跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/07/31 15:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡孟芹
研究生(外文):Meng-Chin Tsai
論文名稱:化為偏微分方程的李群微分代數方法識別非線性結構外力
論文名稱(外文):Identifying External Force on Nonlinear Structures by a Lie-group Differential Algebraic Equations Method on Transformed PDE
指導教授:劉進賢
口試委員:張致文郭仲倫
口試日期:2015-06-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:95
中文關鍵詞:非線性反算振動問題即時恢復力杜芬非線性振盪器杜芬–范德波非 線性振盪器李群微分代數方程法
外文關鍵詞:Nonlinear inverse vibration problemReal time recovery of external forceDuffing nonlinear oscillatorDuffing-van der Pol nonlinear oscillatorLie-group differential algebraic equations (LGDAE) method
相關次數:
  • 被引用被引用:1
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  在土木工程的範疇裡,對結構系統的控制及保護而言,能夠即時地重建施於系統的外力,一直以來都是我們所探討且不可忽視的研究議題。

  過去雖有許多重建外力的文獻提出,但因其運算求解費時,因此,想要達到「即時」重建的方法還尚未被廣泛研究發展應用。在本論文中,為了即時重建施加於非線性振動反算問題系統上的未知外力,我們將非線性常微分運動方程式轉換成非線性拋物型的偏微分方程式,如此一來,可以提高此法對問題抗噪之強健性。

  隨後,我們針對外力的識別問題,利用有限差分線法,將偏微分方程 (PDE) 離散並嵌入至微分代數方程 (DAEs) 的系統中,及配合束制條件。
為了求解,我們利用增加一個虛擬時間軸的變數,將斯特姆─劉維方程式轉換為拋物型偏微分方程。

  然後,我們可以透過隱格式李群 (implicit GL(n,R) Lie-group scheme) 法和牛頓演算法 (newton iterative scheme) ,使內外迴圈迭代增加穩定性來求解微分代數方程 (DAEs) 及求解的精度,最後,找出未知外力。這是一個很好的計算恢復力的方法,即便在較大的噪音影響下,仍有不錯的結果。

  從表面上來看,我們似乎將一個簡單的常微分方程 (ODE) 轉換成一個更複雜的偏微分方程 (PDE) ,但是當我們在計算一些非線性的振動反算問題時,不管是在長時間計算下或是在較大噪音的影響下,我們仍可以得到好的結果。我們可以減輕噪音的影響,是因為透過有限差分線法,我們將原本的偏微分方程,離散成2m條常微分方程式,而會受到噪音的干擾只有第一條和最後一條方程式,中間的常微分方程式,可以平均分擔其影響,因此,透過這個偏微分方程的轉換,我們可以將噪音的影響縮減到最小。

  隨著線性結構、杜芬方程式、范德波爾方程式、杜芬─范德波爾方程式及座椅系統等五個數值算例顯示,此方法呈現相當好的精度與效率,且簡單易於使用,未來發展應用的機會極大。


  For structures protection and control, it is utmost to immediately detect the external force being imposed on the structures currently in civil engineering.

  Desiring a real-time recovery of an unknown external force in the nonlinear inverse vibration problem; in this thesis, we transform the nonlinear ordinary differential equation (ODE) of motion into a nonlinear parabolic type partial differential equation (PDE), which can raise the robustness against large noise. Then we come to an unknown external force identification problem, of which the numerical method of lines is used to discretize the governing equation into a system of differential algebraic equations (DAEs) and with the constraints conditions.

  A fictitious time variable transforming the Sturm-Liouville equation into a parabolic type partial differential equation (PDE) endowed with an extra fictitious time dimension.

  Hence, we can develop an implicit GL(n, ) Lie-group scheme and a Newton algorithm to stably solve the DAEs for finding the unknown force, damping function, or stiffness function, which is well recovered even under a large noise.

  Obviously, we transform a simple ODE into a more complex PDE; however, the merits obtained in this transformation will be seen, when we examine some nonlinear inverse vibration problems with large time span and under large noise. We can alleviate the influence of noise, which is only happened at the first and the last line equations among the many 2m equations.The estimated results obtained by the novel methods are quite promising.


誌謝 I
摘要 III
ABSTRACT V
目錄 VII
圖目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 論文架構 5
第二章 理論背景與數值分析方法 7
2.1 群 7
2.1.1 群的歷史 8
2.1.2 群的定義 9
2.1.3 李群與李代數 10
2.2 數值分析方法 12
2.2.1 微分方程中的 結構 14
2.2.2 隱格式李群 法 16
2.2.3 牛頓法求解非線性代數方程 20
2.2.4 數值計算流程圖 21
第三章 化為偏微分方程的李群微分代數即時估測方法 23
3.1 ODE轉換成 PDE 23
3.2 有限差分線法 26
3.3 李群微分代數方程(LGDAE)法 28
3.4 隱格式李群 30
3.5 數值算法 33
第四章 數值算例 37
4.1 算例一 Linear 37
4.1.1 計算量測位移無噪音影響下之外力 38
4.1.2 計算當量測位移具有噪音影響下之外力 40
4.2 算例二 Duffing oscillator 44
4.2.1 計算量測位移無噪音影響下之外力 45
4.2.2 計算當量測位移具有噪音影響下之外力 48
4.3 算例三 Van der Pol Oscillator 58
4.3.1 計算量測位移無噪音影響下之外力 59
4.3.2 計算當量測位移具有噪音影響下之外力 61
4.4 算例四 Duffing-Van der Pol Oscillator 65
4.4.1 計算量測位移無噪音影響下之外力 66
4.4.2 計算當量測位移具有噪音影響下之外力 68
4.5 算例五 座椅 73
4.5.1 計算量測位移無噪音影響下之外力 75
4.5.2 計算當量測位移具有噪音影響下之外力 78
第五章 結語與未來展望 87
5.1 結語 87
5.2 未來展望 89
參考文獻 90



[1]Adhikari, S., Woodhouse, J.: Identification of damping: part 1, viscous damping. Journal of Sound and Vibration 243, 43-61 (2001)
[2]Adhikari, S., Woodhouse, J.: Identification of damping: part 2, non-viscous damping. Journal of Sound and Vibration 243, 63-88 (2001)
[3]Crawley, E. F., Aubert, A. C.: Identification of nonlinea structural elements by force-state mapping. AIAA Journal 24, 155-162 (1986)
[4]Crawley, E. F., O''Donnell, J. J.: Identification of nonline system parameters in joints using the force-state mapping technique. AIAA Paper 86-1013 (1986)
[5]Chen, Y. W.: Application of the characteristic time expansion method for estimating nonlinear restoring forces. Journal of Applied Mathematics 2013, ID 841690, 13 pages (2013)
[6]Duym, S., Schoukens, J., Guillaume, P.: A local restoring force surface method. International Journal of Analytical an Experimental Modal Analysis 11, 116-132 (1996)
[7]Feldman, M.: Consider high harmonics for identification of non-linear systems by Hilbert transform. Mechanical Systems and Signal Processing 21, 943-958 (2007)
[8]Fern’andez, F. M.: Comment on ''solution of the Duffing-van der Pol oscillator equation by a differential transform method''. Physica Scripta 84, 037002 (2011)
[9]Gladwell, G.M.L.: Inverse problem in vibration. Kluwer Academic Publishers, Netherlands (1986)
[10]Gladwell, G.M.L., Movahhedy, M.: Reconstruction of a mass-spring system from spectral data I: Theory. Inverse Problems in Engineering 1, 179-189 (1995)
[11]Hosseini M.M.: Adomian decomposition method for solution of nonlinear differential algebraic equations. Applied Mathematics and Computation 181, 1737-1744 (2006)
[12]Huang, C.H.: A non-linear inverse vibration problem of estimating the time-dependent stiffness coefficients by conjugate gradient method. International Journal for Numerical Methods in Engineering 50, 1545-1558 (2001)
[13]Huang, C.H.: A generalized inverse force vibration problem for simultaneously estimating the time-dependent external forces. Applied Mathematical Modelling 29, 1022-1039 (2005)
[14]Ingman, D., Suzdalnitsky, J.: Iteration method for equation of viscoelastic motion with fractional differential operator of damping. Computer Methods in Applied Mechanics and Engineering 190, 5027-5036 (2001)
[15]Kerschen, G., Worden, K., Vakakis, A. F., Golinval, J.C.: Past, present and future of nonlinear system identification in structural dynamics. Mechanical Systems and Signal Processing 20, 505-592 (2006)
[16]Kunkel P., Mehrmann V.: Differential-algebraic Equations: Analysis and Numerical Solution. European Mathematical Society (2006)
[17]Lancaster P., Maroulas J.: Inverse eigenvalue problems for damped vibrating systems. Journal of Mathematical Analysis and Applications 123, 238-261 (1987)
[18]Liang, J.W., Feeny, B.F. Balancing energy to estimate damping parameters in forced oscillator. Journal of Sound and Vibration 295, 988-998 (2005)
[19]Liu, C.-S.: Cone of non-linear dynamical system and group preserving schemes. International Journal of Non-Linear Mechanics 36, 1047-1068 (2001)
[20]Liu, C.-S.: The Lie-group shooting method for nonlinear two-point boundary value problems exhibiting multiple solutions. CMES: Computer Modeling in Engineering & Sciences 13, 149-163 (2006)
[21]Liu, C.-S.: New integrating methods for time-varying linear systems and Lie-group computations. CMES: Computer Modeling in Engineering & Sciences 20, 157-175 (2007)
[22]Liu, C.-S.: Identifying time-dependent damping and stiffness functions by a simple and yet accurate method. Journal of Sound and Vibration 318, 148-165 (2008)
[23]Liu, C.-S.: A Lie-group shooting method for simultaneously estimating the time-dependent damping and stiffness coefficients. CMES: Computer Modeling in Engineering & Sciences 27, 137-149 (2008)
[24]Liu, C.-S.: Solving an inverse Sturm-Liouville problem by a Lie-group method. Boundary Value Problems 2008, Article ID 749865, 18 pages (2008)
[25]Liu, C.-S.: A method of Lie-symmetry for solving non-linear dynamical systems. International Journal of Non-Linear Mechanics 52, 85-95 (2013)
[26]Liu, C.-S.: A state feedback controller used to solve an ill-posed linear system by a iterative algorithm. Communication of Numerical Analysis, vol. 2013, Article ID cna-00181, 22 pages.
[27]Liu, C.-S.: Solving nonlinear differnetial algebraic equations by an implicit Lie-group method. Journal of Applied Mathematics 2013, ID 987905, 8 pages (2013)

[28]Liu, C.-S.: A new sliding control strategy for nonlinear system solved by the Lie-group differential algebraic equation method. Communications in Nonlinear Science and Numerical Simulation 19, 2012-2038 (2014)
[29]Liu, C.-S.: An iterative method for solving nonlinear inverse vibration problems. Nonlinear Dynamics 74, 685-699 (2014)
[30]Liu, C.-S.: An LGDAE method to solve nonlinear Cauchy problem without initial temperature. CMES: Computer Modeling in Engineering & Sciences 99, 371-391 (2014)
[31]Liu, C.-S.: On-line detecting heat source of a nonlinear heat conduction equation by a differential algebraic equation method. International Journal Heat and Mass Transfer 76, 153-161 (2014)
[32]Liu, C.-S.: Lie-group differential algebraic equations method to recover heat source in a Cauchy problem with analytic continuation data. International Journal Heat and Mass Transfer 76, 153-161 (2014)
[33]Liu, C.-S., Chang, J.R., Chang, K.H., Chen, Y.W.: Simultaneously estimating the time-dependent damping and stiffness coefficients with the aid of vibrational data. CMC: Computers, Materials & Continua 7, 97-107 (2008)
[34]Ma, C.K., Tuan, P.C., Lin, D.C.: A study of inverse method for the estimation of impulse loads. International Journal of System Science 29, 663-672 (1998)
[35]Ma, C.K., Tuan, P.C., Chang, J.M., Lin, D.C.: Adaptive weighting inverse method for the estimation of input loads. International Journal of System Science 34, 181-194 (2003)
[36]Masri, S. F., Chassiakos, A. G., Caughey, T. K.: Identification of nonlinear dynamic systems using neural networks. Journa of Applied Mechanics 60, 123-133 (1993)
[37]Mukherjee, S., Roy, B., Dutta, S.: Solution of the Duffing-van der Pol oscillator equation by a differential transform method. Physica Scripta 83, 015006 (2011)
[38]Namdeo, V., Manohar, C. S.: Force state maps using reproducing kernel particle method and Kriging based functional representations. CMES: Computer Modeling in Engineering & Sciences 32, 123-159 (2008)
[39]Sand, J.: On implicit Euler for high-order high-index DAEs. Applied Numerical Mathematics 42, 411-424 (2002)
[40]Soltanian F., Karbassi S.M., Hosseini, M.M.: Application of He''s variational iterative method for solution of differential-algebraic equations. Chaos Solitons & Fractals 41, 436-445 (2009)
[41]Starek L., Inman, D.J.: On the inverse vibration problem with rigid-body modes. ASME Journal of Applied Mechanics 58, 1101-1104 (1991)
[42]Starek L., Inman, D.J.: A symmetric inverse vibration problem with overdamped modes. Journal of Sound and Vibration 181, 893-903 (1995)
[43]Starek L., Inman, D.J.: A symmetric inverse vibration problem for nonproportional underdamped systems. ASME Journal of Applied Mechanics 64, 601-605 (1997)
[44]Starek L., Inman, D.J., Kress, A.: A symmetric inverse vibration problem. ASME Journal of Vibration and Acoustics 114, 565-568 (1992)
[45]Wu, A.L., Loh, C.H., Yang, J.N.: Input force identification: application to soil-pile interaction. Journal of Structural Control and Health Monitoring 16, 223-240 (2009)
[46]Wei, L., Griffin, J.: The prediction of seat transmissibility from measures of seat impedance. Journal of Sound and Vibration 214, 121-137 (1998)
[47]謝馥亘:應用特徵時間展開法鑑別非線性工程問題之恢復力,國立台灣海洋大學碩士論文。(2012)
[48]陳柏穎:利用李群微分代數方程法即時重建作用於非線性結構之外力,國立台灣大學碩士論文。(2014)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 江振昌(2006)。〈中國步入風險社會與政府管理轉型-以SARS事件為例〉,《中國大陸研究》,49(2):45-67。
2. 汪子錫(2004)。〈對中共中宣部壓制大眾傳媒之探討〉,《中共研究》,38(8):66-81。
3. 吳行健(2001)。〈專訪馬里蘭大學教授古魯尼 企業危機處理仰賴卓越公關〉,《管理雜誌》,324:28-32。
4. 吳宜蓁(2004)。〈SARS風暴的危機溝通與現階段宣傳策略檢視:以台灣政府為例〉,《遠景基金會季刊》,5(4):107-148。
5. 吳宜蓁(2000)。〈危機溝通策略與媒體效能之模式建構-關於腸病毒風暴的個案研究〉,《新聞學研究》,62:1-34。
6. 金溥聰(1997)。〈報紙的形象設定效果研究:以民國八十三年台北市市長選舉 為例〉,《新聞學研究》,55:203-223。
7. 柯惠新、劉來、朱川燕、陳洲、南雋(2005)。〈兩岸三地報紙災難事件報導研究-以台灣921地震報導為例〉,《新聞學研究》,85:71-109。
8. 徐美苓(1999)。〈關懷在愛滋蔓延的時代裡-閱聽人對宣導廣告的接受度研究〉,《新聞學研究》,61:31-72。
9. 孫秀蕙(1996)。〈公關人員與媒體之間的互動模式對於議題管理策略的啟示-以非營利性的弱勢團體為例〉,《廣告學研究》,8:153-173。
10. 黃浩榮(2003)。〈風險社會下的大眾媒體:公共新聞學作為重構策略〉,《國家發展研究》,3(1):99-147。
11. 鄭宇君(2003)。〈從社會脈絡解析科學新聞的產製─以基因新聞為例〉,《新聞學研究》,74:121-147。
12. 蔡琰、臧國仁(1999)。〈新聞敘事結構:再現故事的理論分析〉,《新聞學研究》,58:1-28。
13. 羅文坤(1998)。〈媒體對企業形象之影響〉,《民意研究季刊》,205:41-66。
14. 顧忠華(2003)。〈風險社會中的風險治理-SARS事件的啟示〉,《當代》,194:54-61。
 
無相關點閱論文