跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/05 00:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王嘉驛
研究生(外文):Jia-Yi Wang
論文名稱:砂土粉土混合物最大最小孔隙比之模擬
論文名稱(外文):Modelling of Maximum and Minimum Void Ratio for Sand-Silt Mixtures
指導教授:葛宇甯
指導教授(外文):Louis Ge
口試委員:黃燦輝張光宗
口試委員(外文):Tsan-Hwei HuangKuang-Tsung Chang
口試日期:2015-06-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:73
中文關鍵詞:最大孔隙比最小孔隙比砂土粉土混合物細粒料含量
外文關鍵詞:maximum void ratiominimum void ratiosand-silt mixturesfines content
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在大地工程中,最大與最小孔隙比是一個非常重要的土壤性質。土壤的體積變化趨勢、孔隙水傳導率以及土壤的抗剪強度都與其有關。
然而,通過試驗方法所得到之最大與最小孔隙比通常十分繁雜。土壤混合物的最大與最小孔隙比通常是根據經驗法來判斷,例如:AASHTO粗顆粒校正法。
在本研究中會提出一數學模型,以預測任何配比下砂土與粉土混合物的最大與最小孔隙比。為了考慮主導結構顆粒的影響因素,此模型引入兩個係數來進行優化。這兩個係數與砂土粉土混合物中的兩種顆粒大小和形狀有關。本研究從前人文獻選取31組土壤混合物的最小孔隙比和27組土壤混合物的最大孔隙比的實驗數據,將實驗數據和數值結果進行比對,以驗證模型的可行性與正確性。


Minimum or maximum void ratio is an important soil property in geotechnical engineering. It correlates to the volume change tendency, the pore fluid conductivity and the shear strength of the soil.
However, it is commonly troublesome to acquire minimum and maximum void ratio by experiments. The minimum and maximum void ratio for soil mixtures are usually estimated by methods based on, to some extent, the empirical approach, for example the AASHTO coarse particles correction method.
In this thesis, a mathematical model is developed to predict the minimum and maximum void ratio for sand-silt mixtures with any amount of fines content based on a more fundamental approach. Taking the dominant particle network into consideration, the model is further improved by two coefficients which describe the sizes and shapes of two component particles in sand-silt mixtures. The model is evaluated by the experiment results of minimum and maximum void ratio on about 30 types of soil mixtures of sands (Ottawa sand, Nevada sand, Toyoura sand, Hokksund sand, etc.), and silts (ATC silt, Nevada fines, crushed silica fines, grind Toyoura fines, etc.) available in the literature. Comparison between the model and the experiment results is presented and discussed.


口試委員會審定書 I
ACKNOWLEDGEMENTS II
摘要 III
ABSTRACT IV
CONTENTS V
LIST OF TABLES VII
LIST OF FIGURES VIII
LIST OF SYMBOLS X
1. INTRODUCTION 1
2. PACKING THEORY AND MODEL 4
2.1 Single Size Packing 4
2.2 Binary Packing 5
2.3 Existing Model for Steel Shots 8
2.3.1 Introduction 8
2.3.2 Evaluation of the Application of the Model 13
3. A NEWLY DEVELOPED MODEL 19
3.1 Modeling for Minimum Void Ratio 19
3.1.1 Model Formulation 19
3.1.2 Evaluations and Discussions 39
3.2 Modeling for Maximum Void Ratio 47
3.2.1 Model Formulation 47
3.2.2 Evaluations and Discussions 64
4. CONCLUSIONS AND RECOMMENDATIONS 66
References 68


AASHTO (1986) “Correction for coarse particles in the soil compaction test,” AASHTO Designation: T224-86, 840-845.
Aberg, B. (1992) “Void ratio of noncohesive soils and similar materials.” ASCE Journal of Geotechnical Engineering, 118(9), 1315-1334.
An, X.Z. (2013) “Densification of the packing structure under vibrations.” International Journal of Minerals, Metallurgy and Materials, Volume 20, Number 5, May 2013, 499-504.
Ben Aim, R. and Le Goff, P. (1967). “Effect de Paroi Dans Les Empilements Desordonnes de Spheres et Application aa La Porosite de Melanges Binaires.” Powder Technology, 1, 281-290.
Bobei, D. C., Lo, S. R., Wanatowski, D., Gnanendran, C. T., and Rahman, M. M. (2009). "A modified state parameter for characterizing static liquefaction of sand with fines." Canadian Geotechnical Journal, 46(3), 281-295.
Chang C.S., and Meidani M. (2013), “Dominant Grains Network and Behavior of Sand-Silt Mixtures: Stress-Strain Modeling,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol.37, 2563-2589.
Cho, Y.T. (2014). "The study of GCTS triaxial apparatus function and mixing sand void ratio." Department of Civil Engineering, National Taiwan University. Master Thesis
Cho, G.C., Dodds, J., Santamarina, J.C., (2006). Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J. Geotech. Geoenviron. Eng.,ACSE 132 (5), 591–602
Cubrinovski, M and Ishihara, K. (2002). “Maximum and minimum void ratio characteristics of sand.” Soils and Foundations, 42(6), 65-78.
De Larrard, F. (1999). Concrete mixture proportioning: a scientific approach. London: Taylor & Francis, 1999.
Fennis, S.A.A.M., Walraven, J.C., den Uijl, J.A. (2013) “Compaction-interaction packing model: regarding the effect of fillers in concrete mixture design.” Mater. Struct., 46 (3) (2013), 463–478
Fourie AB, and Papageorgiou G. (2001) “Defining an appropriate steady state line for Merriespruit gold tailings.” Canadian Geotechnical Journal; 38:695–706.
Fragaszy, R. J. and Sneider C. A. (1991) “Compaction control of granular soils,” Washington State Department of Transportation, Final Report WA-RD 230.1.
Fuggle, A.R. (2011). “Geomaterial Gradation Influences on Interface Shear Behavior”, PhD Thesis, Georgia Institute of Technology.
Graton, L. C., & Fraser, H. J. (1935). Systematic Packing of Spheres: With Particular Relation to Porosity and Permeability. The Journal of Geology, 43(8), 785-909.
Humphres, H. W. (1957). “A method for controlling compaction of granular materials.” Highway Research Board Bulletin No. 159, pp. 41-57.
Kwan, A.K.H., and Fung, W.W.S. (2009). “Packing density measurement and modeling of fine aggregates and mortar.” Cement and Concrete Composite 31, 349-357.
Kolbuszewski, J. J. (1948). ‘An experimental study of the maximum and minimum properties of sands.” Proceedings, Second International Conference in Soil Mechanics and Foundation Engineering, Rotterdam, Vol. 1, 158-165.
Lade PV, Yamamuro J. (1997). “Effects of nonplastic fines on static liquefaction of sands.” Canadian Geotechnical Journal; 34(6):917–928.
Lade, P. V., Liggio Jr, C. D., & Yamamuro, J. A. (1998). Effects of Non-Plastic Fines on Minimum and Maximum Void Ratios of Sand. Geotechnical Testing Journal, 21(4), 336-347.
McGeary, R. K. (1961) "Mechanical packing of spherical particles." Journal of the American Ceramic Society 44, no. 10 (1961): 513-522.
Mitchell J. K. (1993) Fundamentals of soil behavior, 2nd edn. Wiley Interscience Publ, 1993.
Miura, K., Maeda, K., Furukawa, and Toki, S. (1997). “Physical characteristics of sands with different primary properties.” Soils and Foundations, 37 (3), 53-64.
Mulilis, J. P., Seed, H. B., Chan, C. K., Mitchell, J. K., and Arulanandan, K. (1977). “Effect of sample preparation on soil liquefaction.” Journal of Geotechnical Engineering Division, Vol. 103, No. GT2, 91-108.
Pitman, T. D., Robertson, P. K., & Sego, D. C. (1994). Influence of fines on the collapse of loose sands. Canadian Geotechnical Journal, 31(5), 728-739.
Powers, T.C. (1968) The properties of fresh concrete. New York: John Wiley & Sons.
Reed, J.S. (1995) Principles of ceramics processing. 2nd ed. New York: John Wiley & Sons.
Peters, J. F. and E. S. Berney (2010). "Percolation Threshold of Sand-Clay Binary Mixtures." J. of Geotechnical and Geoenvironmental Engrg. 136(2): 310-318.
Selig, E.T and Ladd, R. S. (1973). “Evaluation of relative density measurements and applications.” Evaluation of Relative Density and Its role in Geotechnical Projects Involving Cohesionless Soils, ASTM STP 523, 487-504.
Smith, L.N. (2003) A knowledge-based system for powder metallurgy technology. London and Bury St. Edmunds: Professional Engineering Publishing Ltd.
Stovall T, De Larrard F, Buil M. Linear packing density model of grain mixtures. Powder Technol 1986; 48(1):1–12.
Thevanayagam S, Shenthan T, Mohan S, Liang J. (2002) “Undrained fragility of clean sands, silty sands and sandy silts.ASCE Journal of Geotechnical and Geoenvironmental Engineering; 128(10):849–859.
Thevanayagam S. (2007) “Intergrain contact density indices for granular mixes – I: Framework.” Earhquake Engineering and Engineering Vibration; 6(2):123–134.
Vaid Y.P. (1994) Liquefaction of silty soils. In Proceedings of Ground failures under seismic conditions. Geotechnical Special Publication 44, ASCE: New York, 1994; 1–16.
Vaid, Y. P. and Negussey, D. (1988) “Preparation of reconstituted sand specimens.” Advnce Triaxial Testing of Soil and Rock, ASTM STP 977, R. T. Donaghe, R. C. Chaney, and M. L. Silver, Eds., American Society for Testing and Materials, West Conshohocken, PA. 405-417.
Westman AER, Hugill HR. (1930) “Thepacking of particles.” J Am Ceram Soc., 13(10):767–79.
White, H. E., & Walton, S. F. (1937). PARTICLE PACKING AND PARTICLE SHAPE*. Journal of the American ceramic Society, 20(1-12), 155-166.
Yamamuro JA, Covert KM. (2001). “Monotonic and cyclic liquefaction of very loose sands with high silt content.” ASCE Journal of Geotechnical and Geoenvironmental Engineering; 127(4):314–324.
Yang, S.L. (2004) Characterization of the properties of sand–silt mixtures. Ph.D. dissertation, Norwegian University of Science and Technology, Trondheim, Norway.
Yilmaz, Y., Mollamahmutoglu, M., Ozaydin, V., Kayabali, K., 2008. Experimental investigation of the effect of grading characteristics on the liquefaction resistance of various graded sands. Eng. Geol. 100, 91–100.
Yilmaz, Y. 2009. A study on the limit void ratio characteristics of medium to fine mixed graded sands. Eng. Geol. 104, 290–294.
Yu, A.B., and Standish N. (1987). “Porosity calculations of multi-component mixtures of spherical particles.” Powder Technol; 52(3): 233–41.
Zlatovic S, Ishihara K. (1997) “Normalized behavior of very loose non-plastic soils: effects of fabric.” Soils & Foundations; 37(4):47–56.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top