跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/01 12:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾秉宸
研究生(外文):Bing-Chen Jhong
論文名稱:支持向量機於颱洪時期雨量及淹水預報之研究
論文名稱(外文):Typhoon Rainfall and Inundation Forecasting Using Support Vector Machines
指導教授:林國峰林國峰引用關係
指導教授(外文):Gwo-Fong Lin
口試委員:賴進松陳明杰林文欽李方中
口試委員(外文):Jihn-sung Lai
口試日期:2015-07-21
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:103
中文關鍵詞:支持向量機小時颱風雨量預報淹水預報淹水地圖災害預警系統
外文關鍵詞:Support vector machineHourly typhoon rainfall forecastingInundation forecastingInundation mapDisaster warning system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:93
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
颱風侵襲台灣期間,劇烈降雨常導致嚴重之淹水災害,造成人民生命與財產的損失,因此雨量與淹水預報為預警工作中相當重要的一環。為達到此一目標,本研究應用近年來常被使用之類神經網路─支持向量機,建構預報未來一至六小時之雨量與淹水預報模式。然而,傳統上常使用試誤法來建置類神經網路模式,在使用上不但不方便,也相當耗費時間。此外,過去文獻大多使用支持向量機建立點預報淹水模式,鮮少研究應用支持向量機進行探討未來長延時之區域淹水預報。因此,本論文之目的為發展新型之預報模式以改良傳統雨量與淹水預報模式的缺點,以提升模式效能與表現。本論文內容將分成兩部份展現所提出之模式優點,分別描述如下。
於論文第一部份,本研究提出一個新型颱風雨量預報模式以改善時雨量預報準確性。首先,結合多目標基因演算法與支持向量機以得到最佳輸入項組合。再以最佳輸入項組合為基礎,透過各雨量站之雨量預報值並藉由空間內插方法得到降雨過程之空間特徵。本研究以曾文溪集水區作為實際應用,呈現提出模式的優點,並將提出模式預報結果與傳統支持向量機模式作比較。結果顯示本研究所提出之模式比傳統上所使用之試誤法而建立的模式更具優勢,且能有效改善預報表現。
於論文第二部份,本研究提出一個於颱風期間有效之淹水預報模式以產生未來1至6小時之淹水地圖。首先,選取以7-Eleven便利商店為主之網格作為淹水點,接著以支持向量機為基礎以發展點預報模組,產出各淹水點之未來1至6小時淹水預報值。最後,根據點預報結果與地理資訊,使用支持向量機建置空間延展模組,得到未來1至6小時之淹水空間預報值。本研究以台灣嘉義市作為實際應用以呈現提出模式的優點。其應用結果亦顯示,提出模式不僅可準確預報各點淹水深度,且能產出未來1至6小時準確的淹水地圖。綜上所述,本研究所提出之新型預報模式對於雨量及淹水預報有很大的助益。

Heavy rainfall caused by typhoons frequently result in inundation which frequently leads to loss of human life and property. Typhoon rainfall and inundation forecasting are very important issues in early warning systems. In this thesis, effective rainfall and inundation forecasting models based on the support vector machine (SVM) are proposed. However, the traditional models were established using the trial and error method, which requires much time. Moreover, the conventional SVM-based models are used to produce point forecasts rather than regional forecasts. In this thesis, effective approaches are established to construct forecasting models in rainfall and inundation forecasting. Two parts are conducted herein to demonstrate the superiority of the proposed models.
In the first part of the thesis, a typhoon rainfall forecasting model is proposed to yield 1- to 6-h ahead forecasts of hourly rainfall. First, an input optimization step integrating multi-objective genetic algorithm with SVM is developed to identify the optimal input combinations. Second, based on the forecasted rainfall of each station, the spatial characteristics of the rainfall process are obtained by spatial interpolation. An actual application to the Tsengwen River basin is conducted to demonstrate the advantage of the proposed model. The results show that the proposed model effectively improves the forecasting performance and decreases the negative impact of increasing forecast lead time.
In the second part of the thesis, an effective forecasting model is proposed to yield 1- to 6-h lead time inundation maps for early warning system during typhoons. First, 7-Eleven stores are determined as inundation points for point forecasting. Second, a point forecasting module on the basis of the SVM is developed to yield 1- to 6-h lead time inundation forecasts at each inundation point. Finally, according to the point forecasting results and geographic information, the point forecasts are expanded to the spatial forecasts using the proposed spatial expansion module. An application to Chiayi City, Taiwan, is conducted to demonstrate the superiority of the proposed forecasting model. The results indicate that the proposed model effectively improves the forecasting performance and decreases the negative impact of increasing forecast lead time. Moreover, the proposed model is capable of providing accurate inundation maps for 1- to 6-h lead times. In conclusion, the proposed modeling technique is recommended as an alternative to the conventional model to support the disaster warning systems.

口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract v
Contents vii
List of figures x
List of tables xiii
Chapter 1 Introduction 1
1.1 Motivations 1
1.2 Objectives 4
1.3 Backgrounds and inspiration 5
1.3.1 A real-time forecasting model for the spatial distribution of typhoon rainfall 5
1.3.2 Effective real-time forecasting of inundation maps for early warning system during typhoons 9
1.4 Organization of the thesis 13
Chapter 2 Methodology 14
Chapter 3 A real-time forecasting model for the spatial distribution of typhoon rainfall 18
3.1 The proposed model 18
3.1.1 Objective function 18
3.1.2 Pareto-optimal solutions and fitness values 20
3.1.3 Procedures of the input optimization 22
3.1.4 Inverse distance weighting technique 26
3.2 Application 27
3.2.1 The study area and data 27
3.2.2 Model development 31
3.2.3 Cross validation 32
3.3 Results and discussions 33
3.3.1 The optimal input combinations of the proposed model 33
3.3.2 Performance of the proposed model in the upstream region 39
3.3.3 Performance of the proposed model in the downstream region 43
3.3.4 Spatial characteristics of the rainfall process 48
3.4 Summary 50
Chapter 4 Effective real-time forecasting of inundation maps for early warning systems during typhoons 52
4.1 The proposed forecasting model 52
4.1.1 Determination of inundation points 53
4.1.2 Point forecasting module 54
4.1.3 Spatial expansion module 56
4.2 Application 58
4.2.1 Study area and materials 58
4.2.2 Models for comparison 60
4.2.3 Cross validation and performance criteria 61
4.3 Results and discussions 64
4.3.1 The training results of the proposed forecasting model 64
4.3.2 Performance of the point forecasting module 68
4.3.3 Improvement due to the use of the proposed model instead of the conventional model 71
4.3.4 Evaluation of the forecast accuracy of the inundation maps 75
4.4 Summary 83
Chapter 5 Conclusions 85
Reference 89
Publications 99

Abtew, W., Obeysekera, J., Shih, G., 1993. Spatial analysis for monthly rainfall in south Florida. Water Resources Bulletin 29(2), 179–188.
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000a. Artificial Neural Networks in hydrology, I: Preliminary Concepts. Journal of Hydrologic Engineering, ASCE 5(2), 115–123.
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000b. Artificial Neural Networks in hydrology, II: Hydrological Applications. Journal of Hydrologic Engineering, ASCE 5(2), 124–137.
Bates, P.D., Horritt, M.S., Fewtrell, T.J., 2010. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. Journal of Hydrology 387(1), 33–45.
Bates, P.D., Marks, K.J., Horritt, M.S., 2003. Optimal use of highresolution topographic data in flood inundation models. Hydrological Processes 17, 537–557.
Bengtsson, L., 2007. Tropical cyclones in a warmer climate. WMO Bulletin 56(3), 196–203.
Boniface, K., Ducrocq, V., Jaubert, G., Yan, X., Brousseau, P., Masson, F., Champollion, C., Chery, J., Doerflinger, E., 2009. Impact of high-resolution data assimilation of GPS zenith delay on Mediterranean heavy rainfall forecasting. Annales Geophysicae 27, 2739–2753.
Chang, F.J., Chiang, Y.M., Tsai, M.J., Shieh, M.C., Hsu, K.L., Sorooshian, S., 2014a. Watershed rainfall forecasting using neuro-fuzzy networks with the assimilation of multi-sensor information. Journal of Hydrology 508, 374–384.
Chang, L.C., Shen, H.Y., Chang, F.J., 2014b. Regional flood inundation nowcast using hybrid SOM and dynamic neural networks. Journal of Hydrology 519, 476–489.
Chang, L.C., Shen, H.Y., Wang, Y.F., Huang, J.Y., Lin, Y.T., 2010. Clustering-based hybrid inundation model for forecasting flood inundation depths. Journal of Hydrology 385(1), 257–268.
Chattopadhyay, S., 2007. Feed forward artificial neural network model to predict the average summer monsoon rainfall in India. Acta Geophysica 55(3), 369–382.
Chen, A.S., Hsu, M.H., Teng, W.H., Huang, C.J., Yeh, S.H., Lien, W.Y., 2006. Establishing the database of inundation potential in Taiwan. Natural Hazards 37(1–2), 107–132.
Chen, C.S., Jhong, Y.D., Wu, T.Y., Chen, S.T., 2013a. Typhoon event-based evolutionary fuzzy inference model for flood stage forecasting. Journal of Hydrology 490, 134–143.
Chen, S., Hong, Y., Cao, Q., Kirstetter, P.E., Gourley, J.J., Qi, Y., Zhang, J., Howard, K., Hu, J., Wang, J., 2013b. Performance evaluation of radar and satellite rainfalls for Typhoon Morakot over Taiwan: Are remote-sensing products ready for gauge denial scenario of extreme events?. Journal of Hydrology 506, 4–13.
Chung, C.H., Chiang, Y.M., Chang, F.J., 2012. A spatial neural fuzzy network for estimating pan evaporation at ungauged sites. Hydrology and Earth System Sciences 16(1), 255–266.
Cristianini, N., Shaw-Taylor, J., 2000. An Introduction to Support Vector Machines and other Kernel-Based Learning Methods. Cambridge University Press: New York.
Deb, K., 2001. Multi-objective Optimization Using Evolutionary Algorithms. John Wiley: New York.
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T., 2002. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197.
Deka, P.C., Chandramouli, V., 2009. Fuzzy neural network modeling of reservoir operation. Journal of Water Resources Planning and Management-ASCE 135(1), 5–12.
Diomede, T., Davolio, S., Marsigli, C., Miglietta, M.M., Moscatello, A., Papetti, P., Paccagnella, T., Buzzi, A., Malguzzi, P., 2008. Discharge prediction based on multi-model precipitation forecasts. Meteorology and Atmospheric Physics 101(3–4), 245–265.
Ernst, J., Dewals, B.J., Detrembleur, S., Archambeau, P., Erpicum, S., Pirotton, M., 2010. Micro-scale flood risk analysis based on detailed 2D hydraulic modelling and high resolution geographic data. Natural Hazards 55, 181–209.
Frank, E., Sofia, G., Fattorelli, S., 2012. Effects of topographic data resolution and spatial model resolution on hydraulic and hydro-morphological models for flood risk assessment. Flood Risk Assessment and Management. http://dx.doi.org/10.2495/978-1-84564-646-2/03.
Ganguly, A.R., Bras, R.L., 2003. Distributed quantitative precipitation forecasting (DQPF) using information from radar and numerical weather prediction models. Journal of Hydrometeorology 4(6), 1168–1180.
Giustolisi, O., 2006. Using a multi-objective genetic algorithm for SVM construction. Journal of Hydroinformatics 8(2), 125–139.
Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley: Massachusetts.
Grecu, M., Krajewski, W.F., 2000. Simulation study of the effects of model uncertainty in variational assimilation of radar data on rainfall forecasting. Journal of Hydrology 239(1–4), 85–96.
He, S., Raghavan, S.V., Nguyen, N.S., Liong, S.Y., 2013. Ensemble rainfall forecasting with numerical weather prediction and radar-based nowcasting models. Hydrological Processes 27(11), 1560–1571.
Hong, W.C., 2008. Rainfall Forecasting by Technological Machine Learning Models. Applied Mathematics and Computation 200(1), 41–57.
Hung, N.Q., Babel, M.S., Weesakul, S., Tripathi, N.K., 2009. An artificial neural network model for rainfall forecasting in Bangkok, Thailand. Hydrology and Earth System Sciences 5(1), 183–218.
Lin, G.F., Chen, G.R., Huang, P.Y., 2010. Effective typhoon characteristics and their effects on hourly reservoir inflow forecasting. Advances in Water Resources 33(8), 887–898. http://dx.doi.org/10.1016/j.advwatres.2010.04.016.
Lin, G.F., Chen, G.R., Huang, P.Y., Chou, Y.C., 2009a. Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods. Journal of Hydrology 372(1–4), 17–29. http://dx.doi.org/10.1016/j.jhydrol.2009.03.032.
Lin, G.F., Chen, G.R., Wu, M.C., Chou, Y.C., 2009b. Effective forecasting of hourly typhoon rainfall using support vector machines. Water Resources Research 45(8), W08440. http://dx.doi.org/10.1029/2009WR007911.
Lin, G.F., Chen, L.H., 2005. Application of artificial neural network to typhoon rainfall forecasting. Hydrological Processes 19(9), 1825–1837. http://dx.doi.org/10.1002/hyp.5638.
Lin, G.F., Chou, Y.C., Wu, M.C., 2013a. Typhoon flood forecasting using integrated two-stage support vector machine approach. Journal of Hydrology 486, 334–342. http://dx.doi.org/10.1016/j.jhydrol.2013.02.012.
Lin, G.F., Lin, H.Y., Chou, Y.C., 2013b. Development of a real-time regional-inundation forecasting model for the inundation warning system. Journal of Hydroinformatics 15 (4), 1391–1407.
Lin, G.F., Wu, M.C., 2009. A hybrid neural network model for typhoon-rainfall forecasting. Journal of Hydrology 375(3–4), 450–458. http://dx.doi.org/10.1016/j.jhydrol.2009.06.047.
Liong, S.Y., Sivapragasam, C., 2002. Flood stage forecasting with support vector machines. Journal of The American Water Resources Association 38(1), 173–186.
Liu, G.R., Chao, C.C., Ho, C.Y., 2008. Applying Satellite-Estimated Storm Rotation Speed to Improve Typhoon Rainfall Potential Technique. Weather and Forecasting 23(2), 259–269.
Liu, Y., 2009. Automatic calibration of a rainfall-runoff model using a fast and elitist multi-objective particle swarm algorithm. Expert Systems with Applications 36(5), 9533–9538.
Lohani, A.K., Goel, N.K., Bhatia, K.K.S., 2014. Improving real time flood forecasting using fuzzy inference system. Journal of Hydrology 509, 25–41.
Lopez, P., Velo, R., Maseda, F., 2008. Effect of direction on wind speed estimation in complex terrain using neural networks. Renewable Energy 33(10), 2266–2272.
Luk, K.C., Ball, J.E., Sharma, A., 2001. An application of artificial neural networks for rainfall forecasting. Mathematical and Computer Modelling 33(6–7), 683–693.
Maier, H.R., Dandy, G.C., 2000. Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications. Environmental Modelling and Software 15(1), 101–124.
Maity, R., Bhagwat, P.P., Bhatnagar, A., 2010. Potential of support vector regression for prediction of monthly streamflow using endogenous property. Hydrological Processes 24(7), 917–923.
Mason, D.C., Bates, P.D., Dall’ Amico, J.T., 2009. Calibration of uncertain flood inundation models using remotely sensed water levels. Journal of Hydrology 368, 224–236.
McCuen, R.H., Knight, Z., Cutter, A.G., 2006. Evaluation of the Nash–Sutcliffe Efficiency Index. Journal of Hydrologic Engineering 11(6), 597–602.
Mekanik, F., Imteaz, M.A., Gato-Trinidad, S., Elmahdi, A., 2013. Multiple regression and Artificial Neural Network for long-term rainfall forecasting using large scale climate modes. Journal of Hydrology 503, 11–21.
Moreno, H.A., Vivoni, E.R., Gochis, D.J., 2012. Utility of quantitative precipitation estimates for high resolution hydrologic forecasts in mountain watersheds of the Colorado Front Range. Journal of Hydrology 438, 66–83.
Nasseri, M., Asghari, K., Abedini, M.J., 2008. Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural network. Expert Systems with Applications 35(3), 1415–1421.
Nedjah, N., dos Santos Coelho, L., deMacedo deMourelle, L., 2010. Multi-Objective Swarm Intelligent Systems. Springer-Verlag: Berlin.
Nunes, A.M.B., Cocke, S., 2004. Implementing a physical initialization procedure in a regional spectral model: impact on the short‐range rainfall forecasting over South America. Tellus Series A-Dynamic Meteorology and Oceanography 56(2), 125–140.
Pan, T.Y., Chang, L.Y., Lai, J.S., Chang, H.K., Lee, C.S., Tan, Y.C., 2014. Coupling typhoon rainfall forecasting with overland-flow modeling for early warning of inundation. Natural Hazards 70(3), 1763–1793.
Pan, T.Y., Lai, J.S., Chang, T.J., Chang, H.K., Chang, K.C., Tan, Y.C., 2011. Hybrid neural networks in rainfall-inundation forecasting based on a synthetic potential inundation database. Natural Hazards and Earth System Sciences 11, 771–787.
Pan, T.Y., Yang, Y.T., Kuo, H.C., Tan, Y.C., Lai, J.S., Chang, T.J., Lee, C.S., Hsu, K.H., 2013. Improvement of watershed flood forecasting by typhoon rainfall climate model with an ANN-based southwest monsoon rainfall enhancement. Journal of Hydrology 506, 90–100.
Prasad, T.D., Park, N.S., 2004. Multiobjective genetic algorithms for design of water distribution networks. Journal of Water Resources Planning and Management 130(1), 73–82.
Ramirez, M.C.V., Velho, H.F.D., Ferreira, N.J., 2005. Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region. Journal of Hydrology 301(1–4), 146–162.
Reddy, M.J., Kumar, D.N., 2006. Optimal reservoir operation using multi-objective evolutionary algorithm. Water Resources Management 20(6), 861–878.
Reed, P.M., Minsker, B.S., 2004. Striking the balance: Long-term groundwater monitoring design for conflicting objectives. Journal of Water Resources Planning and Management-ASCE 130(2), 140–149.
Shen, H.Y., Chang, L.C., 2013. Online multistep-ahead inundation depth forecasts by recurrent NARX networks. Hydrology and Earth System Sciences 17, 935–945.
Sheng, C., Gao, S., Xue, M., 2006. Short-range prediction of a heavy precipitation event by assimilating Chinese CINRAD-SA radar reflectivity data using complex cloud analysis. Meteorology and Atmospheric Physics 94(1–4), 167–183.
Sivapragasam, C., Liong, S.Y., 2005. Flow categorization model for improving forecasting. Nordic Hydrology 36(1) 37–48.
Srivastava, G., Panda, S.N., Mondal, P., Liu, J.G., 2010. Forecasting of rainfall using ocean-atmospheric indices with a fuzzy neural technique. Journal of Hydrology 395(3–4), 190–198.
Ushiyama, T., Sayama, T., Tatebe, Y., Fujioka, S., Fukami, K., 2014. Numerical Simulation of 2010 Pakistan Flood in the Kabul River Basin by Using Lagged Ensemble Rainfall Forecasting. Journal of Hydrometeorology 15(1), 193–211.
Valverde, M.C., Araujo, E., Campos Velho, H., 2014. Neural network and fuzzy logic statistical downscaling of atmospheric circulation-type specific weather pattern for rainfall forecasting. Applied Soft Computing 22, 681–694.
Vapnik, V., 1995. The Nature of Statistical Learning Theory. Springer: New York.
Vapnik, V., 1998. Statistical Learning Theory. John Wiley: New York.
Venkatesan, C., Raskar, S.D., Tambe, S.S., Kulkarni, B.D., Keshavamurty, R.N., 1997. Prediction of all India summer monsoon rainfall using error-back-propagation neural networks. Meteorology and Atmospheric Physics 62(3–4), 225–240.
Wackernagel, H., 1998. Multivariate Geostatistics: An Introduction With Applications. Springer-Verlag: Berlin.
Wang, Y.M., Chang, J.X., Huang, Q.A., 2010. Simulation with RBF neural network model for reservoir operation rules. Water Resources Management 24(11), 2597–2610.
Wei, C.C., 2012. RBF neural networks combined with principal component analysis applied to quantitative precipitation forecast for a reservoir watershed during typhoon periods. Journal of Hydrometeorology 13(2), pp. 722–734.
Wu, F., Zhou H., Ren, T., Zheng, L., Cen, K., 2009. Combining support vector regression and cellular genetic algorithm for multi-objective optimization of coal-fired utility boilers. Fuel 88(10), 1864–1870.
Yamazaki, D., Kanae, S., Kim, H., Oki, T., 2011. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resources Research 47, W04501. http://dx.doi.org/10.1029/2010WR009726.
Yu, X.Y., Liong, S.Y., 2007. Forecasting of hydrologic time series with ridge regression in feature space. Journal of Hydrology 332(3–4), 290– 302.
Zhang, L., Jia, Z., Wang, F., Liu, W., 2010. A hybrid model using supporting vector machine and multi-objective genetic algorithm for processing parameters optimization in micro-EDM. International Journal of Advanced Manufacturing Technology 51(5–8), 575–586.
Zhang, S., Wang, T., Zhao, B., 2014. Calculation and visualization of flood inundation based on a topographic triangle network. Journal of Hydrology 509, 406–415.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top