Domain Decomposition of the responses measured in a passing vehicle." Eng. Struct., 81, 386–397.
Martinez-Castro, A.E., Museros, P., and Castillo-Linares, A. (2006). "Semi-analytic solution in the time domain for non-uniform multi-span Bernoulli–Euler beams traversed by moving loads." J. Sound & Vibr., 294, 278-297.
Mazurek, D.F. and DeWolf, J.T. (1990). "Experimental Study of Bridge Monitoring Technique." J. Struct. Eng. , ASCE, 116(9), 2532-2549.
McCullagh, J.J., Galchev, T., Peterson, R.L., Gordenker, R., Zhang, Y., Lynch, J., and Najafi, K. (2014). "Long-term testing of a vibration harvesting system for the structural health monitoring of bridges." Sensors & Actuators, A 217, 139-150.
McGetrick, P.J., González, A. and OBrien, E.J. (2009). "Theoretical investigation of the use of a moving vehicle to identify bridge dynamic parameters." Insight, 51(8), 433-438.
McGetrick, P.J., Kim, C.W., González, A. and OBrien, E.J. (2013). "Dynamic Axle Force and Road Profile Identification Using a Moving Vehicle." Int. J. Arch., Eng. & Const., 2(1), 1-16.
McGetrick, P., Kim, C.W., and OBrien, E.J. (2010). "Experimental Investigation of the Detection of Bridge Dynamic Parameters Using a Moiving Vehicle." Proceeding of the 23rd KKCNN Symposium on Civil Engineering, Taipei, Taiwan.
Miyamoto, A. and Yabe, A. (2011). “Bridge Condition Assessment based on Vibration Responses of Passenger Vehicle.” 9th International Conference on Damage Assessment of Structures.
Mofid, M., Tehranchi, A., and Ostadhossein, A. (2010). "On the viscoelastic beam subjected to moving mass." Advances in Eng. Soft., 41, 240-247.
Montalvão, D., Maia, N.M.M. and Ribeiro, A.M.R. (2006). "A review of vibration-based structural health monitoring with special emphasis on composite Materials." J. Shock and Vibration Digest, 38(4), 295-324.
OBrien, E.J., Bordallo-Ruiz, A., and Enright, B. (2014a). "Lifetime maximum load effects on short-span bridges subject to growing traffic volumes." Structural Safety, 50, 113-122.
OBrien, E.J., Cantero, D., Enright, B., and González, A. (2010). "Characteristic Dynamic Increment for extreme traffic loading events on short and medium span highway bridges." Eng. Struct., 32, 3827-3835.
OBrien, E.J., and Enright, B. (2011). "Modeling same-direction two-lane traffic for bridge loading." J. Structural Safety, 33, 296-304.
OBrien, E.J., McGetrick, P.J., and González, A. (2014b). "A drive-by inspection system via vehicle moving force identification." J. Smart Struct. & Syst., 13(5), 821-848.
Olsson, M. (1991). "On the fundamental moving load problem." J. Sound & Vibr., 145(2), 299-307.
Oshima, Y. and Yamamoto, K. (2009). “Assessment of bridge vibration based on vehicle responses using by Independent Component Analysis.” Proceeding of the 22nd KKCNN Symposium on Civil Engineering, 99-104, Chiangmai, Thailand.
Oshima, Y., Yamamoto, K., and Sugiura, K. (2014). “Damage assessment of a bridge based on mode shapes estimated by responses of passing vehicles.” J. Smart Struct. & Systems, 13(5), 731-753.
Overschee, P.V., and DeMoor, B. (1993). "Subspace Algorithms for the Stochastic Identification Problem." Automatica, 29(3), 649-660.
Overschee, P.V., and DeMoor, B. (1994). “N4SID - Subspace algorithms for the identification of combined deterministic - stochastic systems.” Automatica, 30(1), 75-93.
Pacejka, H.B., (2006). Tire and vehicle dynamics. Society of Automotive Engineers, Inc., U.S.A..
Pandey, A.K., Biswas, M., and Samman, M.M. (1991). "Damage detection from changes in curvature mode shapes." J. Sound & Vibr., 145(2), 321-332.
Parloo, E., Cauberghe, B., Benedettini, F., Alaggiob, R., and Guillaume, P. (2005). "Sensitivity-based operational mode shape normalisation: Application to a bridge." Mech. Syst. & Signal Processing, 19, 43–55.
Peeters, B., and Ventura, C.E. (2003). "Comparative study of modal analysis techniques for bridge dynamic characteristics." Mech. Syst. & Signal Processing, 17(5), 965-988.
Perera, R., Huerta, C., and Orquin, J.M. (2008). "Identification of damage in RC beams using indexes based on local modal stiffness." Construction and Building Materials, 22, 1656-1667.
Pesterev, A.V., Yang, B., Bergman, L.A. and Tan, C.A. (2001). "Responses of elestic continuum carrying multiple moving oscillators." J. Eng. Mech., ASCE, 127(3), 260-265.
Qiao, L., and Esmaeily, A. (2011). "An Overview of Signal-Based Damage Detection Methods." Applied Mechanics & Materials, 94-96, 834-851.
Qin, S.J. (2006). "An overview of subspace identification." Computers & Chemical Eng., 30, 1502-1513.
Radzienski, M., Krawczuk, M., and Palacz, M. (2011)."Improvement of damage detection methods based on experimental modal parameters." J. Mech. Syst. & Signal Processing, 25, 2169-2190.
Reimpell, J., and Stoll, H. (1996). The automotive chassis: engineering principles. Arnold publishing, London.
Ren, W.X., and De Roeck, G. (2001). "Structural damage identification using modal data. I: Simulation Verification." J. Struct. Eng., 128(1).
Ren, W.X., and De Roeck, G. (2002). "Structural Damage Identification using Modal Data. II: Test Verification." J. Struct. Eng., 128, 96-104.
Ren, W.X., Lin, Y.Q., and Fang, S.E. (2011). "Structural damage detection based on stochastic subspace identification and statistical pattern recognition: I. Theory." Smart Mater. Struct., 20, 115009 (13pp).
Rodrigues, C., Félix, C., Lage, A., and Figueiras, J. (2010). "Development of a long-term monitoring system based on FBG sensors applied to concrete bridges." Eng. Struct., 32, 1993-2002.
Rosales, M.B., Filipich, C.P., and Buezas, F.S. (2009). "Crack detection in beam-like structures." Eng. Struct., 31, 2257-2264.
Roveri, N., and Carcaterra, A. (2012). "Damage detection in structures under traveling loads by Hilbert–Huang transform." J. Mech. Syst. & Signal Processing, 28, 128-144.
Rustighi, E., and Elliott, S.J. (2008). "Force transmissibility of structures traversed by a moving system." J. Sound & Vibr., 311, 97-108.
Sadiku, S. and Leipgolz, H.H.E. (1987). "Identification of modal properties of bridges." J. Struct. Eng., ASCE, 116(7), 2008-2021.
Salawu, O.S. (1997) "Detection of structural damage through changes in frequency: a review." Eng. Struct., 19(9), 718-723.
Sayers, M.W. (1995) "On the calculation of IRI from longitudinal road profile." Transport Research Board, Washington DC, 950842.
Senthilvasan, J., Thambiratnam, D.P., and Brameld, G.H. (2002). "Dynamic response of a curved bridge under moving truck load." Eng. Struct., 24, 1283-1293.
Seo, J., Phares, B., Lu, P., Wipf, T., and Dahlberg, J. (2013). "Bridge rating protocol using ambient trucks through structural health monitoring system." Eng. Struct., 46, 569-580.
Shadnam, M.R., Mofid, M., and Akin, J.E. (2001). "On the dynamic response of rectangular plate, with moving mass." J. Thin-Walled Struct., 39, 797-806.
Sharbati, E., and Szyszkowski, W. (2011). "A new FEM approach for analysis of beams with relative movements of masses." Finite Elements in Analysis & Design, 47, 1047-1057.
Shi, Z.Y., Law, S.S., and Zhang, L.M. (2000). "Damage Localization by Directly using Incomplete Mode Shapes." J. Eng. Mech., 126(6), 656-660.
Shu, J., Zhang, Z., Gonzalez, I., and Karoumi, R. (2013). "The application of a damage detection method using Artificial Neural Network and train-induced vibrations on a simplified railway bridge model." Eng. Struct., 52, 408-421.
Simsek, M. (2010a). "Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load." Composite Struct., 92, 2532-2546.
Simsek, M. (2010b). "Vibration analysis of a functionally graded beam under a moving mass by using different beam theories." Composite Struct., 92, 904-917.
Siringoringo, D.M., and Fujino, Y. (2012). “Estimating bridge fundamental frequency from vibration response of instrumented passing vehicle: analytical and experimental study.” Adv. in Struct. Eng., 15(3), 417-433.
Stancioiu, D., Ouyang, H., Mottershead, J.E., and James, S. (2011). "Experimental investigations of a multi-span flexible structure subjected to moving masses." J. Sound & Vibr., 330, 2004-2016.
Stokes, G.G. (1849). "Discussion of a differential equation relating to the braking of railway bridges." Transactions of the Cambridge Philosophical Society, 8(5), 707-735.
Tan , C.P. and Shore, S. (1968). "Response of horizontally curved bridge to moving load." J. Struct. Eng., ASCE, 94(9), 2135-2151.
Teughels, A. and De Roeck, G. (2004). "Structural damage identification of the highway bridge Z24 by FE model updating." J. Sound & Vibr., 278, 589–610.
Thai, H., DeBrunner, V., DeBrunner, L.S., Havlicek, J.P., Mish, K., Ford, K., and Medda, A. (2007). "Deterministic – stochastic subspace identification for bridges." IEEE, 749-753.
Timoshenko, S.P. (1922). "On the forced vibration of bridges." Philosophical Magazine Series 6, 43, 1018-1019.
Ting, E.C., Genin, J. and Ginsgerg, J.H. (1974). "A general algorithm for the moving mass problem." J. Sound & Vibr., 33(1), 49-58.
Türker, T., and Bayraktar, A. (2014). "Structural safety assessment of bowstring type RC arch bridges using ambient vibration testing and finite element model calibration." Measurement, 58, 33-45.
Veletsos, A. S., and Huang, T. (1970). "Analysis of Dynamic Response of Highway Bridges." J. Eng. Mech. Division, ASCE, 96(5), 593-620.
Verhaegen, M., and Dewilde, P. (1992a). “Subspace model identification, Part 1: The output-error state-space model identification class of algorithms.” Int. J. Control, 56(5), 1187–1210.
Verhaegen, M., and Dewilde, P. (1992b). “Subspace model identification, Part 2: Analysis of the elementary output-error state space model identification algorithm.” Int. J. Control, 56(5), 1211–1241.
Wahab M.M.A., and De Roeck, G. (1999). "Damage detection in bridges using modal curvatures: application to a real damage scenario." J. Sound & Vibr., 226(2), 217-235.
Wang, L. and Chan, T.H.T. (2009). "Review of Vibration-Based Damage Detection and Condition Assessment of Bridge Structures using Structural Health Monitoring." 2nd Infras. Theme Postgraduate Conference, Queensland University.
Wang, H.P., Li, J., and Zhang, K. (2007). "Vibration analysis of the maglev guideway with the moving load." J. Sound & Vibr., 305, 621-640.
Wang, S.Q., and Li, H.J. (2012). "Assessment of structural damage using natural frequency changes." Acta Mech. Sin., 28(1), 118-127.
Wang, X., Hu, N., Fukunaga, H., and Yao, Z.H. (2001). "Structural damage identification using static test data and changes in frequencies." Eng. Struct., 23(6), 610-621.
Weng, J.H., Loh, C.H., Lynch, J.P., Lu, K.C., Lin, P.Y., and Wang, Y. (2008). "Output-only modal identification of a cable-stayed bridge using wireless monitoring systems." Eng. Struct., 30, 1820-1830.
Whelan, M.J., Gangone, M.V., Janoyan, K.D., and Jha, R. (2009). "Real-time wireless vibration monitoring for operational modal analysis of an integral abutment highway bridge." Eng. Struct., 31, 2224-2235.
Willis, R. (1849). "Appendix to the Report of the Commissioners appointed to inquire into the Application of Iron to Railway Structures." H.M. Stationary Office, London, UK.
Wu, S.Q., and Law, S.S. (2010). "Dynamic analysis of bridge-vehicle system with uncertainties based on the finite element model." Probabilistic Eng. Mech., 25, 425-432.
Yabe, A., Miyamoto, A., Nagata, M. (2015). "Verification tests for practical application of a health monitoring system for short- and medium-span bridges based on public bus vibrations." J. Civil Structural Health Monitoring, 5(1), 67-95.
Yamamoto, K., Oshima, Y. and Sugiura, K. (2013). “Damage Influence on Vibration Indices of a Passing Vehicle.” Proceedings of the 26th KKHTCNN Symposium on Civil Engineering, Singapore.
Yamamoto, K., Oshima, Y., Tanaka, A., and Mori, M. (2009). “Monitoring of coupled vibration between bridge and train.” Proceeding of the 22nd KKCNN Symposium on Civil Engineering, 105-110, Chiangmai, Thailand.
Yan, Y.J., Cheng, L., Wu, Z.Y., and Yam, L.H. (2007). "Development in vibration-based structural damage detection technique." J. Mech. Syst. & Signal Processing, 21, 2198-2211.
Yang, Y. B., Chang, C. H., and Yau, J. D. (1999). “An element for analysing vehicle-bridge systems considering vehicle''s pitching effect,” Int. J. for Numer. Meth. in Eng., 46, 1031-1047.
Yang, Y.B., and Chang, K.C. (2009a). “Extraction of bridge frequencies from the dynamic response of a passing vehicle enhanced by the EMD technique.” J. Sound & Vibr., 322(4-5), 718-739.
Yang, Y.B., and Chang, K.C. (2009b). “Extracting the bridge frequencies indirectly from a passing vehicle: parametric study,” Eng. Struct., 31(10), 2448-2459.
Yang, Y.B., Chang, K.C., and Li, Y.C. (2013a). “Filtering techniques for extracting bridge frequencies from a test vehicle moving over the bridge.” Eng. Struct., 48, 353–362.
Yang, Y.B., Cheng, M.C., and Chang, K.C. (2013c). "Frequency variation in vehicle–bridge interaction systems." Int. J. Struct. Stab. & Dyn., 13(2), 1350019.
Yang, Y.B., Chen, W.F., Yu, H.W. and Chan, C.S. (2013b). “Experimental study of a hand-drawn cart for measuring the bridge frequencies.” Eng. Struct., 57, 222–231.
Yang, Y.B., Li, Y. C., and Chang, K.C. (2012). “Using two connected vehicles to measure the frequencies of bridges with rough surface - a theoretical study.” Acta Mechanica, 223, 1851–1861.
Yang, Y.B., Li, Y.C., and Chang, K.C. (2014). “Constructing the mode shapes of a bridge from a passing vehicles: a theoretical study.” Int. J. Smart Struct. & Systems, 13(5), 797-819.
Yang, Y.B., and Lin, B.H. (1995). “Vehicle-bridge interaction analysis by dynamic condensation method.” J. Struct. Eng., ASCE, 121(11), 1636-1643.
Yang, Y.B., and Lin, C.W. (2005). “Vehicle-bridge interaction dynamics and potential applications.” J. Sound & Vibr., 284, 205-226.
Yang, Y.B., Liao, S.S., and Lin, B.H. (1995). “Impact formulas for vehicles moving over simple and continuous beams.” J. Struct. Eng., ASCE, 121(11), 1644-1650.
Yang, Y.B., Lin, C.W., and Yau, J.D. (2004). “Extracting bridge frequencies from the dynamic response of a passing vehicle.” J. Sound & Vibr., 272, 471-493.
Yang, Y.B., and Wu, Y.S. (2001). “A versatile element for analyzing vehicle-bridge interaction response.” Eng. Struct., 23, 452-469.
Yang, Y.B., and Yau, J. D. (1997). “Vehicle-bridge interaction element for dynamic analysis.” J. Struct. Eng., ASCE, 123(11), 1512-1518. (Errata: 124(4), p. 479).
Yang, Y.B., and Yau, J.D. (2015). "Vertical and pitching resonance of train cars moving over a series of simple beams." J. Sound & Vibr., 337, 135-149.
Yang, Y.B, Yau, J.D., and Hsu, L.C. (1997). "Vibration of simple beams due to trains moving at high speeds." Eng. Struct., 19(11), 936-944.
Ye, X.W., Ni, Y.Q., Wong, K.Y., and Ko, J.M. (2012). "Statistical analysis of stress spectra for fatigue life assessment of steel bridges with structural health monitoring data." Eng. Struct., 45, 166-176.
Yeung, W.T., and Smith, J.W. (2005). "Damage detection in bridges using neural networks for pattern recognition of vibration signatures." Eng. Struct., 27, 685-698.
Yi, T.H., Li, H.N., and Gu, M. (2013). "Experimental assessment of high-rate GPS receivers for deformation monitoring of bridge." Measurement, 46, 420-432.
Yin, S.S., and Tang, C.Y. (2011). “Identifying cable tension loss and deck damage in a cable-stayed bridge using a moving vehicle.” J. Vibr. & Acoustics, 133(2), 021007.
Yoon, H.I., and Son, I.S. (2006). "Dynamic behavior of cracked simply supported pipe conveying fluid with moving mass." J. Sound & Vibr., 292, 941-953.
Yoshimura, T., Hino, J., Kamata, T. and Ananthanarayana, N. (1988). "Random vibration of a non-linear beam subjected to a moving load: a finite element method analysis." J. Sound & Vibr., 122(2), 317-329.
Yu, J., Meng, X., Shao, X., Yan, B., and Yang, L. (2014). "Identification of dynamic displacements and modal frequencies of a medium-span suspension bridge using multimode GNSS processing." Eng. Struct., 81, 432-443.
Zhang, Y., Cai, C.S., Shi, X., and Wang, C. (2006). "Vehicle-Induced Dynamic Performance of FRP versus Concrete Slab Bridge." J. Bridge Eng., ASCE, 11(4), 410-419.
Zhang, Y., Lie, S.T., and Xiang, Z (2013). "Damage detection method based on operating deflection shape curvature extracted from dynamic response of a passing vehicle." Mechanical Systems and Signal Processing, 35(1-2), 238-254.
Zhang, Y., Wang, L., and Xiang, Z.H. (2012). “Damage detection by mode shape squares extracted from a passing vehicle.” J. Sound & Vibr., 331, 291–307.
Zhang, Y. and Xiang, Z.H. (2011). "Frequency Shift Curve Based Damage Detection Method for Beam Structures" Computers, Material & Continua, 26(1), 19-35.
Zhu, X.Q., Law, S.S., and Bu, J.Q. (2006). "A State Space Formulation for Moving Loads Identification." J. Vibr. & Acoustics, 128, 509-520.
楊永斌(1993),「圓山高架橋動力及静力特性之監測及分析」,國道高速工程局,1993-1998。
陳韋帆 (2010),「橋梁頻率間接量測法之實驗研究」,國立台灣大學土木研究所碩士論文,楊永斌教授指導。
尤豪文 (2012),「橋梁頻率間接量測法之車體設計與實驗研究」,國立台灣大學土木研究所碩士論文,楊永斌教授指導。
郭彥廷 (2013),「非同步移動式量測法之橋梁頻率與模態振形」,國立台灣大學土木研究所碩士論文,楊永斌教授指導。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top