跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 06:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林晉安
研究生(外文):Chin-An Lin
論文名稱:邊界層物理過程對平流霧之影響
論文名稱(外文):The Influence of Boundary Layer Processes on Advection Fog
指導教授:陳維婷陳維婷引用關係
口試委員:林博雄游政谷蘇世顥
口試日期:2015-07-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:62
中文關鍵詞:平流霧大渦流模擬邊界層紊流風切
外文關鍵詞:advection foglarge-eddy simulationboundary layerturbulencewind shear
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討邊界層之環境特徵和物理過程對平流霧維持之影響。初始條件由金門平流霧觀測實驗資料簡化而來,呈現近飽合的潮濕邊界層和逆溫結構,可影響垂直混合與霧頂長波輻射冷卻作用。並使用渦度方程建立的雲解析模式以4公尺高解析度進行一系列理想化的大渦流實驗。在透過開關特定物理過程來探討物理過程的模擬結果中,地表通量在霧已形成後具有較小的影響力且作用僅限於近地層;長波輻射冷卻能有效的增加霧水,但在此個案的環境中無法有效產生紊流動能;太陽輻射是使霧消散的重要機制,其加熱霧層並減少霧水;垂直風切加強霧層內的混合作用並擴大霧層的垂直分布,且在此個案中的紊流動能貢獻分布上,風切的貢獻遠重要於浮力的貢獻。在探討環境條件的模擬結果中,垂直風切強度可由臨界理查森數(Ri=0.25)分為強、弱垂直風切兩類,強垂直風切會將穩定層化邊界層調整成混合邊界層,並使霧層上移而變成層雲,但在弱垂直風切時,霧層則能夠穩定地維持。最後探討風切和海溫交互作用的影響,發現在弱垂直風切時(Ri > 0.25),冷海溫的冷卻作用能加強霧層的穩定度並明顯的增加霧水;而高海溫的加熱作用則會破壞逆溫結構,將邊界層調整成混合邊界層並使霧層消散;而在強垂直風切時(Ri < 0.25),冷海溫無法有效地透過冷卻作用建立逆溫結構,雖層雲中液態水含量增多,但仍無法使層雲下降而成霧;而暖海溫的加熱作用則更加增厚混合邊界層的厚度並減少了層雲中的雲水含量。海溫作用所需的反應時間較紊流混合作用長,因此海溫作用調整邊界層結構的效果並不如風切的作用。本研究指出環境近地面風場和與紊流傳送作用對平流霧結構有最明顯的影響,因此在使用區域模式模擬平流霧時,所選取的邊界層和紊流參數化以及垂直解析度配置能否正確呈現穩定層化與混合邊界層之間的轉換,是決定模擬結果的關鍵因素。

This study investigates the influences of boundary layer (BL) processes and the environmental conditions on the maintenance of advection fog through idealized large-eddy simulations. The initial conditions were simplified from the in-situ sounding data during the fog episode at Kinmen Island. A near saturated moist layer with temperature inversion is throughout the domain, which represents the characteristics of advection fog. This kind of vertical profile of moisture can influence the effects of turbulent mixing and longwave radiative cooling at fog top. A series of idealized large-eddy simulations were carried out using the Vector Vorticity equation cloud-resolving model at a high resolution of 4 m. By turning on/off selected physical processes, the results show that surface heat and moisture fluxes have little influence on liquid water content and are restricted to surface layer when the fog layer already exists. Longwave radiative cooling is the dominant process to generate fog water but in this case cannot effectively generate turbulent kinetic energy (TKE) through buoyancy flux due to the specific environmental moisture condition. Solar radiation heats and evaporates the liquid water content within the fog layer. Vertical wind shear enhances the turbulent mixing and extents the vertical distribution of fog layer. Vertical wind shear also drives the shear instability, and the averaged magnitude of shear production of TKE is much larger than that of buoyancy production of TKE in this case. As to evaluate the impact of environmental wind profiles on the maintenance of the fog layer, Richardson number (Ri) is identified as the critical parameter. The stronger vertical wind shear (Ri < 0.25) modifies the boundary layer from a stable boundary layer to a well-mixed boundary layer. As a result, the fog layer no longer maintains but shifts upward into stratus cloud. In contrast, the fog layer can maintain under the condition of weaker vertical wind shear (Ri > 0.25). Lastly, the sensitivity of the fog layer structure to both the environmental vertical wind shear and sea surface temperature (SST) is investigated. Results show that the combination of weaker vertical wind shear (Ri > 0.25) and colder SST is favorable to the maintenance of fog. However, warmer SST dissipates the fog layer in the condition of weaker vertical wind shear (Ri > 0.25). On the other hand, fog layer cannot exist in the condition of stronger vertical wind shear (Ri < 0.25) whether the SST is colder or warmer. This study suggests that the vertical profile of wind speed and the effect of turbulent transport have the most significant influence on the structure of advection fog. Therefore, when simulating the advection fog by regional models, the results would highly depend on whether the chosen BL and turbulence parameterization schemes and vertical resolution can accurately represent the transition between a stable and well-mixed BL.

致謝 i
摘要 ii
Abstract iii
Contents vi
Table captions viii
Figure captions ix
1. Introduction 1
2. Case description 7
3. The large eddy simulations 9
3.1 Model description 10
3.2 Experiment design 11
3.2.1 Tests of boundary layer processes 12
3.2.2 Tests of environmental conditions: vertical wind shear and sea surface temperature 14
4. Results 16
4.1 Advection fog in the boundary layer 16
4.2 Assessment of physical processes 21
4.2.1 Surface heat and moisture fluxes (Exp. P04 vs. Exp. P05) 21
4.2.2 Longwave radiation (Exp. P03 vs. Exp. P04) 23
4.2.3 Solar radiation (Exp. P02 vs Exp. P03) 24
4.2.4 Vertical wind shear (Exp. P01 vs Exp. P02) 25
4.3 Vertical wind shear 26
4.4 Interaction of vertical wind shear and sea surface temperature 29
5. Discussion 34
5.1 Implications for the numerical simulation of fog 34
5.2 The existence criterion for fog 36
6. Conclusion and summary 37
7. Future work 39
Reference 41
Tables 45
Figures 47



Arakawa, A., and C.-M. Wu, 2013: A Unified Representation of Deep Moist Convection in Numerical Modeling of the Atmosphere. Part I. J. Atmos. Sci., 70, 1977–1992, doi:10.1175/JAS-D-12-0330.1. http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-12-0330.1.
Bergot, T., 2013: Small-scale structure of radiation fog: A large-eddy simulation study. Q. J. R. Meteorol. Soc., 139, 1099–1112, doi:10.1002/qj.2051.
Brown, R., and W. T. Roach, 1976: The physics of radiation fog: II - a numerical study. Q. J. R. Meteorol. Soc., 102, 335–354, doi:10.1256/smsqj.43204. http://dx.doi.org/10.1002/qj.49710243205.
Deardorff, J. W., 1972: Parameterization of the planetary boundary layer for use in general circulation models. Mon. Weather Rev., 100, 93–106, doi:10.1175/1520-0493(1972)100<0093:POTPBL>2.3.CO;2.
Fridlind, a, a Ackerman, J. Petch, and P. Field, 2010: ARM/GCSS/SPARC/TWP-ICE CRM Intercomparison Study. http://ntrs.nasa.gov/search.jsp?R=20100033502.
Fu, G., J. Guo, S. P. Xie, Y. Duan, and M. Zhang, 2006: Analysis and high-resolution modeling of a dense sea fog event over the Yellow Sea. Atmos. Res., 81, 293–303, doi:10.1016/j.atmosres.2006.01.005.
Gao, S., H. Lin, B. Shen, and G. Fu, 2007: A heavy sea fog event over the Yellow Sea in March 2005: Analysis and numerical modeling. Adv. Atmos. Sci., 24, 65–81, doi:10.1007/s00376-007-0065-2.
Gultepe, I., and Coauthors, 2007: Fog Research: A Review of Past Achievements and Future Perspectives. Pure Appl. Geophys., 164, 1121–1159, doi:10.1007/s00024-007-0211-x.
Heo, K.-Y., and K.-J. Ha, 2010: A Coupled Model Study on the Formation and Dissipation of Sea Fogs. Mon. Weather Rev., 138, 1186–1205, doi:10.1175/2009MWR3100.1.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. a. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos., 113, 2–9, doi:10.1029/2008JD009944.
Jun, L. I., H. a N. Zhi-gang, C. Hong-bin, Z. Zeng-liang, and W. U. Hong-yi, 2012: Fog Detection over China’s Adjacent Sea Area by using the MTSAT Geostationary Satellite Data. 5, 128–133.
Jung, J.-H., and A. Arakawa, 2008: A Three-Dimensional Anelastic Model Based on the Vorticity Equation. Mon. Weather Rev., 136, 276–294, doi:10.1175/2007MWR2095.1.
Jung, J.-H., and A. Arakawa, 2010: Development of a quasi-3D multiscale modeling framework: Motivation, basic algorithm and preliminary results. J. Adv. Model. Earth Syst., 2, doi:10.3894/JAMES.2010.2.11.
Kim, C. K., and S. S. Yum, 2012: A Numerical Study of Sea-Fog Formation over Cold Sea Surface Using a One-Dimensional Turbulence Model Coupled with the Weather Research and Forecasting Model. Boundary-Layer Meteorol., 143, 481–505, doi:10.1007/s10546-012-9706-9.
Koshiro, T., and M. Shiotani, 2014: Relationship between Low Stratiform Cloud Amount and Estimated Inversion Strength in the Lower Troposphere over the Global Ocean in Terms of Cloud Types. J. Meteorol. Soc. Japan. Ser. II, 92, 107–120, doi:10.2151/jmsj.2014-107. http://jlc.jst.go.jp/DN/JST.JSTAGE/jmsj/2014-107?lang=en&from=CrossRef&type=abstract.
Krueger, S. K., Q. Fu, K. N. Liou, and H.-N. S. Chin, 1995: Improvements of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. doi:10.1175/1520-0450-34.1.281.
Nakanishi, M., 2000: Large-eddy simulation of radiation fog. Boundary-Layer Meteorol., 94, 461–493, doi:10.1023/A:1002490423389.
Oliver, D. A., W. S. Lewellen, and G. G. Williamson, 1978: The Interaction between Turbulent and Radiative Transport in the Development of Fog and Low-Level Stratus. J. Atmos. Sci., 35, 301–316, doi:10.1175/1520-0469(1978)035<0301:TIBTAR>2.0.CO;2.
Pilié, R. J., E. J. . Mack, C. W. Rogers, U. Katz, and W. C. Kocmond, 1979: The Formation of Marine Fog and the Development of Fog-Stratus Systems along the California Coast. J. Appl. Meteorol., 18, 1275–1286, doi:10.1175/1520-0450(1979)018<1275:TFOMFA>2.0.CO;2.
Shutts, G. J., and M. E. B. Gray, 1994: A numerical modelling study of the geostrophic adjustment process following deep convection. Q.J.R. Meteorol Soc., 120, 1145–1178.
Steeneveld, G. J., L. F. Tolk, a. F. Moene, O. K. Hartogensis, W. Peters, and a. a M. Holtslag, 2011: Confronting the WRF and RAMS mesoscale models with innovative observations in the Netherlands: Evaluating the boundary layer heat budget. J. Geophys. Res. Atmos., 116, 1–16, doi:10.1029/2011JD016303.
Tardif, R., 2007: The impact of vertical resolution in the explicit numerical forecasting of radiation fog: A case study. Pure Appl. Geophys., 164, 1221–1240, doi:10.1007/s00024-007-0216-5.
Taylor, G. I., 1917: The formation of fog and mist. Q. J. R. Meteorol. Soc., 43, 241–268, doi:10.1002/qj.49704318302. http://dx.doi.org/10.1002/qj.49704318302.
Tseng, Y.-Z., and Z.-M. C., 2008: A study of using back-propagation neural network model to predict fog events in Taiwan (in Chinese). 30 pp. CWB97-1A-16. Central Weather Bureau, Taipei Taiwan.
van der Velde, I. R., G. J. Steeneveld, B. G. J. Wichers Schreur, and a. a. M. Holtslag, 2010: Modeling and Forecasting the Onset and Duration of Severe Radiation Fog under Frost Conditions. Mon. Weather Rev., 138, 4237–4253, doi:10.1175/2010MWR3427.1.
Welch, R. M., M. G. Ravichandran, and S. K. Cox, 1986: Prediction of Quasi-Periodic Oscillations in Radiation Fogs. Part I: Comparison of Simple Similarity Approaches. J. Atmos. Sci., 43, 633–651, doi:10.1175/1520-0469(1986)043<0633:POQPOI>2.0.CO;2.
Wu, C. M., and A. Arakawa, 2011: Inclusion of surface topography into the vector vorticity equation model (VVM). J. Adv. Model. Earth Syst., 3, doi:10.1029/2011MS000061.
Wu, C.-M., and A. Arakawa, 2014: A Unified Representation of Deep Moist Convection in Numerical Modeling of the Atmosphere. Part II. J. Atmos. Sci., 71, 2089–2103, doi:10.1175/JAS-D-13-0382.1. http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-13-0382.1.
Zhang, S. P., S. P. Xie, Q. Y. Liu, Y. Q. Yang, X. G. Wang, and Z. P. Ren, 2009: Seasonal variations of yellow sea fog: Observations and mechanisms. J. Clim., 22, 6758–6772, doi:10.1175/2009JCLI2806.1


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top