跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 18:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昶安
研究生(外文):Chang-An Chen
論文名稱:車橋互制理論於橋梁損傷識別之應用
論文名稱(外文):Application of the vehicle-bridge interaction theory to damage detection of bridges
指導教授:楊永斌楊永斌引用關係
指導教授(外文):Yeong-Bin Yang
口試委員:宋裕祺姚忠達朱聖浩
口試日期:2015-08-03
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:129
中文關鍵詞:橋梁損傷識別頻率間接量測法路面粗糙度量測車車橋互制結構傳遞率
外文關鍵詞:bridgedamage identificationfrequencyindirect measurement approachroad surface roughnesstest vehiclevehicle-bridge interactiontransmissibility
相關次數:
  • 被引用被引用:1
  • 點閱點閱:72
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在地震與颱風等天災過後,橋梁的安全性是相當重要的課題。橋梁頻率為一項十分重要的振態參數,它隨著橋梁結構勁度的改變而改變;相對模態振型和阻尼而言,橋梁的頻率資訊比較容易擷取,因此有關橋頻的量測法,在過去的半個世紀已有成熟的發展。傳統的橋梁識別方法是直接將感測器安裝於橋梁上,並利用感測器所量測到的橋梁動力反應,進行頻率之識別,此法稱之為直接量測法。
自2004年以來,Yang等首創另外一種量測方式,以改善直接量測法的缺點,提供更機動且經濟的好處,吾人稱之為間接量測法,其概念是將感測器安裝在移動的車輛上,讓車輛行駛通過橋梁並記錄其反應,再從車體的動力反應分析中擷取出橋梁的頻率資訊。由於其具高機動性,在天災之後能更快速地檢測橋梁並獲取相關模態資訊,提供工程師破壞檢測與安全評估之參考依據。
本研究目的在於利用數值模擬,進行橋梁間接量測法之探討。首先,從基本的車橋互制理論開始推導,探討光滑路面下的間接量測結果。接著,引入路面粗糙度之影響,分析在不同等級路面粗糙度下量測車車體之反應。此外,也將利用前後相連的伴隨車通過橋梁,所獲致的反應頻譜,予以相減,以排除路面粗糙度干擾之影響。另外,針對數個假設的損傷情境,將嘗試利用結構傳遞率,來進行橋梁結構的損傷識別。最後,根據本文各章的例題分析,吾人將針對各種案例及其效應提出具體結論,並對未來研究之研究方向提出參考意見。


It is an urgent matter to confirm the safety of brides after the occurrence of major disasters such as earthquakes and typhoons. The frequency of vibration is one of the important properties for bridges, as it can reflect the change in stiffness of the bridge. Compared with the modal shape and damping ratio, the frequency of a bridge can be measured in a relatively easy way. In the past half a century, techniques developed for the measurement of bridge frequencies are considered mature. Conventionally, to measure the bridge frequencies, we have to mount directly the sensors on the bridge and use the vibration response recorded by the sensors to identify the frequencies. Such an approach has been referred to as the direct approach.
Starting from 2004, a new method for measurement of bridge frequencies, referred to as the indirect approach, has been proposed by Yang and co-workers aimed at overcoming the drawbacks of the direct approach, while offering advantages such as mobility and economy. With this approach, a test vehicle mounted with vibration sensors is allowed to pass the bridge of concern, and the response recorded of the vehicle during its passage is then used to extract the bridge frequencies. Due to its mobility, this approach is particularly suitable for measuring the bridge frequencies after the occurrence of a major natural disaster, which can offer an in-time reference for engineers to evaluate the safety of bridges.
The objective of this thesis is to use the numerical approach to simulate the indirect measurement of bridge frequencies. First of all, we shall adopt the theory of vehicle-bridge interaction to study the indirect measurement of bridge frequencies for the case of smooth road surface. Next, we shall introduce the effect of road surface roughness and investigate the response of the test vehicle under various levels of roughness profiles. In addition, we shall consider the case of two test vehicles in connection, allow them to pass the bridge of concern, and then deduct the spectral response obtained for one vehicle from the other so as to eliminate the pollution effect of road surface roughness. Moreover, for various scenarios of damages, the transmissibility of a structure will be computed for identifying the damages in the bridge. Finally, concluding remarks will be drawn for the numerical examples presented in this thesis, while directions for possible future research will be highlighted.


目錄
摘要 I
Abstract III
目錄 V
圖目錄 IX
表目錄 XIII
第一章 導論 1
1.1 研究背景 1
1.2 研究目的 3
1.3 論文架構 3
第二章 文獻回顧 5
2.1 前言 5
2.2 車橋互制理論 7
2.3 直接量測法 9
2.4 間接量測法 10
2.5 結構監測與損傷識別 11
2.6 結論 12
第三章 車橋互制系統之基礎理論 13
3.1 前言 13
3.2 車橋互制系統模型 14
3.2.1 車橋互制關係:梁的撓曲與載重關係 15
3.2.2 車橋互制關係:懸浮質量系統的車橋運動方程式 16
3.3 車橋互制系統簡化下的解析解 18
3.3.1 橋梁的解析解 18
3.3.2 車輛的解析解 20
3.4 車橋互制系統的有限元素模型數值解 23
3.4.1 橋樑與車輛的有限元素模型 23
3.4.2 有限元素法動力分析 27
3.5 車橋案例分析 29
3.6 結論 30
第四章 路面粗糙度之影響與消除 35
4.1 前言 35
4.2 路面粗糙度模擬 35
4.3 考慮路面粗糙度所引致之動力分析 37
4.3.1 考慮路面粗糙度之車橋互制模型 37
4.3.2 考慮路面粗糙度的間接量測法之案例驗證 39
4.3.3 橋樑與粗糙度所引致的反應之比較 39
4.4 考慮路面粗糙度效應下之近似理論解 40
4.5 增加成功識別橋梁頻率機率之方法 46
4.6 探討利用伴隨車來降低路面粗糙度的影響 47
4.6.1 考慮粗糙度效應下之兩輛車之近似理論解 47
4.6.2 利用伴隨車來消除粗糙度影響之數值模擬 53
4.6.3 伴隨車之參數選擇 55
4.7 結論 56
第五章 車橋系統於橋梁損傷識別之應用 77
5.1 前言 77
5.2 橋梁損傷指標 77
5.2.1 車橋系統之傳遞率 77
5.2.2 車橋系統之橋梁損傷指標 81
5.3 橋梁損傷識別之應用 82
5.3.1 單輛車行經損傷橋梁 82
5.3.2 雙輛車行經損傷橋梁 83
5.3.3 橋梁損傷指標之參數選擇 84
5.4 結論 86
第六章 結論與未來展望 119
6.1 總結論 119
6.1.1 車橋互制系統之基礎理論 119
6.1.2 路面粗糙度之影響與消除 119
6.1.3 車橋系統於橋梁損傷識別之應用 120
6.2 未來展望 120
參考文獻 121
簡歷 129


[1]Brincker, R., Zhang, L., and Andersen, P. (2001), "Modal identification of output-only systems using frequency domain decomposition", Smart Materials and Structures, 10(3): 441-445.
[2]Bringham, E. O. (1988), The fast Fourier Transform and Its Applications, Prentice Hall, Upper Saddle River, New Jersey.
[3]Brownjohn, J.M.W., Xia, P.Q., Hao, H., and Xia, Y. (2001), “Civil structure condition assessment by FE model updating: methodology and case studies”, Finite Elements in Analysis and Design, 37, 761-775.
[4]Bu, J. Q., Law, S.S., and Zhu, X. Q., (2006),”Innovative bridge condition assessment from dynamic response of a passing vehicle”, Journal of Engineering Mechanics Division, ASCE, 132(12): 1372–1379.
[5]Carden, E. P., and Fanning, P.,(2004) ,”Vibration based condition monitoring: a review”, Structural Health Monitoring , 3(4): 355-377.
[6]Chang, K.C.,Wu, F.B., Yang, Y.B. (2010), “ Effect of road surface roughness on indirect approach for measuring bridge frequencies from a passing vehicle.” Interact. Multiscale Mech. 3, 299–308.
[7]Chang, K. C., Wu, F. B., and Yang, Y. B. (2011),”Disk model for wheels moving over highway bridges with rough surfaces,”Journal of Sound and Vibration, 330: 4930–4944.
[8]Chopra, A. K. (2012), Dynamics of Structures: Theory And Applications To Earthquake Engineering, 4th edition, Prentice Hall, Upper Saddle River, New Jersey.
[9]Clough, R. W., and Penzien, J. (1993), Dynamics of Structures, 2nd edition, McGraw-Hill, New York.
[10]Cooley, J. W. and Tukey, J .W. (1965), “An algorithm for the machine calculation of complex Fourier series”, Mathematics of Computation, 19(90):297-301.
[11]Devriendt, C., and Guillaume, P. (2007). “The use of transmissibility measurements in output-only modal analysis.” Mech. Syst. Sig. Process., 21(7), 2689–2696.
[12]Devriendt, C., Guillaume, P., Weijtjens, W., De Sitter, G. (2013). “Relative scaling of mode shapes using transmissibility functions.” Mech. Syst. Sig. Process., 40, 269-277.
[13]Fan, W., and Qiao, P.Z. ,(2011) ,”Vibration-based damage identification methods: a review and comparative study”, Structural Health Monitoring , 10(1): 83-111.
[14]Farrar, C. R., and James III, G. H., (1997), ”System Identification from Ambient Vibration Measurements on a Bridge,” Journal of Sound and Vibration, 205(1): 1–18.
[15]Fryba, L. (1972), Vibration of Solids and Structures under Moving Loads, Noordhoff International Publishing, Groningen, The Netherlands.
[16]Gere, J. M. and Goodno, B. J., Mechanics of Materials, 7nd edition, Cengage Learning, Stamford.
[17]Hsieh, K.H., Halling, M.W., Barr, P.J.(2006), ” Overview of vibrational structural health monitoring with representative case studies.”, Journal of Bridge Engineering, 11, 707–715.
[18]Huang, C. S., Yang, Y. B., Lu, L. Y., and Chen, C. H.(1999), “Dynamic testing and system identification of a multi-span highway bridge,” Earthquake Eng. & Struct. Dyn., 28(8), 857-878.
[19]ISO 8608 (1995), Mechanical vibration- Road surface profiles- Reporting of measured data, ISO.
[20]Jolliffe, I. T. (2002), Principal Component Analysis, 2nd edition, Springer, New York.
[21]Kim, C.W., Kawatani, M. (2008),”Pseudo-static approach for damage identification of bridges based on coupling vibration with a moving vehicle”, Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance, 4(5):371-379.
[22]Kong, X., Cai, C. S., Kong, B. (2014),” Damage Detection Based on Transmissibility of a Vehicle and Bridge Coupled System.”, Journal of Engineering Mechanics Division, ASCE, 141(1), 04014102.
[23]Lin, Y. H., and Trethewey, M. W. (1990),”Finite Element Analysis of Elastic Beams Subjected to Moving Dynamic Loads,” Journal of Sound and Vibration, 136(2): 323–342.
[24]Lin, C. W., and Yang, Y. B. (2005),”Use of a passing vehicle to scan the fundamental bridge frequencies: an experimental verification,”Engineering Structures, 27: 1865–1878.
[25]McGetrick, P.J., Gonzalez, A., OBrien, E.J. (2009), “ Theoretical investigation of the use of a moving vehicle to identify bridge dynamic parameters.”, Insight 51, 433–438.
[26]Michaltsos, G. T. (2002), ”Dynamic behavior of a single-span beam subjected to loads moving with variable speeds,”Journal of Sound and Vibration, 258(2): 359-372.
[27]Newmark, N.M. (1959), “A method of computation for structural dynamics.” Journal of Engineering Mechanics Division, ASCE, 85: 67–94.
[28]Salawu, O. S.,(1997), ”Detection of structural damage through changes in frequency: a review,” Engineering Structures, 19(9): 462–477.
[29]Siringoringo, D. M., and Fujino, Y.,(2008), ”System Identification of Suspension Bridge from Ambient Vibration Response”, Engineering Structures, 30(2): 462–477.
[30]Waldron, K. J., and Kinzel, G. L. (2004), Kinematics, dynamics, and design of machinery, 2nd edition, Hoboken, New Jersey: J. Wiley.
[31]Wu, Y. S., Yang, Y. B., and Yau, J. D., “Three-dimensional analysis of train-rail-bridge interaction problems,” Vehicle System Dyn. (Int. J. Vehicle Mech. & Mobility), 36(1), 2001, 1-35.
[32]Yang, Y. B., Chang, C. H., and Yau, J. D., “An element for analysing vehicle-bridge systems considering vehicle''s pitching effect,” Int. J. for Numer. Meth. in Eng., 46, 1999, 1031-1047.
[33]Yang, Y. B., Chang, K. C., and Li, Y. C. (2013),”Filtering techniques for extracting bridge frequencies from a test vehicle moving over the bridge,”Engineering Structures, 48: 353–362.
[34]Yang, Y. B., and Chang, K. C. (2009),”Extraction of bridge frequencies from the dynamic response of a passing vehicle enhanced by the EMD technique,”Journal of Sound and Vibration, 322: 718–739.
[35]Yang, Y. B., and Chang, K. C. (2009),”Extracting the bridge frequencies indirectly from a passing vehicle: Parametric study,”Engineering Structures, 31: 2448–2459.
[36]Yang, Y. B., Chen, W. F., Yu, H. W., and Chan, C, S. (2013),”Experimental study of a hand-drawn cart for measuring the bridge frequencies”,Engineering Structures, 57: 222–231.
[37]Yang, Y. B., Li, Y. C. and Chang, K. C. (2012),”Using two connected vehicles to measure the frequencies of bridges with rough surface: a theoretical study,” Acta Mech., 223: 1851–1861.
[38]Yang, Y. B., Li, Y.C., and Chang, K.C. (2013), “Constructing the Mode Shapes of a Bridge from a Passing Vehicles: A Theoretical Study,” Smart Structures & Systems, An Int. J., 13(5), 797-819.
[39]Yang, Y. B., and Lin, B. H. (1995), “Vehicle-bridge interaction analysis by dynamic condensation method,” J. Struct. Eng., ASCE, 121(11), 1636-1643.
[40]Yang, Y. B., and Lin, C. W. (2005),”Vehicle-bridge interaction dynamics and potential applications,” Journal of Sound and Vibration, 284: 205–226.
[41]Yang, Y. B., Lin, C. W., and Yau, J. D. (2004),”Extracting bridge frequencies from the dynamic response of a passing vehicle,”Journal of Sound and Vibration, 272: 471–493.
[42]Yang, Y. B., and Wu, Y. S., “A versatile element for analysing vehicle-bridge interaction response,” Eng. Struct., 23, 2001, 452-469.
[43]Yang, Y. B., and Yau, J. D. (1997),”Vehicle-bridge interaction element for dynamic analysis”, Journal of sound and Vibration, 284, 205-226.
[44]Yang, Y. B., Yau, J. D., and Hsu, L. C., (1997),”Vibration of Simple Beams due to Trains Moving at High Speeds,”Journal of Structural engineering, 123: 1512–1518.
[45]Yao, Z., Wang, L., and Xiang, Z. (2012),”Damage detection by mode shape square extracted from a passing vehicle”, Journal of Sound and Vibration, 331: 291–307.
[46]Yau, J. D., Yang, Y. B., and Kuo, S. R. (1999),”Impact response of high speed rail bridges and riding comfort of rail cars”, Engineering Structures, 21: 836–844.
[47]李育謙(2011),「濾波技巧於橋梁頻率間接量測法之應用」,國立台灣大學土木工程學系碩士論文
[48]吳侑軒(2014),「車橋互制理論於橋梁頻率間接量測法之應用」,國立台灣大學土木工程學系碩士論文


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top