跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/01 17:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳愷毅
研究生(外文):Kai-Yi Wu
論文名稱:玻璃纖維包覆螺紋管圍束鋼筋混凝土圓柱耐震實驗
論文名稱(外文):Seismic Tests of Circular Reinforced Concrete Columns Confined with a Spiral Corrugated Tube and Glass Fiber Reinforced Polymer (GFRP) Materials
指導教授:周中哲
指導教授(外文):Chung-Che Chou
口試委員:王仲宇歐昱辰黃世建
口試日期:2015-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:164
中文關鍵詞:複合材料圍束混凝土複合材料圍束鋼筋混凝土柱力量-位移函數
外文關鍵詞:GFRPConfined concreteRC columnsLoad-displacement analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
This thesis has studied the seismic behavior of FRP-Wrapped Spiral Corrugated Tube (FWSCT) confined circular reinforced concrete columns. In order to analyze the behavior of FWSCT confined reinforced concrete columns under axial load and lateral hysteric load, a load-displacement program was written and compiled in VBA developed by the author. With use of this program, the section response of circular concrete columns confined by two types of materials tube can be modeled. Finally, the load-displacement curve can be obtained by the moment -curvature curve and a suitable plastic hinge length. The analysis theories are from Lee (2006) & Tan (2014).
Three specimens were built to test the performance of FWSCT confined reinforced concrete columns. One control specimen (only spiral corrugated tube confined, FWSCT-0) and two FWSCT confined reinforced concrete columns with 5 layers (FWSCT-5) and 8 layers (FWSCT-8) of GFRP were test under constant axial load and lateral reverse cyclic load in NCREE conducted by MATS. Two FRP-wrapped spiral corrugated tubes were made in Jubei, Taiwan, and got good quality. Test results showed that specimens FWSCT-0 suffered shear failure, while specimens FWSCT-5 & FWSCT-8 suffered longitudinal steel rupture with story drift up to 8%. It was found that the plastic hinge location was different from past research. After calibrated the experimental data and studied the effects of the plastic hinge position and length, the author found a reasonable way to explain the unusual results and can deal with the problems. Finally the analysis results have good correlation with the test result.


口試委員會審定書 i
致謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
表目錄 ix
圖目錄 x
照片目錄 xiii
第一章 緒論 1
1.1 研究動機 2
1.2 研究目的 2
第二章 文獻回顧 3
2.1 複合材料管-平滑鋼管圍束混凝土軸壓行為 3
2.2 玻璃纖維加勁金屬螺紋管與圍束混凝土行為 4
2.3 一般鋼筋混凝土柱 7
2.4 一般複合材料圍束鋼筋混凝土柱 8
2.5 鋼筋混凝土柱塑性鉸長度 10
第三章 試體設計與規劃 14
3.1 前言 14
3.2 分析程式 14
3.2.1 柱體資訊與材料 15
3.2.2 螺紋管圍束混凝土模型 15
3.2.3 彎矩-曲率 17
3.2.4 力量-位移 20
3.2.5 極限位移點 22
3.2.6 殘餘剪力模型(Residual Shear Model) 23
3.3 試體規劃 24
3.3.1 試體尺寸 25
3.3.2 混凝土 26
3.3.3 鋼筋 26
3.3.4 旋楞鋼管 26
3.3.5 玻璃纖維及樹酯材料 27
3.4 設計強度之檢核 27
3.4.1 韌性容量計算方法 28
3.4.2 剪力強度計算方法 29
3.4.3 基礎剪力與撓曲強度檢核 33
3.5 試體製作 34
3.5.1 包覆玻璃纖維布 34
3.5.2 鋼筋加工 35
3.5.3 鋼筋籠綁紮及組立 35
3.5.4 澆置試體 35
3.5.5 鋼筋應變計黏貼 36
3.6 測試系統 36
3.6.1 系統介紹 36
3.6.2 載重平台 37
3.6.3 反力梁 37
3.6.4 施力系統 38
3.7 量測系統 38
3.7.1 內部量測 38
3.7.2 外部量測 39
3.8 測試流程 40
第四章 試驗結果 42
4.1 試驗結果 42
4.1.1 材料試驗 42
4.1.2 FWSCT-0 43
4.1.3 FWSCT-5 44
4.1.4 FWSCT-8 47
4.2 綜合比較 50
4.2.1 複合材料橫向應變比較 50
4.2.2 彈性勁度、韌性與正規化 52
4.2.3 系統消能與等效阻尼比 53
4.3 分析結果 54
4.3.1 塑鉸長度與位置 55
4.3.2 外管軸向效應之修正 57
4.3.3 殘餘剪力模型的修正 58
4.3.4 分析結果與比較 58
4.3.5 設計流程 60
第五章 結論與建議 62
5.1 結論 62
5.2 建議與展望 64
參考資料 65
附錄A 153
程式操作過程 153
複合材料沿柱高的曲率分布 157
軸向鋼筋的實驗數據篩選 158
軸向鋼筋沿柱高的曲率分布 160
附錄B試體鋼筋配置圖 161
頂部基礎斷面配筋圖 162
底部基礎斷面配筋圖 163
圓形柱式體尺寸圖 164



1.AASHTO, 2002: “Standard Specifications for Highway Bridges”, 17th Edition, Published by the American Association of State Highway and Transportation Officials, Washington D.C.
2.ACI 318 Committee. (2011). Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary. Farmington Hills.
3.ACI-440. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. Reported by ACI Committee. 2008; 440(2008).
4.Bae, S., & Bayrak, O. (2008). Plastic hinge length of reinforced concrete columns. ACI Structural Journal, 105(3).
5.Committee A. Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary. American Concrete Institute 2011.
6.Chou, C. C., & Chen, Y. C. (2006). Cyclic tests of post‐tensioned precast CFT segmental bridge columns with unbonded strands. Earthquake engineering & structural dynamics, 35(2), 159-175.
7.Chou, C. C., Lee, C. S., Tan, H. H., Wu, K.Y. (2014a). “FRP composite wrapped Grooved-wall lining tubular structure, and method of manufacturing.“ U.S. Patent Application No. 14/272375. (under review)
8.Chou, C. C., Lee, C. S., Tan, H. H., Wu, K.Y. (2014b). “FRP composite wrapped Grooved-wall lining tubular structure, and method of manufacturing.“ Korean patent application No. 10-2014-0071938. (under review)
9.Desprez, C., Mazars, J., Kotronis, P., & Paultre, P. (2013). Damage model for FRP-confined concrete columns under cyclic loading. Engineering Structures,48, 519-531.
10.Ghee, A. B., Priestley, M. N., & Paulay, T. (1989). Seismic shear strength of circular reinforced concrete columns. ACI Structural Journal, 86(1).
11.Gu, D. S., Wu, Y. F., Wu, G., & Wu, Z. S. (2012). Plastic hinge analysis of FRP confined circular concrete columns. Construction and Building Materials,27(1), 223-233.
12.Innamorato, D., Seible, F., Hegemier, G. A., and Priestley, M. J. N., “Carbon Shell Jacket Retrofit Test of a Circular Shear Column with 2.5% Reinforcement,” Report No. ACTT-95/19, UCSD, November 1995.
13.Kowalsky, M. J., & Priestley, M. N. (2000). Improved analytical model for shear strength of circular reinforced concrete columns in seismic regions. ACI Structural Journal, 97(3).
14.Lee, C. S. (2006). Modeling of FRP-jacketed RC columns subject to combined axial and lateral loads.
15.Lee, J. H., & KO SH, C. J. H. (2004). Shear strength and capacity protection of RC bridge columns. In Proceedings of ANCER Annual Meeting-networking of Young Earthquake Engineering Researchers and Professionals. Honolulu: Asian Pacific Network of Centers for Earthquake Engineering Research (pp. 156-167).
16.Liu, J. (2013). Seismic behaviour of reinforced concrete columns (Doctoral dissertation, University of Toronto).
17.Lu, Y., Gu, X., & Guan, J. (2005). Probabilistic drift limits and performance evaluation of reinforced concrete columns. Journal of Structural Engineering,131(6), 966-978.
18.Mortezaei, A., & Ronagh, H. R. (2012). Plastic hinge length of FRP strengthened reinforced concrete columns subjected to both far-fault and near-fault ground motions. Scientia Iranica, 19(6), 1365-1378.
19.Priestley, M. J. N., & Park, R. (1987). Strength and ductility of concrete bridge columns under seismic loading. ACI Structural Journal, 84(1).
20.Priestley, M. N., Seible, F., & Calvi, G. M. (1996). Seismic design and retrofit of bridges. John Wiley & Sons.
21.Seible, F., Hegemier, G. A., Priestley, M. J. N., and Innamorato, D., “Fiberglass Shell Jacket Retrofit Test of a Circular Shear Column with 2.5% Reinforcement,” Report No. ACTT-95/13, UCSD, October 1995.
22.Seible, F., Priestley, M. N., Hegemier, G. A., & Innamorato, D. (1997). Seismic retrofit of RC columns with continuous carbon fiber jackets. Journal of composites for construction, 1(2), 52-62.
23.Sheikh, S. A., & Yau, G. (2002). Seismic behavior of concrete columns confined with steel and fiber-reinforced polymers. ACI Structural Journal, 99(1).
24.Shi, Y., Li, B., & Mirmiran, A. (2007). SEISMIC PERFORMANCE OF HYBRID FRP-CONCRETE PIER COLUMNS.
25.Standard, A. S. T. M. (1995). Standard test method for tensile properties of polymer matrix composite materials. ASTM D3039/D 3039M.
26.Wang, Z. Y., Wang, D. Y., Sheikh, S. A., & Liu, J. T. (2011). Seismic Performance of FRP-Confined Circular RC Columns. In Advances in FRP Composites in Civil Engineering (pp. 810-814). Springer Berlin Heidelberg.
27.Xiao, Y., & Ma, R. (1997). Seismic retrofit of RC circular columns using prefabricated composite jacketing. Journal of structural engineering, 123(10), 1357-1364.
28.Yu, T., & Teng, J. G. (2012). Behavior of hybrid FRP-Concrete-Steel double-skin tubular columns with a square outer tube and a circular inner tube subjected to axial compression. Journal of Composites for Construction, 17(2), 271-279.
29.周中哲,李中生,譚晧祥,吳愷毅(2014a),「用於支撐結構的複合管及其製法」,中華民國發明專利審核中(案號 102145218,財團法人國家實驗研究院申請)
30.周中哲,李中生,譚晧祥,吳愷毅(2014b),「用於支撐結構的複合管及其製法」,中國發明專利審核中(案號 201410066541.4,財團法人國家實驗研究院申請)
31.李中生,吳愷毅、周中哲 (2014),「複合材料包覆鋼筋混凝土柱之力量-位移反應分析」,中華民國第十二屆結構工程研討會暨第二屆地震工程研討會,高雄。
32.朱育正,「碳纖維複合材料 (CFRP) 於圓形橋柱耐震補強之研究」,碩士論文,國立臺北科技大學土木與防災研究所,台北,民國89年。
33.李有豐,宋奕穎,朱育正 (2001),「RC橋柱之CFRP補強成效驗證-圓形柱」,RC 結構物以 CFRP 補強設計導則及案例說明之研究與成果推廣研討會論文集。
34.廖苑儀,「普通強度鋼筋混凝土柱耐震圍束之研究」,碩士論文,國立臺灣大學土木工程學系,台北,民國104年。
35.譚晧祥,「玻璃纖維加進金屬螺紋管包覆混凝土柱之軸壓試驗與力學行為研究」,碩士論文,國立臺灣大學土木工程學系,台北,民國104年。
36.譚晧祥,李中生,周中哲 (2014),「以側向應變量為分析基礎之複合材料圍束混凝土受壓模型」,中華民國第十二屆結構工程研討會暨第二屆地震工程研討會,高雄。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top