跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/02 10:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾奕晨
研究生(外文):I-Chen Tseng
論文名稱:樁基礎受震行為之數值模擬
論文名稱(外文):Numerical Analysis of Pile Behavior under Earthquake Loading
指導教授:郭安妮郭安妮引用關係
指導教授(外文):Annie On Lei Kwok
口試委員:葛宇甯關百宸
口試委員(外文):Louis GePai-Chen Guan
口試日期:2015-07-06
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:81
中文關鍵詞:地盤反應分析DEEPSOIL動態P-Y分析OPENSEES
外文關鍵詞:Dynamic P-Y analysisOPENSEESground motion variabilitysite response
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為模擬地震作用下以及振動台試驗樁基礎的受側向力情況,本研究採用Boulanger等人於1999年所提出的方法,利用地盤反應分析得土層各深度的加速度歷時資料,再把加速度歷時轉換為位移歷時導入動態P-Y分析中,將樁基礎各深度的最大受力值與離心機試驗的結果作比較,結果極為相近。故本研究採用此方法模擬前述問題。
研究流程分三大部分,首先是加速度歷時資料之選取,第二步為地盤反應分析,最後將地盤反應分析後的加速度資料轉為位移歷時帶入動態P-Y分析中。在加速度資料選取我們採用台北盆地第一區設計反應譜帶入PEER ground motion database,系統自動找出50組與上傳反應譜最為相近的地震資料作為研究時的設計地震。地盤反應分析利用DEEPSOIL以擬線性頻率域分析將50組加速度資料。動態P-Y分析使用軟體OPENSEES利用Winkler beam為架構及O’Neill and Murchison在1983年發表的砂土P-Y曲線,將轉換後地盤反應分析位移歷時帶入即可得到樁基礎在該地震作用下的最大剪應力及彎矩。
分析案例為四組,分別是樁長為20m,樁長與地盤深度比值為1,2及3的案例A,B及C ;案例D樁長為10m,樁長與地盤深度比值為1。比較樁長度,深度比值與地震特性的影響。


In the discipline of geotechnical earthquake engineering, the seismic behavior of pile can be analyzed by dynamic p-y method, or dynamic finite element / finite difference analysis. In this research, dynamic P-Y analysis, which is based on the theory of beam on nonlinear Winkler foundation (BNWF), is utilized to study the effect of input ground motion variability on pile response. In this study, before the dynamic P-Y analyses are performed, time history selection is carried out to select 50 recorded ground motions that are compatible with the target design spectrum of Taiwan Basin. Then, equivalent-linear frequency domain free-field site response analyses are performed (with the selected ground motions as input) to obtain the free-field displacement histories at various depths. These displacement histories are then imposed on the spring nodes in a dynamic P-Y analysis model.
Correlations between the computed pile response, in terms of maximum moment and shear force, and input ground motion parameters are studied. It is observed that the amplitude of the input ground motion (as represented by Arias Intensity, peak ground acceleration) has high correlation with pile response. Also, the correlation between frequency parameters of the input ground motion and pile response seems to be weak. However, the pile response seems to be higher if significant frequency of the input motion is close to the natural frequency of the pile. In addition, site-source distance or magnitude alone may not correlate well with the pile response, while input ground motion with shorter significant duration seems to lead to higher pile response.


論文口試委員審定書 I
致謝 II
Table of Contents V
List of Figures VIII
List of Tables XI
Chapter 1 Introduction 1
1.1 Motivation and Purpose 1
1.2 Research Method 1
1.3 Thesis Organization 2
Chapter 2 Literature Review 3
2.1 Analysis of pile foundation 3
(1) Elastic analysis method 3
(2) Winkler Beam method 4
2.2 P-Y curve 5
(1) Reese, Cox and Koop (1974) 5
(2) Bogard and Matlock (1980) 7
(3) O’Neill and Murchison (1983) 7
(4) P-Y curve for Liquefied Soil 7
2.3 Lateral Deflection Analysis 8
2.4 Seismic Design of Foundations as Specified in Taiwan Building Code 9
2.5 Response spectrum 10
2.6 Baseline correction 10
2.7 Ground motion parameters 11
2.7.1 Arias Intensity 12
2.7.2 5%-75% Significant Duration and 5%-95% Significant Duration 12
2.7.3 Predominant Period 12
2.7.4 Mean period 12
Chapter 3 Numerical Study of Pile Behavior 21
3.1 Time history selection 21
3.1.1 Taipei basin design response spectrum 21
3.1.2 PEER Ground Motion Database and Selected Ground Motions 22
3.2 Site Response Analysis 22
3.2.1 DEEPSOIL 23
Backbone curve 23
3.2.2 Equivalent linear frequency domain analysis 24
(1) Equivalent linear model 24
(2) Frequency domain analysis 24
3.2.3 Scenarios Considered in this Research 25
(1) 25
(2) 26
(3) LBLp=3 26
3.2.4 Numerical Integration and Baseline Correction 27
3.3 Dynamic P-Y analysis 27
3.3.1 OPENSEES 27
3.3.2 Geometry 28
3.3.3 Spring node and element 28
3.3.4 Pile node and element 28
3.3.5 Loading and Recording 29
3.4 Verification study 29
Chapter 4 Analyses and Results 43
4.1 Effect of pile length 43
4.1.1 Frequency Content Parameters 43
4.1.2 Amplitude and Duration Parameters 44
4.1.3 Other Parameters 45
4.1.4 Summary 46
4.2 Effect of depth to pile length ratio 47
4.2.1 Frequency content parameters 47
4.2.2 Amplitude and Duration related parameters 47
4.2.3 Other ground motion parameters 48
4.2.4 Summary 48
4.3 Effect of input ground motion 49
4.4 Results of site response analysis 49
Chapter 5 Conclusion and Recommendation 76
5.1 Conclusion 76
5.2 Recommendation for future research 77
References 78



1. American Petroleum Institute. (1993), Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platform, 20th Edition, API-RP2A-WSD, API, Washington, D. C., pp. 63-66
2. Boulanger, R. W., Curras, C. J., Kutter, B. L., Wilson, D. W., and Abghari, A. (1999). “Seismic soil-pile-structure interaction experiments and analyses.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 125(9), 750-759.
3. Boulanger, R. W., B. L. Kutter, S. J. Branderberg, P. Singh and D. Chang. (2003) “Pile Foundations in Liquefied and Laterally Spreading Ground during Earthquakes: Centrifuge Experiments & Analyses”, Final report, University of California Department of Civil & Environmental Engineering Davis
4.Brandenberg, S., Boulanger, R. W., Kutter, B. L. and Chang, D. (2005) “Behavior of Pile Foundations in Laterally Spreading Ground during Centrifuge Tests”, J. Geotech. Geoenviron. Eng., 131(11), 1378–1391
5. Brandenberg, S., Boulanger, R. W., Kutter, B. L. and Chang, D. (2007) “Static Pushover Analyses of Pile Groups in Liquefied and Laterally Spreading Ground in Centrifuge Tests”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 9, September 2007, pp. 1055-1066
6. Chau, K. T., C.Y. Shen and X. Guo. (2008) “Nonlinear seismic soil–pile–structure interactions:Shaking table tests and FEM analyses”, Soil Dynamics and Earthquake Engineering, Volume 29, Issue 2, Pages 237-414
7. Chiu, H.-C. (2011) “A Compatible Baseline Correction Algorithm for Strong-Motion Data”, Terr. Atmos. Ocean. Sci., Vol. 23, No. 2, 171-180
8. Darendeli, M. B. (2001) "Development of a new family of normalized modulus reduction and material damping curves," Ph. D., University of Texas at Austin, Austin
9. Hashash, Y. M. A. (2009) "DEEPSOIL V 3.7, Tutorial and User Manual. 2002-2009." University of Illinois at Urbana-Champaign, Urbana, Illinois
10. Housner, G. W. (1941) “ An Investigation of the Effects of Earthquakes on Buildings”, Ph.D. Thesis, California Institute of Technology, Pasadena, California.
11. Matlock, H., (1970) “Correlation for design of laterally loads piles in soft clay,” Proceedings of 2nd annual offshore technology conference, Houston, Texas, Vol. 1,577-594.
12. Poulos, H. G. (1971) “Behavior of laterally loaded piles: I. single piles,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 97, No. SM5, 711-731
13. Reese, L. C. (1962) “Ultimate resistance against a rigid cylinder moving laterally in a cohesionless soil,” Journal. Soc. Pet. Engrs., 355-359
14. Reese, L. C. (1977) “Laterally Loaded Piles : Program Documentation,” Journal of Geotechnical Engineering Division, ASCE, Vol. 103 No.4
15. Scott, R. F. (1981),“Foundation Analysis, Prentice-Hall International”, Inc., London, 267-334
16. Stewart, J. P., Chiou, S. J., Bray, J.D., Graves, R. W., Somerville, P. G. and Abrahamson, N.A. (2001) “Ground Motion Evaluation Procedures for Performance-Based Design”, PEER Report 2001/09, Pacific Earthquake Engineering Research Center, Berkeley
17. Tokimatsu, K. (2003) “Behavior and Design of Pile Foundations Subjected to Earthquakes”, Proc., 12th ASIAN Regional Conference on Soil Mechanics and Geotechnical Engineering, Vol.2, 1065-1096
18. Winkler, E. (1967) “Die lehre von Elastizität und Festigkeit (On elasticity and fixity),”Prague, 182
19. Yang, Z. and Jeremic, B. (2005) “Study of Soil Layering Effects on Lateral Loading Behavior of Pile” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 6, pp. 762-770
20.內政部營建署 (1990),建築技術規則建築構造編基礎構造設計規範,第170-176 頁。
21.王訓濤、周南山 (1988),「承受側向力之基樁與土壤之互制作用」,地工技術,第二十四期,第39-48 頁。
22.楊森閔 (2002),「由現地基樁試驗資料歸納土壤P-Y曲線」,國立台灣大學土木工程研究所,碩士論文。
23.賴泰辰(2014),「中至高剪應變下混合土壤的動態參數」,國立台灣大學土木工程研究所,碩士論文。
24.張暐承(2014),「地盤反應與土壤液化之數值模擬研究」,國立台灣大學土木工程研究所,碩士論文。
25.廖信智 (2000),「側向樁簡易分析法之推廣」,國立台灣科技大學營建工程研究所,碩士論文。
26.歐陽大剛 (2007),「砂土層側向樁P-Y曲線簡易法分析研究」,國立台灣科技大學營建工程研究所,碩士論文。
27.陳伯仁 (2001),「高雄市地表加速度瘦局部地質引響之探討與土層液化潛能評估」,國立成功大學土木工程研究所,碩士論文。
28.莊明仁 (2001),「基樁承受側向荷重之反應分析」,國立成功大學土木工程研究所,博士論文。
29.李德沛 (2001),「砂土中基樁側向位移之改良研究」,國立中央大學土木工程研究所,碩士論文。
30.凃亦俊 (2011),「位於可液化砂土層中單樁基礎受震反應的離心模擬」,國立中央大學土木工程研究所,碩士論文。
31. 李碩修 (2005),「基樁與液化土壤之互制分析」,國立海洋大學河海工程研究所,碩士論文。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top