跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/25 08:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李君婷
研究生(外文):Chun-Ting Li
論文名稱:染料敏化太陽能電池:無白金對電極與無碘電解質之研究
論文名稱(外文):Dye-sensitized Solar Cells:Study of Pt-free Counter Electrodes and Iodide-free Electrolytes
指導教授:何國川
指導教授(外文):Kuo-Chuan Ho
口試委員:諶玉真康敦彥林建村孫世勝
口試日期:2015-07-28
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:189
中文關鍵詞:對電極染料敏化太陽能電池電觸媒電解質無碘無白金
外文關鍵詞:Counter electrodesdye-sensitized solar cellselectro-catalystelectrolyteiodide-freePt-free
相關次數:
  • 被引用被引用:0
  • 點閱點閱:693
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究論文主要針對無白金對電極進行系統性的開發,與設計新型無碘系統電解質,應用於低成本、高效率之染料敏化太陽能電池。本研究論文主要可分為兩大部分:(1)無白金對電極(第三章至第七章);(2)無碘系統電解質(第八章)。
無白金對電極之開發主要目的為降低染敏電池之製造成本,透過簡單、非真空、低成本的製程製備多種電催化觸媒材料,用以完全取代昂貴的白金材料。因此,本研究論文首先以碘系統電解質為標準,進行三大類的無白金複合對電極之開發。(一)過渡金屬化合物型:包含第三章中的硫化鈦/導電高分子PEDOT:PSS;第四章中的氮化矽/PEDOT:PSS、氧化矽/PEDOT:PSS、硫化矽/PEDOT:PSS、硒化矽/PEDOT:PSS;第五章中的氮化鋅/PEDOT:PSS、氧化鋅/PEDOT:PSS、硫化鋅/PEDOT:PSS、硒化鋅/PEDOT:PSS等複合薄膜。過渡金屬化合物奈米粒子可提供良好的電催化能力與大的活性面積進行碘還原反應,而硫化鈦、氮化矽、硫化矽、硒化矽、氮化鋅、硒化鋅等材料是第一次應用於染敏電池中。其中,以氮化鋅/PEDOT:PSS為對電極之染敏電池可達到高於白金之效率。(二)碳材型:第六章中製備奈米多孔性之碳黑奈米粒子/磺酸化聚噻吩複合薄膜,可提供高表面積、快速電解質滲透、快速碘離子還原反應。當複合薄膜中含有5 wt%之碳黑奈米粒子時,可達到最佳之染敏電池效率,甚至高於白金。磺酸化聚噻吩是一種噻吩類的水溶性導電高分子,第一次作為染敏電池之對電極材料。在低光照下,此系統下之染敏電池仍可維持良好之效能,表示其可適用於室外或室內之電子元件。(三)導電高分子型:第七章中合成聚二氧乙基噻吩(PEDOT)與六種不同的離子液體修飾PEDOT電極,六種離子液體中包含三種具有不同的碳鍊長度的咪唑陽離子,可改變PEDOT薄膜的表面積;且包含四種不同的陰離子(BF4−, PF6−, SO3CF3−, TFSI−),可改變PEDOT之共振結構。其中,以1-hexyl-3-methylimidazolium hexafluorophosphate (HMIPF6)修飾PEDOT (8.28%)與1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HMITFSI)修飾PEDOT為對電極之染敏電池皆可達到高於白金之效率。總而言之,本研究論文開發四種無白金複合薄膜:氮化鋅/PEDOT:PSS、HMIPF6修飾PEDOT、HMITFSI修飾PEDOT、5 wt%碳黑奈米粒子/磺酸化聚噻吩,為可取代白金之替代材料,因為他們皆具有良好的催化碘還原能力、低成本、簡易製程、易於大面積製備等特性。
另一方面,無碘系統電解質之開發主要目的為進一步的提升染敏電池之效率,第八章中透過分子結構之設計,合成具備雙氧化還原通道之離子液體電解質(ITSeCN),ITSeCN以咪唑修飾之2,2,6,6-四甲基哌啶-1-氧化物作為陽離子氧化還原對,並以硒氰酸根作為陰離子氧化還原對。因此,相較於傳統的碘系統電解質,ITSeCN具備高的氧化還原電位、高擴散係數、良好的異相反應速率常數。為了進一步探討適合驅動ITSeCN氧化還原反應之電催化材料,白金(代表金屬型材料)、PEDOT(代表導電高分子型材料)、硒化鈷(代表過渡金屬化合物型材料)、碳黑奈米粒子(代表碳材型材料)分別做為四大型對電極材料之代表材料。以PEDOT與硒化鈷為對電極之ITSeCN系統染敏電池皆可達到高於白金之效率。可推測過渡金屬化合物型對電極較為適合驅動ITSeCN之氧化還原。


This dissertation aimed to systematically develop Pt-free counter electrodes (CEs) and to design a novel iodide-free electrolyte for the dye-sensitized solar cells (DSSCs) with low-costs and highly cell efficiencies (η’s). This dissertation is divided into two parts: (1) Pt-free CEs (Chapter 3~Chapter 7) and (2) iodide-free electrolyte (Chapter 8).
In the case of Pt-free CEs, we aim to reduce the costs of the DSSCs using various electro-catalysts for completely replacing the expensive Pt via the simple, non-vacuum, and low-cost fabrication processes. Accordingly, three types of Pt-free composite films were studied using a standard iodide electrolyte. (I) Transition metallic compound-type CEs, including the composite film of TiS2/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (TiS2/PEDOT:PSS) in Chapter 3, the composite films of Si3N4/PEDOT:PSS, SiO2/PEDOT:PSS, SiS2/PEDOT:PSS, SiSe2/PEDOT:PSS in Chapter 4, and the composite films of Zn3N2/PEDOT:PSS, ZnO/PEDOT:PSS, ZnS/PEDOT:PSS, ZnSe/PEDOT:PSS in Chapter 5, were indivitually investigated. In a composite film, the transition metallic compound nanoparticles were separately used to provide attractive electro-catalytic abilities and large active areas for I3- reduction; among those NPs, TiS2, Si3N4, SiS2, SiSe2, Zn3N2 and ZnSe were applied in DSSCs for the first time. Among them, the cell with Zn3N2/PEDOT:PSS CE reached a higher η than that of Pt-based cell. (II) Carbonaceous-type CEs, i.e., the composite films of nano-porous carbon black nanoparticles/ sulfonated-poly(thiophene-3-[2-(2-methoxyethoxy)-ethoxy]-2,5-diyl) (CB NPs/s-PT), were investigated in Chapter 6 to provide large surface area, fast eletrolyte penetratoin, and rapid reaction rate for I3– reduction. When a composite film contains 5 wt% CB NPs, the pertinent DSSC reached best η of 9.02%, which is even higher than that of Pt-based DSSC. The s-PT is introduced as a novel thiophene-based water-soluable conducting polymer for CE in DSSC for the very first time. Under weak sunlight, the cell with CB NPs/s-PT composite CE still maintains good performance, indicating its good compatibility at both outdoor or indoor electronics. (III) Conducting polymer type CEs, including poly(3,4-ethylenedioxythiophene) (PEDOT) and six different ionic-liquid-doped PEDOT films were systematically investigated in Chapter 7. Six different ionic liquids containing three imidazolium cations with different alkyl chains (–C2H5, –C6H13, –C10H21) and four anions (BF4−, PF6−, SO3CF3−, TFSI−) were used as the chemical dopants to increase the surface area of PEDOT films and to ehance the conjugation of the PEDOT films, respectively. Among them, the cell with HMIPF6-doped PEDOT and HMITFSI-doped PEDOT CEs reached higher η’s than that of Pt-based DSSC. In brief, this dissertation explores four Pt-free composite films of Zn3N2/PEDOT:PSS, HMIPF6-doped PEDOT, HMITFSI-doped PEDOT, and CB NPs/s-PT are a promising substitutions of Pt due to their outstanding properties, i.e., good electro-catalytic ability for I3– reduction, low-cost, simple preparation process, and easy for large-scale production.
In the case of iodide-free electrolyte, we designed a novel dual-channel ionic liquid compound (Chapter 8), 1-butyl-3-{2-oxo-2-[(2,2,6,6-tetramethylpiperidin-4-yl)amino]ethyl}-1H-imidazol-3 -ium selenocyanate (ITSeCN), to further improve the cell effiency of DSSCs. ITSeCN is designed to contain dual redox channels of imidazolium-functionalized TEMPO (cationic redox mediator) and selenocyanate (anionic mediator). Thereby, the ITSeCN shows the favorable redox natures, which gave more positive standard potential, larger diffusivity, and better kinetic heterogeneous rate constant than those of iodide. To further investigate a suitable electro-catalytic material for triggering the redox of ITSeCN mediator, several materials were used: (1) Pt (metal type), (2) PEDOT (conducting polymer type), (3) CoSe (transition metallic compound type), and (4) carbon black (carbonaceous type) films were chosen to represent four types of electro-catalytic materials in DSSCs. Finally, the DSSCs with PEDOT and CoSe CEs achieved better performance than that of the Pt-based DSSC. Therefore, it can be infered that the transition metallic compound type CEs would be more suitable for our new synthesized-ITSeCN mediator than the others.


中文摘要 I
Abstract III
Table of Contents V
List of Tables IX
List of Figures XI
Nonmenclatures XVII

Chapter 1 Introduction 1
1-1 Background of DSSCs 1
1-2 Mechanism of DSSCs 3
1-3 Counter electrodes in DSSCs 5
1-3-1 Metal-type 6
1-3-2 Transition metallic compound-type 8
1-3-3 Conducting polymer-type 19
1-3-4 Carbonaceous-type 23
1-4 Electrolytes in DSSCs 24
1-5 Motivation 29
Chapter 2 Experimental 33
2-1 Materials 33
2-2 Fabrication of photoanodes 35
2-3 Fabrication of counter electrodes 37
2-4 Preparation of electrolytes and DSSC assembly 39
2-5 Analytical techniques 40
2-5-1 Morphology, optical, and electrical properties 40
2-5-2 Photovoltaic performance 41
2-5-3 Electrochemical properties 41
Chapter 3 A composite film of TiS2/PEDOT:PSS as the electro-catalyst for the counter electrode in dye-sensitized solar cells 47
3-1 Abstract 47
3-2 Introduction 47
3-3 Results and discussions 48
3-3-1 Morphology 48
3-3-2 Photovoltaic performance and IPCE spectra of DSSCs 50
3-3-3 CV and RDE analyses 53
3-3-4 Tafel and s-EIS analyses 55
3-4 Summary 56
Chapter 4 Earth abundant silicon composites as the electro-catalytic materials for counter electrodes in dye-sensitized solar cells 57
4-1 Abstract 57
4-2 Introduction 58
4-3 Results and discussions 59
4-3-1 Morphology 59
4-3-2 Photovoltaic performance and IPCE spectra of DSSCs 60
4-3-3 CV and RDE analyses 63
4-3-4 Tafel and s-EIS analyses 65
4-4 Summary 67
Chapter 5 Highly efficient zinc composites as electro-catalytic materials for counter electrodes of dye-sensitized solar cells: A study on the electrochemical analyses and density functional theory calculations 68
5-1 Abstract 68
5-2 Introduction 69
5-3 Results and discussions 70
5-3-1 Morphology 70
5-3-2 Photovoltaic performance and IPCE spectra of DSSCs 71
5-3-3 CV, Tafel, and s-EIS analyses 75
5-3-4 Model and computational method 77
5-3-5 Four-point probe measurement 79
5-4 Summary 80
Chapter 6 A composite film of carbon black nanoparticles and sulfonated -polythiophene for the flexible counter electrode of an efficient dye-sensitized solar cell 81
6-1 Abstract 81
6-2 Introduction 81
6-3 Results and discussions 83
6-3-1 Nano-porous carbon black 83
6-3-2 Morphology 84
6-3-3 CV analysis 85
6-3-4 Tafel and s-EIS analyses 86
6-3-5 RDE analysis 89
6-3-6 Photovoltaic performance and IPCE spectra of DSSCs 90
6-4 Summary 92
Chapter 7 Ionic liquid-doped poly(3,4-ethylenedioxythiophene) counter electrodes for dye-sensitized solar cells: Cationic and anionic effects on the photovoltaic performance 93
7-1 Abstract 93
7-2 Introduction 93
7-3 Results and discussions 96
7-3-1 Ionic conductivities of an ionic liquid 96
7-3-2 XPS analyses 96
7-3-3 Morphology 99
7-3-4 CV and RDE analyses 102
7-3-5 Tafel and s-EIS analyses 104
7-3-6 Photovoltaic performance and IPCE spectra of DSSCs 106
7-4 Summary 108
Chapter 8 Iodide-free ionic liquid with dual redox couples for dye-sensitized solar cells with high open-circuit voltage 109
8-1 Abstract 109
8-2 Introduction 109
8-3 Results and discussions 111
8-3-1 Synthesis of ITSeCN 111
8-3-2 UV-Vis spectroscopy 113
8-3-3 CV analysis 114
8-3-4 RDE analysis 115
8-3-5 Photovoltaic performance and IPCE spectra of DSSCs 117
8-3-6 EIS analyses 121
8-3-7 Electro-catalytic CEs for ITSeCN-based DSSCs 122
8-4 Summary 125

Chapter 9 Conclusions and suggestions 126
9-1 Conclusions 126
9-2 Suggestions 128
References 129
Appendix A A partial literature reviews on the counter electrodes for DSSCs 144
Appendix B Efficient Titanium Nitride/Titanium Oxide Composite Photoanodes for Dye-Sensitized Solar Cells and Water Splitting 157
B-1 Abstract 157
B-2 Introduction 158
B-3 Experimental 160
B-3-1 Materials 160
B-3-2 Fabrication and characterization of TiN films 160
B-3-3 Fabrication of DSSCs 161
B-3-4 Evaluation of DSSCs performance 162
B-3-5 Evaluation of water splitting performance 163
B-4 Results and discussions 164
B-4-1 Surface area and dispersibility of TiN and P25 nanoparticles 164
B-4-2 Morphology 165
B-4-3 X-ray diffraction pattern 167
B-4-4 Optical spectra 168
B-4-5 DSSCs performance 168
B-4-6 Electrochemical impedance spectra of the DSSCs 172
B-4-7 Water splitting performance 173
B-4-8 Energy band diagram 176
B-5 Summary 178
B-6 References 179
Appendix C Curriculum vitae 183


[1]M. Grätzel, Inorg.Chem., 2005, 44, 6841.
[2]H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science, 2014, 345, 542.
[3]B. O''Regan, M. Grätzel, Nature, 1991, 353, 737.
[4]S. W. Wang, C. C. Chou, F. C. Hu, K. L. Wu, Y. Chi, J. N. Clifford, E. Palomares, S. H. Liu, P. T. Chou, T. C. Wei, T. Y. Hsiao, J. Mater. Chem. A, 2014, 2, 17618.
[5]A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Gratzel, Science, 2011, 334, 629.
[6]S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, M. Gratzel, Nat. Chem., 2014, 6, 242.
[7]T. M. Brown, F. D. Rossi, F. D. Giacomo, G. Mincuzzi, V. Zardetto, A. Reale, A. D. Carlo, J. Mater. Chem. A, 2014, 2, 10788.
[8]Q. Tai, X. Z. Zhao, J. Mater. Chem. A, 2014, 2, 13207.
[9]M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, Z. Lin, Mater. Today, 2015, 18, 155.
[10]C. P. Lee, R. Y. Y. Lin, L. Y. Lin, C. T. Li, T. C. Chu, S. S. Sun, J. T. Lin, K. C. Ho, RSC Adv., 2015, 5, 23810.
[11]S. Ahmad, E. Guillén, L. Kavan, M. Grätzel, M. K. Nazeeruddin, Energy Environ. Sci., 2013, 6, 3439.
[12]A. Listorti, B. O’Regan, J. R. Durrant, Chem. Mater., 2011, 23, 3381.
[13]M. Wu, X. Lin, Y. Wang, L. Wang, W. Guo, D. Qi, X. Peng, A. Hagfeldt, M. Gratzel, T. Ma, J. Am. Chem. Soc., 2012, 134, 3419.
[14]M. Wu, T. Ma, ChemSusChem, 2012, 5, 1343.
[15]S. Yun, A. Hagfeldt, T. Ma, Adv. Mater., 2014, 26, 6210.
[16]H. Dong, Z. Wu, Y. Gao, A. El-Shafei, B. Jiao, Y. Dai, X. Hou, Org. Electron., 2014, 15, 1641.
[17]F. Behrouznejad, N. Taghavinia, J. Power Sources, 2014, 260, 299.
[18]L. Y. Lin, M. H. Yeh, W. C. Chen, R. Vittal, K. C. Ho, ACS Appl. Mater. Interfaces, 2015, 7, 3910.
[19]Y. Xiao, J. Wu, G. Yue, J. Lin, M. Huang, L. Fan, Z. Lan, Electrochim. Acta, 2011, 58, 621.
[20]Y. Xiao, J. Wu, G. Yue, J. Lin, M. Huang, L. Fan, Z. Lan, J. Power Sources, 2012, 208, 197.
[21]M. M. Rahman, R. Kojima, M. E. F. Fihry, Y. Kimura, M. Niwano, Jpn. J. Appl. Phys., 2010, 49, 122302.
[22]A. Aboagye, H. Elbohy, A. D. Kelkar, Q. Qiao, J. Zai, X. Qian, L. Zhang, Nano Energy, 2015, 11, 550.
[23]F. Miao, B. Tao, P. K. Chu, Electrochim. Acta, 2013, 96, 61.
[24]Y. Zhao, A. Thapa, Q. Feng, M. Xi, Q. Qiao, H. Fong, Nanoscale, 2013, 5, 11742.
[25]W. Maiaugree, N. Kongprakaiwoot, A. Tangtrakarn, S. Saekow, S. Pimanpang, V. Amornkitbamrung, Appl. Surf. Sci., 2014, 289, 72.
[26]C. M. Chen, C. H. Chen, T. C. Wei, Electrochim. Acta, 2010, 55, 1687.
[27]N. T. Q. Hoa, V.-D. Dao, H. S. Choi, J. Mater. Sci., 2014, 49, 4973.
[28]V. D. Dao, H. S. Choi, Electrochim. Acta, 2013, 93, 287.
[29]Z. Zheng, J. Chen, Y. Hu, W. Wu, J. Hua, H. Tian, J. Mater. Chem. C, 2014, 2, 8497.
[30]T. L. Hsieh, H. W. Chen, C. W. Kung, C. C. Wang, R. Vittal, K. C. Ho, J. Mater. Chem., 2012, 22, 5550.
[31]V. D. Dao, S. H. Kim, H. S. Choi, J. H. Kim, H. O. Park, J. K. Lee, J. Phys. Chem. C, 2011, 115, 25529.
[32]L. Y. Chang, C. P. Lee, R. Vittal, J. J. Lin, K. C. Ho, J. Mater. Chem., 2012, 22, 12305.
[33]J. L. Lan, C. C. Wan, T. C. Wei, W. C. Hsu, C. Peng, Y. H. Chang, C. M. Chen, Int. J. Electrochem. Sci., 2011, 6, 1230.
[34]J. L. Lan, C. C. Wan, T. C. Wei, W. C. Hsu, Y. H. Chang, Prog. Photovoltaics Res. Appl., 2012, 20, 44.
[35]C. Y. Lin, J. Y. Lin, C. C. Wan, T. C. Wei, Electrochim. Acta, 2011, 56, 1941.
[36]Z. Tang, J. Wu, M. Zheng, J. Huo, Z. Lan, Nano Energy, 2013, 2, 622.
[37]S. J. Cho, J. Ouyang, J. Phys. Chem. C, 2011, 115, 8519.
[38]J. Wan, G. Fang, H. Yin, X. Liu, D. Liu, M. Zhao, W. Ke, H. Tao, Z. Tang, Adv. Mater., 2014, 26, 8101.
[39]B. He, Q. Tang, L. Yu, P. Yang, Electrochim. Acta, 2015, 158, 397.
[40]Y. Noh, O. Song, Electron. Mater. Lett., 2014, 10, 627.
[41]B. He, X. Meng, Q. Tang, ACS Appl. Mater. Interfaces, 2014, 6, 4812.
[42]B. He, Q. Tang, X. Meng, L. Yu, Electrochim. Acta, 2014, 147, 209.
[43]T. Y. Chen, Y. T. Liu, H. M. Nguyen, L. J. Fan, C. Y. Wu, T. J. M. Luo, C. H. Lee, Y. W. Yang, T. C. Wen, T. L. Lin, J. Mater. Chem. A, 2013, 1, 5660.
[44]H. Cai, Q. Tang, B. He, P. Li, J. Power Sources, 2014, 258, 117.
[45]G. R. A. Kumara, S. Kawasaki, P. V. V. Jayaweera, E. V. A. Premalal, S. Kaneko, Thin Solid Films, 2012, 520, 4119.
[46]M. Ikegami, K. Miyoshi, T. Miyasaka, K. Teshima, T. C. Wei, C. C. Wan, Y. Y. Wang, Appl. Phys. Lett., 2007, 90, 153122.
[47]F. Hao, H. Lin, Y. Liu, N. Wang, W. Li, J. Li, ACS Appl. Mater. Interfaces, 2011, 3, 3916.
[48]G. Tian, K. Pan, Y. Chen, J. Zhou, X. Miao, W. Zhou, R. Wang, H. Fu, J. Power Sources, 2013, 238, 350.
[49]M. Wu, Y. Wang, X. Lin, W. Guo, K. Wu, Y. N. Lin, H. Guo, T. Ma, J. Mater. Chem. A, 2013, 1, 9672.
[50]Y. Wang, C. Zhao, M. Wu, W. Liu, T. Ma, Electrochim. Acta, 2013, 105, 671.
[51]X. Chen, Y. Hou, S. Yang, X. H. Yang, H. G. Yang, J. Mater. Chem. A, 2014, 2, 17253.
[52]J. Halme, M. Toivola, A. Tolvanen, P. Lund, Sol. Energy Mater. Sol. Cells, 2006, 90, 872.
[53]S. Yun, L. Wang, C. Zhao, Y. Wang, T. Ma, Phys. Chem. Chem. Phys., 2013, 15, 4286.
[54]M. Wu, Y. N. Lin, H. Guo, T. Ma, A. Hagfeldt, J. Power Sources, 2014, 263, 154.
[55]G. Wang, R. Lin, Y. Lin, X. Li, X. Zhou, X. Xiao, Electrochim. Acta, 2005, 50, 5546.
[56]G. Yue, X. Ma, W. Zhang, F. Li, J. Wu, G. Li, Nanoscale Res. Lett., 2015, 10, 1.
[57]H. Ma, J. Tian, S. Bai, X. Liu, Z. Shan, Electrochim. Acta, 2014, 137, 138.
[58]G. Yue, D. Zhang, F. Tan, J. Wu, F. Li, C. Chen, Z. Lan, Synth. Met., 2014, 197, 204.
[59]S. Woo, S. J. Lee, D. H. Kim, H. Kim, Y. Kim, Electrochim. Acta, 2014, 116, 518.
[60]M. H. Yeh, C. P. Lee, L. Y. Lin, P. C. Nien, P. Y. Chen, R. Vittal, K. C. Ho, Electrochim. Acta, 2011, 56, 6157.
[61]X. Chen, Q. Tang, B. He, Mater. Lett., 2014, 119, 28.
[62]S. S. Jeon, C. Kim, J. Ko, S. S. Im, J. Phys. Chem. C, 2011, 115, 22035.
[63]T. H. Tsai, C. Y. Yang, S. M. Chen, Int. J. Electrochem. Sci., 2012, 7, 12764.
[64]L. Y. Chang, C. P. Lee, K. C. Huang, Y. C. Wang, M. H. Yeh, J. J. Lin, K. C. Ho, J. Mater. Chem., 2012, 22, 3185.
[65]M. J. Uddin, T. Dickens, J. Yan, R. Chirayath, D. O. Olawale, O. I. Okoli, Sol. Energy Mater. Sol. Cells, 2013, 108, 65.
[66]X. H. Yang, J. W. Guo, S. Yang, Y. Hou, B. Zhang, H. G. Yang, J. Mater. Chem. A, 2014, 2, 614.
[67]C. T. Liu, Y. C. Wang, R. X. Dong, C. C. Wang, K. C. Huang, R. Vittal, K. C. Ho, J. J. Lin, J. Mater. Chem., 2012, 22, 25311.
[68]X. Chen, J. W. Guo, Y. Hou, Y. H. Li, S. Yang, L. R. Zheng, B. Zhang, X. H. Yang, H. G. Yang, RSC Adv., 2014, 5, 8307.
[69]G. Yue, J. Wu, Y. Xiao, M. Huang, J. Lin, L. Fan, Z. Lan, Electrochim. Acta, 2013, 92, 64.
[70]M. H. Yeh , L. Y. Lin , J. S. Su, Y. A. Leu, R. Vittal, C. L. Sun, K. C. Ho, ChemElectroChem, 2014, 1, 416.
[71]V. D. Dao, L. V. Nang, E. T. Kim, J. K. Lee, H. S. Choi, ChemSusChem, 2013, 6, 1316.
[72]H. S. Jang, J. M. Yun, D. Y. Kim, S. I. Na, S. S. Kim, Surf. Coat. Technol., 2014, 242, 8.
[73]H. H. Gong, S. H. Park, S. S. Lee, S. C. Hong, Int. J. Precis. Eng. Man., 2014, 15, 1193.
[74]P. Li, J. Wu, J. Lin, M. Huang, Y. Huang, Q. Li, Solar Energy, 2009, 83, 845.
[75]P. Poudel, A. Thapa, H. Elbohy, Q. Qiao, Nano Energy, 2014, 5, 116.
[76]Y. J. Jang, Y. H. Jang, L. N. Quan, H. C. Kim, S. Pyo, D. H. Kim, Macromol. Rapid Commun., 2013, 34, 1487.
[77]H. Y. Wang, F. M. Wang, Y. Y. Wang, C. C. Wan, B. J. Hwang, R. Santhanam, J. Rick, J. Phys. Chem. C, 2011, 115, 8439.
[78]J. Liu, Q. Tang, B. He, J. Power Sources, 2014, 268, 56.
[79]X. Chen, Q. Tang, B. He, L. Lin, L. Yu, Angew. Chem. Int. Ed., 2014, 53, 10799.
[80]L. Li, Y. Yang, R. Fan, S. Chen, P. Wang, B. Yang, W. Cao, ACS Appl. Mater. Interfaces, 2014, 6, 8223.
[81]Y. Noh, O. Song, Electron. Mater. Lett., 2014, 10, 271.
[82]Y. W. Lee, J. K. Oh, H. S. Kim, J. K. Lee, S. B. Han, W. Choi, K. W. Park, J. Power Sources, 2010, 195, 5896.
[83]M. Motlak, N. A. M. Barakat, M. S. Akhtar, A. M. Hamza, B. S. Kim, C. S. Kim, K. A. Khalil, A. A. Almajid, Electrochim. Acta, 2015, 160, 1.
[84]L. Y. Chang, Y. Y. Li, C. T. Li, C. P. Lee, M. S. Fan, R. Vittal, K. C. Ho, J. J. Lin, Electrochim. Acta, 2014, 146, 697.
[85]P. Joshi, Z. Zhou, P. Poudel, A. Thapa, X. F. Wu, Q. Qiao, Nanoscale, 2012, 4, 5659.
[86]R. Bajpai, S. Roy, N. kulshrestha, J. Rafiee, N. Koratkar, D. S. Misra, Nanoscale, 2012, 4, 926.
[87]A. Kaniyoor, S. Ramaprabhu, J. Nanosci. Nanotechnol., 2012, 12, 8323.
[88]M. Al-Mamun, J. H. Lim, Y. E. Sung, S. R. Kim, Chem. Lett., 2013, 42, 31.
[89]S. Ghani, R. Sharif, S. Bashir, A. Ashraf, S. Shahzadi, A. A. Zaidi, S. Rafique, N. Zafar, A. H. Kamboh, Mater. Sci. Semicond. Process, 2015, 31, 588.
[90]S. Pimanpang, W. Maiaugree, W. Jarernboon, S. Maensiri, V. Amornkitbamrung, Synth. Met., 2009, 159, 1996.
[91]Q. W. Jiang, G. R. Li, X. P. Gao, Chem. Commun., 2009, 6720.
[92]X. Zhang, X. Chen, S. Dong, Z. Liu, X. Zhou, J. Yao, S. Pang, H. Xu, Z. Zhang, L. Li, G. Cui, J. Mater. Chem., 2012, 22, 6067.
[93]L. Chen, H. Dai, Y. Zhou, Y. Hu, T. Yu, J. Liu, Z. Zou, Chem. Commun., 2014, 50, 14321.
[94]Y. Wang, M. Wu, X. Lin, A. Hagfeldt, T. Ma, Eur. J. Inorg. Chem., 2012, 2012, 3557.
[95]Y. Wang, M. Wu, X. Lin, Z. Shi, A. Hagfeldt, T. Ma, J. Mater. Chem., 2012, 22, 4009.
[96]H. Zhou, Y. Shi, D. Qin, J. An, L. Chu, C. Wang, Y. Wang, W. Guo, L. Wang, T. Ma, J. Mater. Chem. A, 2013, 1, 3932.
[97]M. H. Yeh, L. Y. Lin, C. P. Lee, H. Y. Wei, C. Y. Chen, C. G. Wu, R. Vittal, K. C. Ho, J. Mater. Chem., 2011, 21, 19021.
[98]H. Xu, X. Zhang, C. Zhang, Z. Liu, X. Zhou, S. Pang, X. Chen, S. Dong, Z. Zhang, L. Zhang, P. Han, X. Wang, G. Cui, ACS Appl. Mater. Interfaces, 2012, 4, 1087.
[99]G. R. Li, F. Wang, Q. W. Jiang, X. P. Gao, P. W. Shen, Angew. Chem. Int. Ed., 2010, 49, 3653.
[100]Z. Wen, S. Cui, H. Pu, S. Mao, K. Yu, X. Feng, J. Chen, Adv. Mater., 2011, 23, 5445.
[101]G. R. Li, F. Wang, J. Song, F. Y. Xiong, X. P. Gao, Electrochim. Acta, 2012, 65, 216.
[102]E. Ramasamy, C. Jo, A. Anthonysamy, I. Jeong, J. K. Kim, J. Lee, Chem. Mater., 2012, 24, 1575.
[103]X. Zhang, X. Chen, K. Zhang, S. Pang, X. Zhou, H. Xu, S. Dong, P. Han, Z. Zhang, C. Zhang, G. Cui, J. Mater. Chem. A, 2013, 1, 3340.
[104]J. He, N. W. Duffy, J. M. Pringle, Y. B. Cheng, Electrochim. Acta, 2013, 105, 275.
[105]W. Maiaugree, S. Pimanpang, M. Towannang, S. Saekow, W. Jarernboon, V. Amornkitbamrung, J. Non-Cryst. Solids, 2012, 358, 2489.
[106]J. Zhong, Y. Peng, M. Zhou, J. Zhao, S. Liang, H. Wang, Y. B. Cheng, Microporous Mesoporous Mater., 2014, 190, 309.
[107]Y. Peng, J. Zhong, K. Wang, B. Xue, Y. B. Cheng, Nano Energy, 2013, 2, 235.
[108]L. Wang, E. W. Diau, M. Wu, H. P. Lu, T. Ma, Chem. Commun., 2012, 48, 2600.
[109]J. He, J. M. Pringle, Y. B. Cheng, J. Phys. Chem. C, 2014, 118, 16818.
[110]M. Wu, H. Guo, Y.-n. Lin, K. Wu, T. Ma, A. Hagfeldt, J. Phys. Chem. C, 2014, 118, 12625.
[111]J. Xia, C. Yuan, S. Yanagida, ACS Appl. Mater. Interfaces, 2010, 2, 2136.
[112]W. Wei, H. Wang, Y. H. Hu, J. Mater. Chem. A, 2013, 1, 14350.
[113]M. Wu, X. Lin, W. Guo, Y. Wang, L. Chu, T. Ma, K. Wu, Chem. Commun., 2013, 49, 1058.
[114]X. Lin, M. Wu, Y. Wang, A. Hagfeldt, T. Ma, Chem. Commun., 2011, 47, 11489.
[115]J. Guo, Y. Shi, C. Zhu, L. Wang, N. Wang, T. Ma, J. Mater. Chem. A, 2013, 1, 11874.
[116]M. A. Ibrahem, W. C. Huang, T. W. Lan, K. M. Boopathi, Y. C. Hsiao, C. H. Chen, W. Budiawan, Y. Y. Chen, C. S. Chang, L. J. Li, C. H. Tsai, C. W. Chu, J. Mater. Chem. A, 2014, 2, 11382.
[117]G. R. Li, J. Song, G. L. Pan, X. P. Gao, Energy Environ. Sci., 2011, 4, 1680.
[118]M. Wu, Q. Zhang, J. Xiao, C. Ma, X. Lin, C. Miao, Y. He, Y. Gao, A. Hagfeldt, T. Ma, J. Mater. Chem., 2011, 21, 10761.
[119]M. Wu, X. Lin, A. Hagfeldt, T. Ma, Angew. Chem. Int. Ed., 2011, 50, 3520.
[120]M. Wu, J. Bai, Y. Wang, A. Wang, X. Lin, L. Wang, Y. Shen, Z. Wang, A. Hagfeldt, T. Ma, J. Mater. Chem., 2012, 22, 11121.
[121]M. Wu, Y. Wang, X. Lin, N. Yu, L. Wang, L. Wang, A. Hagfeldt, T. Ma, Phys. Chem. Chem. Phys., 2011, 13, 19298.
[122]W. Liu, S. He, T. Yang, Y. Feng, G. Qian, J. Xu, S. Miao, Appl. Surf. Sci., 2014, 313, 498.
[123]J. Song, G. R. Li, F. Y. Xiong, X. P. Gao, J. Mater. Chem., 2012, 22, 20580.
[124]D. Song, M. Li, Y. Jiang, Z. Chen, F. Bai, Y. Li, B. Jiang, J. Photochem. Photobiol., A, 2014, 279, 47.
[125]S. Y. Tai, C. J. Liu, S. W. Chou, F. S. S. Chien, J. Y. Lin, T. W. Lin, J. Mater. Chem., 2012, 22, 24753.
[126]G. Yue, J. Wu, Y. Xiao, M. Huang, J. Lin, J.-Y. Lin, J. Mater. Chem. A, 2013, 1, 1495.
[127]J. Y. Lin, G. Yue, S. Y. Tai, Y. Xiao, H. M. Cheng, F. M. Wang, J. Wu, Mater. Chem. Phys., 2013, 143, 53.
[128]I. A. Ji, H. M. Choi, J. H. Bang, Mater. Lett., 2014, 123, 51.
[129]H. Chen, Y. Xie, H. Cui, W. Zhao, X. Zhu, Y. Wang, X. Lu, F. Huang, Chem. Commun., 2014, 50, 4475.
[130]L. L. T. Lee, J. He, B. Wang, Y. Ma, K. Y. Wong, Q. Li, X. Xiao, T. Chen, Sci. Rep., 2014, 4, 4063.
[131]S. Yun, H. Zhou, L. Wang, H. Zhang, T. Ma, J. Mater. Chem. A, 2013, 1, 1341.
[132]S. Yun, H. Pu, J. Chen, A. Hagfeldt, T. Ma, ChemSusChem, 2014, 7, 442.
[133]S. Yun, L. Wang, W. Guo, T. Ma, Electrochem. Commun., 2012, 24, 69.
[134]S. Yun, M. Wu, Y. Wang, J. Shi, X. Lin, A. Hagfeldt, T. Ma, ChemSusChem, 2013, 6, 411.
[135]Y. Li, H. Wang, Q. Feng, G. Zhou, Z. S. Wang, ACS Appl. Mater. Interfaces, 2013, 5, 8217.
[136]Y. Li, Q. Feng, H. Wang, G. Zhou, Z. S. Wang, J. Mater. Chem. A, 2013, 1, 6342.
[137]M. Wu, L. Mu, Y. Wang, Y. N. Lin, H. Guo, T. Ma, J. Mater. Chem. A, 2013, 1, 7519.
[138]J. S. Jang, D. J. Ham, E. Ramasamy, J. Lee, J. S. Lee, Chem. Commun., 2010, 46, 8600.
[139]I. Jeong, J. Lee, K. L. Vincent Joseph, H. I. Lee, J. K. Kim, S. Yoon, J. Lee, Nano Energy, 2014, 9, 392.
[140]L. Cheng, Y. Hou, B. Zhang, S. Yang, J. W. Guo, L. Wu, H. G. Yang, Chem. Commun., 2013, 49, 5945.
[141]M. Wu, X. Lin, A. Hagfeldt, T. Ma, Chem. Commun., 2011, 47, 4535.
[142]M. Wu, X. Lin, L. Wang, W. Guo, Y. Wang, J. Xiao, A. Hagfeldt, T. Ma, J. Phys. Chem. C, 2011, 115, 22598.
[143]H. Zhou, Y. Shi, L. Wang, H. Zhang, C. Zhao, A. Hagfeldt, T. Ma, Chem. Commun., 2013, 49, 7626.
[144]H. Zhou, Y. Shi, Q. Dong, Y. Wang, C. Zhu, L. Wang, N. Wang, Y. Wei, S. Tao, T. Ma, J. Mater. Chem. A, 2014, 2, 4347.
[145]S. Li, Z. Chen, W. Zhang, Mater. Lett., 2012, 72, 22.
[146]J. Wu, G. Yue, Y. Xiao, M. Huang, J. Lin, L. Fan, Z. Lan, J. Y. Lin, ACS Appl. Mater. Interfaces, 2012, 4, 6530.
[147]G. Yue, J. Wu, J.-Y. Lin, Y. Xiao, S.-Y. Tai, J. Lin, M. Huang, Z. Lan, Carbon, 2013, 55, 1.
[148]I. Jeong, C. Jo, A. Anthonysamy, J. M. Kim, E. Kang, J. Hwang, E. Ramasamy, S. W. Rhee, J. K. Kim, K. S. Ha, K. W. Jun, J. Lee, ChemSusChem, 2013, 6, 299.
[149]Y. Hu, Z. Zheng, H. Jia, Y. Tang, L. Zhang, J. Phys. Chem. C, 2008, 112, 13037.
[150]Y. C. Wang, D. Y. Wang, Y. T. Jiang, H. A. Chen, C. C. Chen, K. C. Ho, H. L. Chou, C. W. Chen, Angew. Chem. Int. Ed., 2013, 52, 6694.
[151]Q. H. Huang, T. Ling, S. Z. Qiao, X. W. Du, J. Mater. Chem. A, 2013, 1, 11828.
[152]Z. Wei, Y. Qiu, H. Chen, K. Yan, Z. Zhu, Q. Kuang, S. Yang, J. Mater. Chem. A, 2014, 2, 5508.
[153]S. Shukla, N. H. Loc, P. P. Boix, T. M. Koh, R. R. Prabhakar, H. K. Mulmudi, J. Zhang, S. Chen, C. F. Ng, C. H. A. Huan, N. Mathews, T. Sritharan, Q. Xiong, ACS Nano, 2014, 8, 10597.
[154]Y. Liao, K. Pan, L. Wang, Q. Pan, W. Zhou, X. Miao, B. Jiang, C. Tian, G. Tian, G. Wang, H. Fu, ACS Appl. Mater. Interfaces, 2013, 5, 3663.
[155]H. Xu, C. Zhang, Z. Wang, S. Pang, X. Zhou, Z. Zhang, G. Cui, J. Mater. Chem. A, 2014, 2, 4676.
[156]Y. Hou, D. Wang, X. H. Yang, W. Q. Fang, B. Zhang, H. F. Wang, G. Z. Lu, P. Hu, H. J. Zhao, H. G. Yang, Nat. Commun., 2013, 4, 1583.
[157]L. Wang, Y. Shi, Y. Wang, H. Zhang, H. Zhou, Y. Wei, S. Tao, T. Ma, Chem. Commun., 2014, 50, 1701.
[158]L. Wang, Y. Shi, H. Zhang, X. Bai, Y. Wang, T. Ma, J. Mater. Chem. A, 2014, 2, 15279.
[159]W. Wang, X. Pan, W. Liu, B. Zhang, H. Chen, X. Fang, J. Yao, S. Dai, Chem. Commun., 2014, 50, 2618.
[160]S. Huang, Q. He, W. Chen, Q. Qiao, J. Zai, X. Qian, Chem. Eur. J., 2015, 21, 4085.
[161]M. Wang, A. M. Anghel, B. t. Marsan, N.-L. C. Ha, N. Pootrakulchote, S. M. Zakeeruddin, M. Grätzel, J. Am. Chem. Soc., 2009, 131, 15976.
[162]J. Y. Lin, J. H. Liao, S. W. Chou, Electrochim. Acta, 2011, 56, 8818.
[163]C.-W. Kung, H.-W. Chen, C.-Y. Lin, K.-C. Huang, R. Vittal, K.-C. Ho, ACS Nano, 2012, 6, 7016.
[164]H. K. Mulmudi, S. K. Batabyal, M. Rao, R. R. Prabhakar, N. Mathews, Y. M. Lam, S. G. Mhaisalkar, Phys. Chem. Chem. Phys., 2011, 13, 19307.
[165]S. H. Chang, M. D. Lu, Y. L. Tung, H. Y. Tuan, ACS Nano, 2013, 7, 9443.
[166]H. W. Chen, C. W. Kung, C. M. Tseng, T. C. Wei, N. Sakai, S. Morita, M. Ikegami, T. Miyasaka, K. C. Ho, J. Mater. Chem. A, 2013, 1, 13759.
[167]G. Wang, J. Zhang, S. Kuang, S. Liu, S. Zhuo, J. Power Sources, 2014, 269, 473.
[168]J. Y. Lin, J. H. Liao, T. Y. Hung, Electrochem. Commun., 2011, 13, 977.
[169]P. Sudhagar, S. Nagarajan, Y. G. Lee, D. Song, T. Son, W. Cho, M. Heo, K. Lee, J. Won, Y. S. Kang, ACS Appl. Mater. Interfaces, 2011, 3, 1838.
[170]Y. Xiao, W. Y. Wang, S. W. Chou, T. W. Lin, J. Y. Lin, J. Power Sources, 2014, 266, 448.
[171]J. T. Park, C. S. Lee, J. H. Kim, Nanoscale, 2015, 7, 670.
[172]J. Burschka, V. Brault, S. Ahmad, L. Breau, M. K. Nazeeruddin, B. Marsan, S. M. Zakeeruddin, M. Grätzel, Energ Environ. Sci., 2012, 5, 6089.
[173]F. Gong, H. Wang, X. Xu, G. Zhou, Z. S. Wang, J. Am. Chem. Soc., 2012, 134, 10953.
[174]Z. Zhang, S. Pang, H. Xu, Z. Yang, X. Zhang, Z. Liu, X. Wang, X. Zhou, S. Dong, X. Chen, L. Gu, G. Cui, RSC Adv., 2013, 3, 16528.
[175]H. Sun, L. Zhang, Z. S. Wang, J. Mater. Chem. A, 2014, 2, 16023.
[176]J. Guo, Y. Shi, Y. Chu, T. Ma, Chem. Commun., 2013, 49, 10157.
[177]Q. W. Jiang, G. R. Li, S. Liu, X. P. Gao, J. Phys. Chem. C, 2010, 114, 13397.
[178]G. H. Guai, M. Y. Leiw, C. M. Ng, C. M. Li, Adv. Energy Mater., 2012, 2, 334.
[179]R. Bajpai, S. Roy, N. Koratkar, D. S. Misra, Carbon, 2013, 56, 56.
[180]Y. Y. Dou, G. R. Li, J. Song, X. P. Gao, Phys. Chem. Chem. Phys., 2012, 14, 1339.
[181]M. S. Wu, J. F. Wu, Chem. Commun., 2013, 49, 10971.
[182]H. Sun, D. Qin, S. Huang, X. Guo, D. Li, Y. Luo, Q. Meng, Energy Environ. Sci., 2011, 4, 2630.
[183]X. Sun, J. Dou, F. Xie, Y. Li, M. Wei, Chem. Commun., 2014, 50, 9869.
[184]W. Zhao, T. Lin, S. Sun, H. Bi, P. Chen, D. Wan, F. Huang, J. Mater. Chem. A, 2013, 1, 194.
[185]W. Zhao, X. Zhu, H. Bi, H. Cui, S. Sun, F. Huang, J. Power Sources, 2013, 242, 28.
[186]Y. Xiao, G. Han, H. Zhou, Y. Li, J. Y. Lin, Electrochim. Acta, 2015, 155, 103.
[187]G. Yue, F. Li, F. Tan, G. Li, C. Chen, J. Wu, RSC Adv., 2014, 4, 64068.
[188]X. Yang, J. Luo, L. Zhou, B. Yang, X. Zuo, G. Li, H. Tang, H. Zhang, M. Wu, Y. Ma, S. Jin, Z. Sun, X. Chen, Mater. Lett., 2014, 136, 241.
[189]W. S. Chi, J. W. Han, S. Yang, D. K. Roh, H. Lee, J. H. Kim, Chem. Commun., 2012, 48, 9501.
[190]H. Bi, W. Zhao, S. Sun, H. Cui, T. Lin, F. Huang, X. Xie, M. Jiang, Carbon, 2013, 61, 116.
[191]Z. Li, F. Gong, G. Zhou, Z. S. Wang, J. Phys. Chem. C, 2013, 117, 6561.
[192]Y. Xiao, J. Wu, J. Lin, G. Yue, J. Lin, M. Huang, Y. Huang, Z. Lan, L. Fan, J. Mater. Chem. A, 2013, 1, 13885.
[193]G. Yue, F. Tan, F. Li, C. Chen, W. Zhang, J. Wu, Q. Li, Electrochim. Acta, 2014, 149, 117.
[194]J. Y. Lin, W. Y. Wang, Y. T. Lin, S. W. Chou, ACS Appl. Mater. Interfaces, 2014, 6, 3357.
[195]J. Song, G. R. Li, C. Y. Wu, X. P. Gao, J. Power Sources, 2014, 266, 464.
[196]Z. Ku, X. Li, G. Liu, H. Wang, Y. Rong, M. Xu, L. Liu, M. Hu, Y. Yang, H. Han, J. Mater. Chem. A, 2013, 1.
[197]F. Gong, X. Xu, Z. Li, G. Zhou, Z. S. Wang, Chem. Commun., 2013, 49, 1437.
[198]C. T. Lee, J. D. Peng, C. T. Li, Y. L. Tsai, R. Vittal, K. C. Ho, Nano Energy, 2014, 10, 201.
[199]X. Shuai, W. Shen, Z. Hou, S. Ke, C. Xu, C. Jiang, Nanoscale Res. Lett., 2014, 9, 513.
[200]J. K. Sharma, M. S. Akhtar, S. Ameen, P. Srivastava, G. Singh, J. Alloys Compd., 2015, 632, 321.
[201]J. Xu, X. Yang, Q. Yang, W. Zhang, C. S. Lee, ACS Appl. Mater. Interfaces, 2014, 6, 16352.
[202]X. Q. Chen, Z. Li, Y. Bai, Q. Sun, L. Z. Wang, S. X. Dou, Chem. Eur. J., 2015, 21, 1055.
[203]C. V. V. M. Gopi, M. Venkata-Haritha, S. K. Kim, S. S. Rao, D. Punnoose, H. J. Kim, RSC Adv., 2015, 5, 2963.
[204]H. Wang, W. Wei, Y. H. Hu, J. Mater. Chem. A, 2013, 1, 6622.
[205]S. Xu, Y. Luo, Z. Xiao, W. Zhong, Y. Luo, Electrochim. Acta, 2013, 114, 574.
[206]A. Shit, S. Chatterjee, A. K. Nandi, Phys. Chem. Chem. Phys., 2014, 16, 20079.
[207]D. Song, M. Li, F. A. N. Bai, Y. Li, Y. Jiang, B. Jiang, Funct. Mater. Lett., 2013, 6, 1350048.
[208]D. Song, M. Li, Y. Li, X. Zhao, B. Jiang, Y. Jiang, ACS Appl. Mater. Interfaces, 2014, 6, 7126.
[209]Y. L. Tsai, C. T. Li, T. Y. Huang, C. T. Lee, C. Y. Lin, C. W. Chu, R. Vittal, K. C. Ho, ChemElectroChem, 2014, 1, 1031.
[210]W. R. Erwin, L. Oakes, S. Chatterjee, H. F. Zarick, C. L. Pint, R. Bardhan, ACS Appl. Mater. Interfaces, 2014, 6, 9904.
[211]X. Chen, Y. Hou, B. Zhang, X. H. Yang, H. G. Yang, Chem. Commun., 2013, 49, 5793.
[212]B. Yang, X. Zuo, H. Xiao, L. Zhou, X. Yang, G. Li, M. Wu, Y. Ma, S. Jin, X. Chen, Mater. Lett., 2014, 133, 197.
[213]P. Ramasamy, P. Manivasakan, J. Kim, CrystEngComm, 2015, 17, 807.
[214]H. Zhang, L. Yang, Z. Liu, M. Ge, Z. Zhou, W. Chen, Q. Li, L. Liu, J. Mater. Chem., 2012, 22, 18572.
[215]J. Wang, Z. Liu, S. Yuan, L. Liu, Z. Zhou, W. Chen, Aust. J. Chem., 2012, 65, 1342.
[216]G. Li, X. Chen, G. Gao, Nanoscale, 2014, 6, 3283.
[217]X. Q. Zuo, X. Yang, L. Zhou, B. Yang, G. Li, H. B. Tang, H. J. Zhang, M. Z. Wu, Y. Q. Ma, S. W. Jin, RSC Adv., 2014, 4, 57412.
[218]H. Zhang, M. Ge, L. Yang, Z. Zhou, W. Chen, Q. Li, L. Liu, J. Phys. Chem. C, 2013, 117, 10285.
[219]L. Yi, Y. Liu, N. Yang, Z. Tang, H. Zhao, G. Ma, Z. Su, D. Wang, Energy Environ. Sci., 2013, 6, 835.
[220]Z. Zhang, X. Zhang, H. Xu, Z. Liu, S. Pang, X. Zhou, S. Dong, X. Chen, G. Cui, ACS Appl. Mater. Interfaces, 2012, 4, 6242.
[221]J. Yang, C. Bao, J. Zhang, T. Yu, H. Huang, Y. Wei, H. Gao, G. Fu, J. Liu, Z. Zou, Chem. Commun., 2013, 49, 2028.
[222]M. Liu, G. Li, X. Chen, ACS Appl. Mater. Interfaces, 2014, 6, 2604.
[223]R. K. Bhosale, S. A. Agarkar, I. Agrawal, R. A. Naphade, S. Ogale, RSC Adv., 2014, 4, 21989.
[224]X. Xin, M. He, W. Han, J. Jung, Z. Lin, Angew. Chem. Int. Ed., 2011, 50, 11739.
[225]S. J. Yuan, Z. J. Zhou, Z. L. Hou, W. H. Zhou, R. Y. Yao, Y. Zhao, S. X. Wu, Chem. Eur. J., 2013, 19, 10107.
[226]Y. Xie, C. Zhang, F. Yue, Y. Zhang, Y. Shi, T. Ma, RSC Adv., 2013, 3, 23264.
[227]Y. Liu, F. Huang, Y. Xie, H. Cui, W. Zhao, C. Yang, N. Dai, J. Phys. Chem. C, 2013, 117, 10296.
[228]J. Kong, Z. J. Zhou, M. Li, W. H. Zhou, S. J. Yuan, R. Y. Yao, Y. Zhao, S. X. Wu, Nano Res. Lett., 2013, 8, 464.
[229]M. S. Fan, J. H. Chen, C. T. Li, K. W. Cheng, K. C. Ho, J. Mater. Chem. A, 2015, 3, 562.
[230]L. Bai, J. N. Ding, N. Y. Yuan, H. W. Hu, Y. Li, X. Fang, Mater. Lett., 2013, 112, 219.
[231]J. He, L. T. Lee, S. Yang, Q. Li, X. Xiao, T. Chen, ACS Appl. Mater. Interfaces, 2014, 6, 2224.
[232]B. B. Tang, M. X. Guo, W. Jiang, S. H. Yin, M. X. Zhang, L. Wang, Y. M. Zhang, L. Zheng, Y. Q. Meng, J. Inorg. Mater., 2014, 29, 1133.
[233]A. Banerjee, K. K. Upadhyay, S. Bhatnagar, M. Tathavadekar, U. Bansode, S. Agarkar, S. B. Ogale, RSC Adv., 2014, 4, 8289.
[234]Z. Shi, K. Deng, L. Li, Sci. Rep., 2015, 5, 9317.
[235]L. Chen, Y. Zhou, H. Dai, T. Yu, J. Liu, Z. Zou, Nano Energy, 2015, 11, 697.
[236]X. Zheng, J. Guo, Y. Shi, F. Xiong, W. H. Zhang, T. Ma, C. Li, Chem. Commun., 2013, 49, 9645.
[237]X. Xia, W. Wu, J. Ma, T. Liu, D. Fei, X. Liu, C. Gao, RSC Adv., 2015, 5, 15772.
[238]K. Ramasamy, B. Tien, P. S. Archana, A. Gupta, Mater. Lett., 2014, 124, 227.
[239]Q. Li, J. Wu, Q. Tang, Z. Lan, P. Li, J. Lin, L. Fan, Electrochem. Commun., 2008, 10, 1299.
[240]L. Hao, H. Niu, P. Zhao, L. Zhang, Y. Sun, C. Wang, X. Bai, W. Wang, Electrochim. Acta, 2012, 68, 103.
[241]C. Menaka, P. Manisankar, T. Stalin, J. Appl. Polm. Sci., 2015, 132, DOI: 10.1002/app.42041.
[242]Q. Tai, B. Chen, F. Guo, S. Xu, H. Hu, B. Sebo, X. Z. Zhao, ACS Nano, 2011, 5, 3795.
[243]J. Wu, Y. Li, Q. Tang, G. Yue, J. Lin, M. Huang, L. Meng, Sci. Rep., 2014, 4, 4028.
[244]P. Xu, Q. Tang, H. Chen, B. He, Electrochim. Acta, 2014, 125, 163.
[245]Z. Li, B. Ye, X. Hu, X. Ma, X. Zhang, Y. Deng, Electrochem. Commun., 2009, 11, 1768.
[246]S. Ameen, M. S. Akhtar, Y. S. Kim, O.-B. Yang, H. Shin, J. Phys. Chem. C, 2010, 114, 4760.
[247]L. C. P. Almeida, A. D. Gonçalves, J. E. Benedetti, P. C. M. L. Miranda, L. C. Passoni, A. F. Nogueira, J. Mater. Sci., 2010, 45, 5054.
[248]S. S. Jeon, C. Kim, T. H. Lee, Y. W. Lee, K. Do, J. Ko, S. S. Im, J. Phys. Chem. C, 2012, 116, 22743.
[249]Y. Qiu, S. Lu, S. Wang, X. Zhang, S. He, T. He, J. Power Sources, 2014, 253, 300.
[250]Y. W. Lee, K. Do, T. H. Lee, S. S. Jeon, W. J. Yoon, C. Kim, J. Ko, S. S. Im, Synth. Met., 2013, 174, 6.
[251]S. Cho, S. H. Hwang, C. Kim, J. Jang, J. Mater. Chem., 2012, 22, 12164.
[252]K. h. Huang, C. W. Hu, C. Y. Tseng, C. Y. Liu, M. H. Yeh, H. Y. Wei, C. C. Wang, R. Vittal, C. W. Chu, K. C. Ho, J. Mater. Chem., 2012, 22, 14727.
[253]Q. Qin, R. Zhang, Electrochim. Acta, 2013, 89, 726.
[254]K. H. Park, S. J. Kim, R. Gomes, A. Bhaumik, Chem. Eng. J., 2015, 260, 393.
[255]T. T. Duong, T. Q. Tuan, D. V. A. Dung, N. V. Quy, D. L. Vu, M. H. Nam, N. D. Chien, S. G. Yoon, A. T. Le, Curr. Appl. Phys., 2014, 14, 1607.
[256]Z. Lan, J. Wu, S. Gao, J. Lin, M. Huang, X. Chen, Polym. Adv. Technol., 2014, 25, 343.
[257]Q. Tang, H. Cai, S. Yuan, X. Wang, J. Mater. Chem. A, 2013, 1, 317.
[258]H. Wang, Q. Feng, F. Gong, Y. Li, G. Zhou, Z. S. Wang, J. Mater. Chem. A, 2013, 1, 97.
[259]B. He, Q. Tang, M. Wang, H. Chen, S. Yuan, ACS Appl. Mater. Interfaces, 2014, 6, 8230.
[260]H. Cai, Q. Tang, B. He, M. Wang, S. Yuan, H. Chen, Electrochim. Acta, 2014, 121, 136.
[261]H. Sun, Y. Luo, Y. Zhang, D. Li, Z. Yu, K. Li, Q. Meng, J. Phys. Chem. C, 2010, 114, 11673.
[262]P. W. Chen, C. P. Lee, L. Y. Chang, J. Chang, M. H. Yeh, L. Y. Lin, R. Vittal, J. J. Lin, K. C. Ho, RSC Adv., 2013, 3, 5871.
[263]H. Niu, S. Qin, X. Mao, S. Zhang, R. Wang, L. Wan, J. Xu, S. Miao, Electrochim. Acta, 2014, 121, 285.
[264]B. He, Q. Tang, T. Liang, Q. Li, J. Mater. Chem. A, 2014, 2, 3119.
[265]M. R. Al-bahrani, X. Xu, W. Ahmad, X. Ren, J. Su, Z. Cheng, Y. Gao, Mater. Res. Bull., 2014, 59, 272.
[266]M. Wang, Q. Tang, H. Chen, B. He, Electrochim. Acta, 2014, 125, 510.
[267]J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin, S. Hao, J. Power Sources, 2008, 181, 172.
[268]S. S. Jeon, C. Kim, J. Ko, S. S. Im, J. Mater. Chem., 2011, 21, 8146.
[269]X. Zhang, S. Wang, S. Lu, J. Su, T. He, J. Power Sources, 2014, 246, 491.
[270]S. Lu, X. Zhang, T. Feng, R. Han, D. Liu, T. He, J. Power Sources, 2015, 274, 1076.
[271]T. Peng, W. Sun, C. Huang, W. Yu, B. Sebo, Z. Dai, S. Guo, X. Z. Zhao, ACS Appl. Mater. Interfaces, 2014, 6, 14.
[272]L. Y. Chang, C. T. Li, Y. Y. Li, C. P. Lee, M. H. Yeh, K. C. Ho, J. J. Lin, Electrochim. Acta, 2015, 155, 263.
[273]G. Yue, J. Wu, Y. Xiao, J. Lin, M. Huang, Z. Lan, J. Phys. Chem. C, 2012, 116, 18057.
[274]F. Gong, X. Xu, G. Zhou, Z. S. Wang, Phys. Chem. Chem. Phys., 2013, 15, 546.
[275]L. Chen, C. X. Guo, Q. Zhang, Y. Lei, J. Xie, S. Ee, G. Guai, Q. Song, C. M. Li, ACS Appl. Mater. Interfaces, 2013, 5, 2047.
[276]G. Yue, X. a. Zhang, L. Wang, F. Tan, J. Wu, Q. Jiang, J. Lin, M. Huang, Z. Lan, Electrochim. Acta, 2014, 129, 229.
[277]S. Peng, L. Tian, J. Liang, S. G. Mhaisalkar, S. Ramakrishna, ACS Appl. Mater. Interfaces, 2012, 4, 397.
[278]B. He, Q. Tang, J. Luo, Q. Li, X. Chen, H. Cai, J. Power Sources, 2014, 256, 170.
[279]G. Yue, L. Wang, X. a. Zhang, J. Wu, Q. Jiang, W. Zhang, M. Huang, J. Lin, Energy, 2014, 67, 460.
[280]G. Liu, X. Li, H. Wang, Y. Rong, Z. Ku, M. Xu, L. Liu, M. Hu, Y. Yang, H. Han, J. Mater. Chem. A, 2013, 1, 1475.
[281]M. Towannang, S. Pimanpang, A. Thiangkaew, P. Rutphonsan, W. Maiaugree, V. Harnchana, W. Jarernboon, V. Amornkitbamrung, Synth. Met., 2012, 162, 1954.
[282]C. Bora, C. Sarkar, K. J. Mohan, S. Dolui, Electrochim. Acta, 2015, 157, 225.
[283]N. Torabi, A. Behjat, F. Jafari, Thin Solid Films, 2014, 573, 112.
[284]T. L. Zhang, H. Y. Chen, C. Y. Su, D. B. Kuang, J. Mater. Chem. A, 2013, 1, 1724.
[285]X. Yin, F. Wu, N. Fu, J. Han, D. Chen, P. Xu, M. He, Y. Lin, ACS Appl. Mater. Interfaces, 2013, 5, 8423.
[286]K. M. Lee, P. Y. Chen, C. Y. Hsu, J. H. Huang, W. H. Ho, H. C. Chen, K. C. Ho, J. Power Sources, 2009, 188, 313.
[287]Y. Saito, T. Kitamura, Y. Wada, S. Yanagida, Chem. Lett. , 2002, 1060.
[288]J. Xia, N. Masaki, K. Jiang, S. Yanagida, J. Mater. Chem., 2007, 17, 2845.
[289]J. M. Pringle, V. Armel, D. R. MacFarlane, Chem. Commun., 2010, 46, 5367.
[290]S. Ahmad, J. H. Yum, Z. Xianxi, M. Grätzel, H.-J. Butt, M. K. Nazeeruddin, J. Mater. Chem., 2010, 20, 1654.
[291]T. H. Lee, K. Do, Y. W. Lee, S. S. Jeon, C. Kim, J. Ko, S. S. Im, J. Mater. Chem., 2012, 22, 21624.
[292]C. Yuan, S. Guo, S. Wang, L. Liu, W. Chen, E. Wang, Ind. Eng. Chem. Res., 2013, 52, 6694.
[293]S. Ahmad, J. H. Yum, H. J. Butt, M. K. Nazeeruddin, M. Gratzel, ChemPhysChem, 2010, 11, 2814.
[294]Y. Xiao, J. Wu, G. Yue, J. Lin, M. Huang, Z. Lan, L. Fan, Electrochim. Acta, 2012, 85, 432.
[295]C. W. Kung, Y. H. Cheng, H. W. Chen, R. Vittal, K. C. Ho, J. Mater. Chem. A, 2013, 1, 10693.
[296]S. Y. Heo, J. K. Koh, J. K. Kim, C. S. Lee, J. H. Kim, Electrochim. Acta, 2014, 137, 34.
[297]J. Kwon, V. Ganapathy, Y. H. Kim, K. D. Song, H. G. Park, Y. Jun, P. J. Yoo, J. H. Park, Nanoscale, 2013, 5, 7838.
[298]G. Guan, Z. Yang, L. Qiu, X. Sun, Z. Zhang, J. Ren, H. Peng, J. Mater. Chem. A, 2013, 1, 13268.
[299]J. Luo, H. j. Niu, W. j. Wu, C. Wang, X. d. Bai, W. Wang, Solid State Sci., 2012, 14, 145.
[300]H. Jiang, S. Sakurai, K. Kobayashi, Electrochem. Solid-State Lett., 2009, 12, F13.
[301]K. S. Lee, Y. Lee, J. Y. Lee, J. H. Ahn, J. H. Park, ChemSusChem, 2012, 5, 379.
[302]K. M. Lee, W. H. Chiu, H. Y. Wei, C. W. Hu, V. Suryanarayanan, W. F. Hsieh, K. C. Ho, Thin Solid Films, 2010, 518, 1716.
[303]H. Kim, G. Veerappan, J. H. Park, Electrochim. Acta, 2014, 137, 164.
[304]N. Balis, T. Makris, V. Dracopoulos, T. Stergiopoulos, P. Lianos, J. Power Sources, 2012, 203, 302.
[305]W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, Electrochem. Commun., 2008, 10, 1555.
[306]G. Yue, J. Wu, Y. Xiao, J. Lin, M. Huang, Electrochim. Acta, 2012, 67, 113.
[307]S. Hou, X. Cai, H. Wu, Z. Lv, D. Wang, Y. Fu, D. Zou, J. Power Sources, 2012, 215, 164.
[308]S. Ahmad, T. Bessho, F. Kessler, E. Baranoff, J. Frey, C. Yi, M. Gratzel, M. K. Nazeeruddin, Phys. Chem. Chem. Phys., 2012, 14, 10631.
[309]K. Funabiki, Y. Saito, M. Doi, K. Yamada, Y. Yoshikawa, K. Manseki, Y. Kubota, M. Matsui, Tetrahedron, 2014, 70, 6312.
[310]J. Zhang, H. Long, S. G. Miralles, J. Bisquert, F. Fabregat-Santiago, M. Zhang, Phys. Chem. Chem. Phys., 2012, 14, 7131.
[311]M. H. Yeh, C. L. Sun, J. S. Su, L. Y. Lin, C. P. Lee, C. Y. Chen, C. G. Wu, R. Vittal, K. C. Ho, Carbon, 2012, 50, 4192.
[312]X. Xu, D. Huang, K. Cao, M. Wang, S. M. Zakeeruddin, M. Gratzel, Sci. Rep., 2013, 3, 1489.
[313]L. J. Brennan, M. T. Byrne, M. Bari, Y. K. Gun''ko, Adv. Energy Mater., 2011, 1, 472.
[314]G. Veerappan, K. Bojan, S. W. Rhee, ACS Appl. Mater. Interfaces, 2011, 3, 857.
[315]M. Wu, X. Lin, T. Wang, J. Qiu, T. Ma, Energy Environ. Sci., 2011, 4, 2308.
[316]D. Zhang, X. Li, S. Chen, Z. Sun, X. Jiang Yin, S. Huang, Microchim. Acta, 2011, 174, 73.
[317]J. Balamurugan, R. Thangamuthu, A. Pandurangan, RSC Adv., 2013, 3, 4321.
[318]H. Fang, C. Yu, T. Ma, J. Qiu, Chem. Commun., 2014, 50, 3328.
[319]P. Zhai, T. C. Wei, Y. H. Chang, Y. T. Huang, W. T. Yeh, H. Su, S. P. Feng, Small, 2014, 10, 3347.
[320]X. Zhang, S. Pang, X. Chen, K. Zhang, Z. Liu, X. Zhou, G. Cui, RSC Adv., 2013, 3, 9005.
[321]L. Kavan, J. H. Yum, M. K. Nazeeruddin, M. Grätzel, ACS Nano, 2011, 5, 9171.
[322]S. M. Jung, I. T. Choi, K. Lim, J. Ko, J. C. Kim, J. J. Lee, M. J. Ju, H. K. Kim, J. B. Baek, Chem. Mater., 2014, 26, 3586.
[323]M. J. Ju, J. C. Kim, H. J. Choi, I. T. Choi, S. G. Kim, K. Lim, J. Ko, J. J. Lee, I. Y. Jeon, J. B. Baek, H. K. Kim, ACS Nano, 2013, 7, 5243.
[324]G. Veerappan, W. Kwon, S.-W. Rhee, J. Power Sources, 2011, 196, 10798.
[325]S. H. Park, B. K. Kim, W. J. Lee, J. Power Sources, 2013, 239, 122.
[326]S. I. Takurou N. Murakami, Qing Wang, Md. Khaja Nazeeruddin, Takeru Bessho, Ilkay Cesar, Paul Liska, Robin Humphry-Baker, Pascal Comte, Péter Péchy, and Michael Grätzel, J. Electrochem. Soc., 2006, 153, A2255.
[327]D. Y. Kang, Y. Lee, C. Y. Cho, J. H. Moon, Langmuir, 2012, 28, 7033.
[328]F. Cai, J. Chen, R. Xu, Chem. Lett., 2006, 35, 1266.
[329]Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen, Q. Meng, Electrochem. Commun., 2007, 9, 596.
[330]Y. Gao, L. Chu, M. Wu, L. Wang, W. Guo, T. Ma, J. Photochem. Photobiol., A, 2012, 245, 66.
[331]C. Bu, Y. Liu, Z. Yu, S. You, N. Huang, L. Liang, X. Z. Zhao, ACS Appl. Mater. Interfaces, 2013, 5, 7432.
[332]W. Zeng, G. Fang, T. Han, B. Li, N. Liu, D. Zhao, Z. Liu, D. Wang, X. Zhao, D. Zou, J. Power Sources, 2014, 245, 456.
[333]M. Tathavadekar, M. Biswal, S. Agarkar, L. Giribabu, S. Ogale, Electrochim. Acta, 2014, 123, 248.
[334]X. Cai, Z. Lv, H. Wu, S. Hou, D. Zou, J. Mater. Chem., 2012, 22, 9639.
[335]J. Cong, X. Yang, L. Kloo, L. Sun, Energy Environ. Sci., 2012, 5, 9180.
[336]C. Teng, X. Yang, C. Yuan, C. Li, R. Chen, H. Tian, S. Li, A. Hagfeldt, L. Sun, Org. Lett., 2009, 11, 5542.
[337]V. Armel, J. M. Pringle, M. Forsyth, D. R. Macfarlane, D. L. Officer, P. Wagner, Chem. Commun., 2010, 46, 3146.
[338]G. Oskam, B. V. Bergeron, G. J. Meyer, P. C. Searson, J. Phys. Chem. B, 2001, 105, 6867.
[339]P. Wang, S. M. Zakeeruddin, J.-E. Moser, R. Humphry-Baker, M. Grätzel, J. Am. Chem. Soc., 2004, 126, 7164.
[340]B. V. Bergeron, A. Marton, G. Oskam, G. J. Meyer, J. Phys. Chem. B, 2005, 109, 937.
[341]A. Solangi, A. M. Bond, I. Burgar, A. F. Hollenkamp, M. D. Horne, T. Ruther, C. Zhao, J. Phys. Chem. B, 2011, 115, 6843.
[342]D. Song, M. S. Kang, Y. G. Lee, W. Cho, J. H. Lee, T. Son, K. J. Lee, S. Nagarajan, P. Sudhagar, J. H. Yum, Y. S. Kang, Phys. Chem. Chem. Phys., 2012, 14, 469.
[343]F. Bella, A. Sacco, G. P. Salvador, S. Bianco, E. Tresso, C. F. Pirri, R. Bongiovanni, J. Phys. Chem. C, 2013, 117, 20421.
[344]P. V. Kamat, J. Phys. Chem. C, 2008, 112, 18737.
[345]T. Daeneke, T. H. Kwon, A. B. Holmes, N. W. Duffy, U. Bach, L. Spiccia, Nat. Chem., 2011, 3, 211.
[346]T. Daeneke, A. J. Mozer, T. H. Kwon, N. W. Duffy, A. B. Holmes, U. Bach, L. Spiccia, Energy Environ. Sci., 2012, 5, 7090.
[347]S. Caramori, J. Husson, M. Beley, C. A. Bignozzi, R. Argazzi, P. C. Gros, Chem. Eur. J., 2010, 16, 2611.
[348]S. Hattori, Y. Wada, S. Yanagida, S. Fukuzumi, J. Am. Chem. Soc., 2005, 127, 9648.
[349]Y. Bai, Q. Yu, N. Cai, Y. Wang, M. Zhang, P. Wang, Chem. Commun., 2011, 47, 4376.
[350]T. C. Li, A. M. Spokoyny, C. She, O. K. Farha, C. A. Mirkin, T. J. Marks, J. T. Hupp, J. Am. Chem. Soc., 2010, 132, 4580.
[351]A. M. Spokoyny, T. C. Li, O. K. Farha, C. W. Machan, C. She, C. L. Stern, T. J. Marks, J. T. Hupp, C. A. Mirkin, Angew. Chem. Int. Ed., 2010, 49, 5339.
[352]Z. Zhang, P. Chen, T. N. Murakami, S. M. Zakeeruddin, M. Grätzel, Adv. Funct. Mater., 2008, 18, 341.
[353]G. Gryn''ova, J. M. Barakat, J. P. Blinco, S. E. Bottle, M. L. Coote, Chem. Eur. J., 2012, 18, 7582.
[354]F. Kato, N. Hayashi, T. Murakami, C. Okumura, K. Oyaizu, H. Nishide, Chem. Lett., 2010, 39, 464.
[355]F. Kato, A. Kikuchi, T. Okuyama, K. Oyaizu, H. Nishide, Angew. Chem. Int. Ed., 2012, 51, 10177.
[356]J. Min, J. Won, Y. S. Kang, S. Nagase, J. Photochem. Photobiol. A, 2011, 219, 148.
[357]X. Chen, D. Xu, L. Qiu, S. Li, W. Zhang, F. Yan, J. Mater. Chem. A, 2013, 1, 8759.
[358]T. C. Chu, R. Y. Lin, C. P. Lee, C. Y. Hsu, P. C. Shih, R. Lin, S. R. Li, S. S. Sun, J. T. Lin, R. Vittal, K. C. Ho, ChemSusChem, 2014, 7, 146.
[359]V. K. Vendra, T. Q. Nguyen, T. Druffel, J. B. Jasinski, D. A. Amos, M. K. Sunkara, J. Mater. Chem. A, 2014, 2, 3543.
[360]M. Wang, N. Chamberland, L. Breau, J.-E. Moser, R. Humphry-Baker, B. Marsan, S. M. Zakeeruddin, M. Grätzel, Nat. Chem., 2010, 2, 385.
[361]H. Tian, E. Gabrielsson, Z. Yu, A. Hagfeldt, L. Kloo, L. Sun, Chem. Commun., 2011, 47, 10124.
[362]Y. Liu, J. R. Jennings, Q. Wang, ChemSusChem, 2013, 6, 2124.
[363]Y. Liu, J. R. Jennings, M. Parameswaran, Q. Wang, Energy Environ. Sci., 2011, 4, 564.
[364]H. Tian, Z. Yu, A. Hagfeldt, L. Kloo, L. Sun, J. Am. Chem. Soc., 2011, 133, 9413.
[365]M. Cheng, X. Yang, S. Li, X. Wang, L. Sun, Energy Environ. Sci., 2012, 5, 6290.
[366]M. Cheng, X. Yang, C. Chen, J. Zhao, F. Zhang, L. Sun, Phys. Chem. Chem. Phys., 2013, 15, 15146.
[367]Y. Yonekuta, K. Oyaizu, H. Nishide, Chem. Lett., 2007, 36, 866.
[368]G. Guenter, R. Kenneth, Phys. Chem. Chem. Phys., 2002, 4, 5546.
[369]H. Niedermeyer, C. Ashworth, A. Brandt, T. Welton, P. A. Hunt, Phys. Chem. Chem. Phys., 2013, 15, 11566.
[370]B. Qiu, B. Lin, F. Yan, Polym. Int., 2013, 62, 335.
[371]J. M. Pringle, Phys. Chem. Chem. Phys., 2013, 15, 1339.
[372]C. P. Lee, L. Y. Lin, P. Y. Chen, R. Vittal, K. C. Ho, J. Mater. Chem., 2010, 20, 3619.
[373]J. Chen, T. Peng, W. Shi, R. Li, J. Xia, Electrochim. Acta, 2013, 107, 231.
[374]W. S. Chi, H. Jeon, S. J. Kim, D. J. Kim, J. H. Kim, Macromol. Res., 2013, 21, 315.
[375]H. L. Hsu, C. F. Tien, Y. T. Yang, J. Leu, Electrochim. Acta, 2013, 91, 208.
[376]J. Liu, X. Yang, J. Cong, L. Kloo, L. Sun, Phys. Chem. Chem. Phys., 2012, 14, 11592.
[377]J. Cong, X. Yang, Y. Hao, L. Kloo, L. Sun, RSC Adv., 2012, 2, 3625.
[378]S. Kambe, S. Nakade, T. Kitamura, Y. Wada, S. Yanagida, J. Phys. Chem. B, 2002, 106, 2967.
[379]W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada, S. Yanagida, J. Phys. Chem. B, 2001, 105, 12809.
[380]A. Abate, A. Petrozza, V. Roiati, S. Guarnera, H. Snaith, F. Matteucci, G. Lanzani, P. Metrangolo, G. Resnati, Org. Electron., 2012, 13, 2474.
[381]S. A. Cerneaux, S. M. Zakeeruddin, M. Grätzel, Y. B. Cheng, L. Spiccia, J. Photochem. Photobiol. A, 2008, 198, 186.
[382]M. Zalas, M. Walkowiak, B. Gierczyk, M. Osińska-Broniarz, P. Półrolniczak, G. Schroeder, Electrochim. Acta, 2013, 108, 736.
[383]S. Lee, Y. Jeon, Y. Lim, M. A. Hossain, S. Lee, Y. Cho, H. Ju, W. Kim, Electrochim. Acta, 2013, 107, 675.
[384]S. Lee, Y. Jeon, Y. Lim, Y. Cho, S. Lee, W. Kim, Bull. Korean Chem. Soc., 2013, 34, 2583.
[385]S. H. Lee, Y. D. Lim, D. W. Seo, M. A. Hossain, H. H. Jang, H. C. Lee, W. G. Kim, J. Ind. and Eng. Chem., 2013, 19, 322.
[386]A. Bard, L. Faulkner, Electrochemical Methods: Fundamentals and Applications. 2nd ed.; John Wiley & Sons, Inc.: 2001.
[387]K. C. Huang, Y. H. Chang, C. Y. Chen, C. Y. Liu, L. Y. Lin, R. Vittal, C. G. Wu, K. F. Lin, K. C. Ho, J. Mater. Chem., 2011, 21, 18467.
[388]Q. Wang, S. Ito, M. Grätzel, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, T. Bessho, H. Imai, J. Phys. Chem. B, 2006, 110, 25210.
[389]A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev., 2010, 110, 6595.
[390]Materials Studio 7.0; Accelrys, Inc. San Diego, CA. www.accelrys.com.
[391]D. Vanderbilt, Phys. Rev. B, 1990, 41, 7892.
[392]J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
[393]K. M. Lee, P. Y. Chen, C. P. Lee, K. C. Ho, J. Power Sources, 2009, 190, 573.
[394]W. Domagala, D. Palutkiewicz, D. Cortizo-Lacalle, A. L. Kanibolotsky, P. J. Skabara, Opt. Mater., 2011, 33, 1405.
[395]S. Ahmad, M. Deepa, S. Singh, Langmuir, 2007, 23, 11430.
[396]N. Yamanaka, R. Kawano, W. Kubo, N. Masaki, T. Kitamura, Y. Wada, M. Watanabe, S. Yanagida, J. Phys. Chem. B, 2007, 111, 4763.
[397]E. G. Rozantzev, M. B. Neiman, Tetrahedron, 1964, 20, 131.
[398]W. S. Chi, J. K. Koh, S. H. Ahn, J. S. Shin, H. Ahn, D. Y. Ryu, J. H. Kim, Electrochem. Commun., 2011, 13, 1349.
[399]F. B. Tutwiler, R. L. McKee, J. Am. Chem. Soc., 1954, 76, 6342.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文