跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 07:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪啟耀
研究生(外文):Chi-Yao HUNG
論文名稱:顆粒流對邊界磨損行為之研究:以實驗與理論
論文名稱(外文):Boundary erosion by granular flow: Experiments and theory
指導教授:卡艾瑋
指導教授(外文):Hervé Capart
口試委員:吳富春葛宇甯陳樹群周憲德楊馥菱李黎明Colin P. Stark
口試委員(外文):Lliming Li
口試日期:2015-06-11
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:182
中文關鍵詞:動能方程式深度積分方程式尺度分析地工離心機實驗
外文關鍵詞:kinetic energydepth-averaged equationscaling analysiscentrifuge experiments
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對顆粒流流經鬆軟堆積層造成淘刷及流經堅硬岩盤造成側向磨損的行為進行探討。對於鬆軟堆積層的淘刷,以兩種不同的實驗及理論進行比較驗證。理論方面,本研究以質量、動量方程式作為基礎,並使用動能方程式取代常見的侵蝕方程式作為第三條方程式,再使用深度積分簡化其方程式作為本研究之控制方程式。在實驗方面,分為長渠道實驗及滾筒實驗,實驗上皆以粒子影像分析方法記錄其流場。針對長渠道,以非穩態均勻流的假設簡化理論,並與長渠道實驗結果進行比較,其結果相當吻合。再以滾筒實驗進行穩態非均勻流之實驗,以理論驗證之。實驗結果與理論符合,並經由理論進行尺度分析,發現顆粒於滾筒內之運動行為可由一簡單無因次參數(En)控制。同時經由比較實驗與理論,可得出顆粒在滾筒內之運動模式存在兩值域,並由動能消散項控制其變化反應,根據理論推導後,與實驗結果一致。而關於顆粒流對於堅硬岩盤的磨損,因本研究以小尺度的實驗進行,為避免應力尺度的非線性變化,本研究以小尺度的實驗搭配地工離心機進行。利用地工離心機提升應力大小後,即可使用與現地尺度應力大小相同之材料進行岩盤磨損實驗,並透過三維攝影投影方式記錄其磨損變化。本研究再提出一簡化的磨損模式,以能量變化正比於磨損量之關係根據顆粒速度場計算其磨損量。最後,將模式預估的結果與實驗相比較,其結果成功預測了在局部的磨損形貌及整體的磨損量值。

Granular avalanches flowing over loose beds evolve by gaining or losing grains through their basal boundary as stress and velocity change within the sheared layer. Kinetic energy dissipation results from internal dissipation and wall abrasion. By understanding the wall abrasion behavior, it is possible to build a bed rock erosion law. In this study both theory and experimental results are used to further understanding of granular avalanches and bed rock erosion. Experiments are performed in a vertical rotating drum which has a synthetic rock sample embedded into the wall and is used to simulate long period, steady bedrock erosion behavior. Through theory, we develop new depth-averaged equations assuming conservation of kinetic energy, mass and momentum to capture the flow process. For steady flows in rotating drums, we deduce two asymptotic regimes governed by a single dimensionless number, the Entrainment number, which controls flow geometry in the drum. Theoretical analysis is used to develop experimental design. Granular shear stress is scaled up by performing the experiments under enhanced gravity conditions in a geotechnical centrifuge. The velocity field are measured and compared with theoretical results. Through theory and the experiment observation, we develop an erosion model based on the kinetic energy exchanges. The proposed erosion model can be applied to both local erosion patterns and global erosion rates.

Abstract
摘要
Table of Contents
Chapter 1 Introduction
Motivation ………………………………………………………………1
Review and preview ……………………………………………………6
Chapter 2 Experimental design and material properties
Experimental design …………………………………………………..11
Material properties ………………………………………………………..15
Chapter 3 Heap flow
Theory …………………………………………………………………..23
Exact solution for equilibrium heap flow ……………………………..24
Depth-integrated equation ……………………………………………..28
Application to heap flow ……………………………………………..30
Experimental setup ………………………………………………………..33
Experimental measurement ……………………………………………..35
Experimental procedure …………………………………………………..36
Experimental results …………………………………………………..37
Experimental comparison ……………………………………………..63
Chapter 4 Drum flow
Theory for drum flow …………………………………………………..67
Experimental measurement ……………………………………………..73
Experimental results …………………………………………………..78
Compare the theory with the experiments ……………………………..88
Asymptotic behavior …………………………………………………..93
Chapter 5 Coriolis effects
Modified model ………………………………………………………103
Modified integral equation ……………………………………………105
Modified depth-averaged equation ………………………………………107
Experimental setup ………………………………………………………111
Experimental results …………………………………………………114
Experimental comparison ……………………………………………125
Chapter 6 Erosion experiments
Erosion plate properties …………………………………………………129
Experimental measurement ……………………………………………136
Experimental procedure …………………………………………………138
First series run of experiments ………………………………………142
Second series run of experiments ………………………………………..144
Chapter 7 Conclusion and future work
Conclusion ……………………………………………………………175
Future work ……………………………………………………………176
References



Adrian, R.J. (1991): Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech., Vol. 23, pp. 261–304.
Ahn, H., Brennen, C.E., and Sabersky, R.H. (1991): Measurements of velocity, velocity fluctuation, density, and stresses in chute flows of granular materials. Transactions of the ASME, Vol. 58, pp. 792-803.
Archard, J.F. (1953): Contact and Rubbing of Flat Surface. J. Appl. Phis. 24 (8), pp. 981–988. doi:10.1063/1.1721448
Azanza, E., Chevoir, F., and Moucheront, P. (1999): Experimental study of collisional granular flows down an inclined plane. Journal of Fluid Mech., Vol. 400, pp. 199-227.
Boateng, A.A., (1998): Boundary layer modeling of granular flow in the transverse plane of a partially filled rotating cylinder. Int. Journal of Multiphase Flow, Vol. 24(3), pp. 499-521.
Berzi, D., and Jenkins, J.T. (2008): A theoretical analysis of free-surface flows of saturated granular-liquid mixtures. Journal of Fluid Mech., Vol. 608, pp. 393-410.
Brucks, A., Arndt, T., Ottino, J.M., and Lueptow, R.M. (2007): Behavior of flowing granular materials under variable g. Physical Review E, Vol. 75, pp. 032301.
Buchholtz, V., and Pöschel, T. (1997): Force distribution and comminution in ball mills. In D.E. Wolf, P. Grassberger (eds.), Friction, Arching, Contact Dynamics, World Scientific (Singapore, 1997), pp. 265-273.
Chien, F.-C., and Kuo, H.-C. (2011): On the extreme rainfall of Typhoon Morakot (2009). Journal of Geophysical Research, Vol. 116, pp. D05104, doi:10.1029/2010JD015092.
Capart, H., Young, D.L., and Zech, Y. (2002): Voronoi imaging methods for the measurement of granular flows. Experiments in Fluids, Vol. 32, pp. 121–135.
Chou, H. T., Lee, C. F., Chung, Y. C. & Hsiau, S. S. (2012): Discrete element modelling and experimental validation for the falling process of dry granular steps. Powder Tech. 231, pp.122-134.
Da Cruz, F., Emam, S., Prochnow, M., Roux, J.N., and Chevoir, F. (2005): Rheophysics of dense granular materials: Discrete simulation of plane shear flows. Phys. Review E, Vol. 72, pp. 021309.
Ding, Y.L., Seville, J.P.K., Forster, R., and Parker, D.J. (2001): Solids motion in rolling mode rotating drums operated at low to medium rotational speeds. Chemical Engineering Science, Vol. 56, pp. 1769-1780.
Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L. and Carbonneau, P. E. (2013): Topographic structure from motion: A new development in photogrammetric measurement. Earth Surface Processes and Landforms, Vol. 38, pp. 421–430. doi: 10.1002/esp.3366.
Forterre, Y. and Pouliquen, O. (2008): Flows of dense granular media. Annual Review of Fluid Mechanics, Vol. 40, pp. 1-24.
GDR Midi (2004): On dense granular flows. European Physical Journal E, Vol. 14, pp. 341-365.
Gray, J. M. N. T. (2001): Granular flow in partially filled slowly rotating drums. J. Fluid Mech. 441, pp.1-29.
Gray, J. M. N. T. and Edwards, A. N. (2014): A depth-averaged m(I)-rheology for shallow granular free-surface flows. J. Fluid Mech. 755, pp. 503-534.
Henann, D. L. and Kamrin, K. (2013): A predictive, size-dependent continuum model for dense granular flows. Proc. Natl. Acad. Sci. U.S.A. 110, pp. 6730-6735.
Hsu, L., Dietrich, W.E., and Sklar, L.S. (2008): Experimental study of bedrock erosion by granular flows. Jour. Geophysical Research, Vol. 113, pp. F02001 doi:10.1029/2007JF000778.
Hsu, L. (2010): Bedrock erosion by granular flow. Ph.D. thesis, University of California, Berkeley.
Iverson, R.M. (1997): The physics of debris flows. Reviews of Geophysics, Vol. 35(3), pp. 245-296.
Iverson, R. M. (2012): Elementary theory of bed-sediment entrainment by debris flows and avalanches. J. Geophys. Res. 117, F03006.
Jop, P., Forterre, Y., and Pouliquen, O. (2005): Crucial role of sidewalls in dense granular flows: Consequences for the rheology. Journal of Fluid Mech., Vol. 541, pp. 167-192.
Jop, P., Forterre, Y. & Pouliquen, O. (2007): Initiation of granular surface flows in a narrow channel. Phys. Fluids 19, 088102.
Kamrin, K. (2010): Nonlinear elasto-plastic model for dense granular flow. Int. J. Plasticity 26, pp.167-188.
Komatsu, T. S., Inagaki, S., Nakagawa, N. & Nasuno, S. (2001): Creep motion in a granular pile exhibiting steady surface flow. Phys. Rev. Lett. 86, pp. 1757-1760.
Lagrée, P.-Y., Staron, L. & Popinet, S. (2011): The granular column collapse as a continuum:validity of a two-dimensional Navier{Stokes model with a m(I)-rheology. J. Fluid Mech. 686, pp.378-408.
Lê, L. & Pitman, E. B. (2010): A model for granular flows over an erodible surface. SIAM J. Appl. Math. 70, pp.1407-1427.
Liggett, J. A. 1994 Fluid Mechanics. New York: McGraw-Hill.
Lube, G., Huppert, H. E., Sparks, R. S. & Freundt, A. (2007): Static and flowing regions in granular collapses down channels. Phys. Fluids 19, 043301.
Major, J. J. (1997): Depositional processes in large-scale debris-flow experiments. Journal of Geology, Vol. 105, pp. 345-366, doi:10.1086/515930.
Mangeney, A., Roche, O., Hungr, O., Mangold, N., Faccanoni, G. & Lucas, A. (2010): Erosion and mobility in granular collapse over sloping beds. J. Geophys. Res. 115, F03040.
Meng H.C. and Ludema K.C. (1995): Wear models and predictive equations: their form and content, Wear 181–183, pp. 443–457.
Ni, W. J. (2005): Groundwater drainage and recharge by geomorphically active gullies. MSc thesis, Department of Civil Engineering, National Taiwan University.
Parsons, J.D., Whipple, K.X., and Simoni, A. (2001): Experimental study of the grain-flow, fluid-mud transition in debris flows. Journal of Geology, Vol. 109, pp. 427-447.
Richard, G. L. & Gavrilyuk, S. L. (2013): The classical hydraulic jump in a model of shear shallow-water flows. J. Fluid Mech. 725, pp. 492-521.
Ristow, G.H. (1996): Dynamics of granular materials in a rotating drum. Europhysics Letters, Vol. 34(4), pp. 263-268.
Siggia,E. D. (1994): High Rayleigh number convection. Annu. Rev. Fluid Mech. 26, pp. 137–168
Savage, S.B. (1984): The mechanics of rapid granular flows. Advances in Applied Mechanics, Vol. 24, pp. 290-365.
Smith, B., Kaufman, D.M., Vouga, E., Tamstorf, R., and Grinspun, E. (2012): Reflections on simultaneous impact. ACM Transactions on Graphics, Vol. 31(4), pp. 106:1–106:12.
Steffler, P. M. and Jin, Y.-C. (1993): Depth averaged and moment equations for moderately shallow free surface flow. J. Hydr. Res. 31, pp. 5-17.
Taberlet, N., Richard, P., Valance, A., Losert, W., Pasini, J. M., Jenkins, J. T. and Delannay, R. (2003): Superstable granular heap in a thin channel. Phys. Rev. Lett. 91, 264301.
Tai, Y. C. & Kuo, C. Y. (2008): A new model of granular flows over general topography with erosion and deposition. Acta Mech. 199, pp. 71-96.
Takahashi, T. (1991): Debris Flow. Amsterdam: IAHR/Balkema.
Tsubaki, T., Hashimoto, H. & Suetsugi, T. (1982): Grain stresses and flow properties of debris flow. Proc. of the Japan Society of Civil Engineers 317, pp. 79-91
Verhoeven, G. (2011): Taking computer vision aloft-archaeological three-dimensional reconstructions from aerial photographs with Photoscan. Archaeol. Prospect., Vol. 18, pp. 67–73. doi: 10.1002/arp.399.
Xie, B. and Zhang, F. (2012): Impacts of typhoon track and island topography on the heavy rainfalls in Taiwan associated with Morakot (2009). Monthly Weather Review, Vol. 140, pp. 3379–3394. doi: 10.1175/MWR-D-11-00240.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top