跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/26 00:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高玉軒
研究生(外文):Yu-Hsuan Kao
論文名稱:三苯胺及咔唑衍生物與不同比例聚乙二醇的共聚氨酯高分子合成及其於鈣鈦礦太陽能電池應用上之研究
論文名稱(外文):Synthesis and Characteristics of Polyethylene Glycol Copolymer Using Triphenylamine and Carbazole Derivatives for Perovskite Solar Cells
指導教授:謝國煌謝國煌引用關係
指導教授(外文):Kuo-Huang Hsieh
口試委員:林江珍莊清男陳思賢
口試委員(外文):Jiang-Jen LinChing-Nan ChuangSzu-Hsien Chen
口試日期:2015-07-06
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:87
中文關鍵詞:鈣鈦礦太陽能電池三苯胺咔唑聚乙二醇聚氨酯電洞傳遞層
外文關鍵詞:Perovskite solar cellTriphenylamineCarbazolePolyethylene glycolPoly urethaneHole transport layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究乃合成以三苯胺(Triphenylamine)和咔唑(Carbazole)的衍生物為單體和不同分子量的聚乙二醇(Polyethylene glycol)形成聚氨酯,利用具有良好電洞傳輸能力的三苯胺小分子,以及有著不錯的電洞傳導能力且具有相對較高最高填電子軌域能階(HOMO)的咔唑小分子,將其改質成二醇小分子並合成聚氨酯高分子,將其優秀的成膜性應用在元件的電洞傳遞層,再透過聚乙二醇和聚氨酯材料共聚,利用其優秀的離子傳遞性,進而提升鈣鈦礦太陽能電池元件的光電流(Photo-current)、開環電壓(Open-Circuit voltage)及填充因子(Fill factor),並提高光電轉換效率(Power conversion efficiency, PCE)。並將其鈣鈦礦太陽能電池電洞層之傳遞材料
本研究利用示差熱掃描分析儀(Differential scanning calorimetry, DSC)分析所合成之高分子化合物的熱性質,確保其能夠因應太陽能電池元件製作中的各種製程;利用紫外光/可見光分光光譜儀(UV/Visible spectroscopy, UV-Vis)測量高分子在紫外光-可見光區的吸光範圍及強度,藉以瞭解高分子化合物之吸光範圍,並從溶液薄膜態的差別去探討成膜的好壞;利用循環伏安儀(Cyclic voltammetry, CV)測量高分子的氧化電位以及最高填電子軌域能階,測試其能階是否落在陽極電極和主動層之間,並探討在高分子中導入聚乙二醇共聚對能階的影響。
太陽能電池元件部分,首先嘗試了將共聚氨酯混合在主動層的效果,接著分別比較了三苯胺系列及咔唑系列和不同分子量聚乙二醇應用在元件的效果,探討不同分子量聚乙二醇以及小分子單體對於元件效率的影響;最後使用實驗室之前嘗試在主動層摻入1%的三乙烯四胺(Triethylenetetramine)聚氨酯,當乙二醇平均分子量為200和咔唑小分子衍生物共聚氨酯去取代電洞傳遞層時,有最好的元件效率,可達到 9.23 %,比標準元件的對照組提升了 27.1 %。


In this study, the diol derivatives of Triphenylamine(TPA) and Carbazole were successfully synthesized and polymerized into polyurethane, then co-polymerized with Polyethylene glycol of various average molecular weights to form copolymers. Triphenylamine molecule is widely used in hole transporting material due to its excellent hole-transporting ability; Carbazole molecule has good hole-transporting ability and relatively higher Highest occupied molecular orbital (HOMO); Ethylene glycol can increase the ion transporting ability. To use these copolymers as hole transport materials in perovskite solar cells is expected to lead to the increase of photocurrent, open-circuit voltage, fill factor, and the power conversion efficiency.
To make sure the synthesized copolymers can go through all the manufacturing process of perovskite solar cells, Differential scanning calorimetry (DSC) is used to test the glass transition temperature of them. UV/Visible spectroscopy (UV-vis) helps us know their light-harvesting ability. We can also compare the solution forms with film patterns to analyze the packing and film-forming ability. Cyclic voltammetry (CV) tells us the oxidation potential and the energy level of these copolymers, which can help us check that the material lies on the correct energy level.
For the part of perovskite solar cell device, the copolymer of TPA is first mixed into the active layer. Next, the Spiro-OMeTAD in hole-transport layer is replaced by the PU copolymers. The effect of different average molecular weight of PEGs is then to be discussed. When the average molecular weight of PEG comes to 200, we get the best power conversion efficiency. Finally, the highest power conversion efficiency reaches 9.23 % with active layer blended with PU and Carbazole PU as the hole-transporting material, which is 27.1 % higher than the standard perovskite solar cell.


口試委員會審定書.........................................#
謝誌....................................................I
摘要...................................................II
Abstract..............................................III
目錄................................................…...V
圖目錄................................................VII
表目錄..............................................VIIII
Chapter 1 緒論…………………………………………………………..1
1.1 前言……………………………………………………………………………1
1.2 研究動機………………………………………………………………………4
Chapter 2 文獻回顧……………………………………………………..6
2.1 太陽能電池的種類…………………………………………………………..6
2.2 鈣鈦礦太陽能電池簡介……………………………………………...……….9
2.2.1鈣鈦礦結構……………………………………………………………...9
2.2.2層狀類鈣鈦礦結構…………………………………………………….10
2.2.3鈣鈦礦太陽能電池發展簡介………………………………………….12
2.3太陽能電池簡介─工作原理………………………………………………….16
2.3.1能量轉移機制………………………………………………………….16
2.3.2運作機制……………………………………………………………….17
2.4鈣鈦礦太陽能電池電洞層發展簡介……………………………...………….20
2.4.1鈣鈦礦太陽能電池的能階……………………………...…….……….20
2.4.2電洞傳遞層使用的材料……………………………...…….………….21
2.5 太陽能電池簡介─元件特性參數………………………...…….…………...28
2.5.1 開路電壓………………………...……………………….…………...28
2.5.2 短路電流………………………...……………………….…………...29
2.5.3 填充因子………………………...……………………….…………...29
2.5.4 能量轉換效率……………………………………………….………..30
Chapter 3 實驗部分…………………………………………………………31
3.1 實驗藥品與溶劑……………..………………………………………………31
3.2 實驗儀器……………..………………………………………………………36
3.3合成步驟及數據……..…………………………………………………..……39
3.3.1合成流程圖…..…………………………………………………...……39
3.3.2 各化合物合成方式……………………………………………...……41
Chapter 4 結果與討論……………………………………………………50
4.1 合成動機……………..………………………………………………………50
4.2 光物理性質…………..………………………………………………………51
4.3 電化學性質…………..………………………………………………………56
4.4 熱化學性質…………..………………………………………………………60
4.5 元件製備……………..………………………………………………………63
4.5.1 元件製備過程..……………………………………………….………63
4.5.2 共聚高分子PUTPAPEG200/400/1000使用於主動層(1%)….……...65
4.5.3共聚高分子取代電洞傳遞層………………………………….……66
4.5.4主動層混摻PUTETAPEG200並使用共聚高分子取代電洞傳遞層.71
Chapter 5 結論……………………………………………..…………..74
Chapter 6 參考文獻……………………………………….…………..75


1.BP Statistical Review of World Energy 2010
2.IPCC Climate Change 2014: Synthesis Report
3.International Energy Agency (IEA), “World Energy Statistics” (Paris: Organisation for Economic Co-operation and Development (OECD)/IEA, 2013)
4.蔡素蓉, "綠色生質能向窮人開戰 專家示警新糧荒," 苦勞網 (2008)
5.REN21 the Renewable Energy Policy Network for the 21st Century REN21 10 Year Report
6.D. M. Chapin, C. S. Fuller and G. L. Pearson, "A NEW SILICON P-N JUNCTION PHOTOCELL FOR CONVERTING SOLAR RADIATION INTO ELECTRICAL POWER," Journal of Applied Physics, 676-677 (1954).
7.A. G. Martin, E. Keith and Yoshihi, Solar cell efficiency tables (Ver.38), 565-572 (2011).
8.廖學中,台灣奈米資訊電子報,太陽光電產業的新星—鈣鈦礦太陽能電池 Perovskite - Solar Technology in next Generation, 2014-09 (2014)
9.A.Kojima et al., J. Am. Chem. Soc., 2009, 131, 6050
10.M. M. Lee et al., Science, 2012, 338, 643
11.Attila Nagy, 60 Years Ago Today, Bell Labs Unveiled the Solar Cell
12.A. G. Martin, E. Keith and Yoshihi, Solar cell efficiency tables (Ver.38), 19, 565-572 (2011).
13.Thin Film Physics Group, Laboratory for Solid State Physics, Development of Thin-film Cu(In,Ga)Se2 and CdTe Solar Cells, Prog. Photovolt: Res. Appl. 2004-12, 93–111
14.J. G. Xue, S. Uchida, B. P. Rand and S. R. Forrest, Applied Physics Letters, 2004, 85, 5757-5759.
15.Sony, Dyes Convert Light into Electricity –– The Next Generation Solar Cell, Research and Development on the Dye-Sensitized Solar Cell Taking Full Advantage of the Characteristics of the Materials and Aiming to Open New Markets
16. A. Hagfeldt and M. Gratzel, "LIGHT-INDUCED REDOX REACTIONS IN NANOCRYSTALLINE SYSTEMS," Chemical Reviews, 95 (1), 49-68 (1995).
17.A. Hagfeldt and M. Gratzel, "Molecular photovoltaics," Accounts of Chemical Research, 33 (5), 269-277 (2000).
18.H. Sakamoto, S. Igarashi, K. Niume and M. Nagai, "Highly efficient all solid state dye-sensitized solar cells by the specific interaction of CuI with NCS groups," Organic Electronics, 12 (7), 1247-1252 (2011).
19.D. Hwang, S. M. Jo, D. Y. Kim, V. Armel, D. R. MacFarlane and S.-Y. Jang, "High-Efficiency, Solid-State, Dye-Sensitized Solar Cells Using Hierarchically Structured TiO2 Nanofibers," Acs Applied Materials & Interfaces, 3 (5), 1521-1527 (2011).
20.McSween, Harry Y. Meteorites and Their Parent Planets (2. ed. ed.). Cambridge [u.a.]: Cambridge University Press. ISBN 0-521-58303-9 (1999)
21.Perovskite Mineral Data, Mineralogy Database
22.Desheng Fu and Mitsuru Itoh , Ferroelectricity in Silver Perovskite Oxide Chapter 20, DOI: 10.5772/17261
23.C.M. Combes,P. Dorenbos,C.W.E. van Eijk,J.Y. Gesland,P.A. Rodnyi, Optical and scintillation properties of LiBaF3: Ce crystals, Journal of Luminescence
Volumes 72, June 1997, Pages 753-755
24.Ph. Goldner,F. Pelle,D. Meichenin,F. Auzel, Cooperative luminescence in ytterbium-doped CsCdBr3, Journal of Luminescence, Volume 71, Issue 2, March 1997, Pages 137-150
25.Mark Levy, Crystal Structure and Defect Properties in Ceramic Materials Ch.3 Perovskite Perfect Lattice. (2005)
26.A. Kojima, K. Teshima, T. Miyasaka and Y. Shirai, Meeting Abstracts, 2006, vol. MA2006-02, p. 397.
27.A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Meeting Abstracts, 2007, vol. MA2007-02, p. 352.
28.A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Meeting Abstracts, 2008, vol. MA2008-02, p. 27.
29.A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc., 2009, 131, 6050–6051.
30.J. H. Im, C. R. Lee, J. W. Lee, S. W. Park and N. G. Park, Nanoscale, 2011, 3, 4088–4093.
31.H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Gratzel and N.-G. Park, Sci. Rep., 2012, 2, 591.
32.J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel, Nature, 2013,499, 316–320.
33.M. Liu, M. B. Johnston and H. J. Snaith, Nature, 2013, 501,395–398.
34.J. T. W. Wang, J. M. Ball, E. M. Barea, A. Abate,J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero,J. Bisquert, H. J. Snaith and R. J. Nicholas, Nano Lett.,2014, 14, 724–730.
35.K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate and H. J. Snaith, Energy Environ. Sci., 2014, 7, 1142–1147.
36.H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan,Z. Hong, J. You, Y. Liu and Y. Yang, Science, 2014, 345,542–546.
37.D. A. Skoog , D. M. West and F. J. Holler, "Fundamentals of Analytical Chemistry, " Saunder College Pub. (1988).
38.J. R. Lakowicz, Kluwer Academic (1999)
39.M. Pope and C. E. Swenberg, "Electronic Processes in Organic Crystals and Polymers," Oxford University Press: Oxford, (1999).
40.J. Cornil, D. A. dos Santos, X. Crispin, R. Silbey and J. L. Bredas, "Influence of Interchain Interactions on the Absorption and Luminescence of Conjugated
li mers a d P lymers:  A Qua um-Chemical Characterization," Journal of the American Chemical Society, 120 (6), 1289-1299 (1998).
41.葉名倉 and 蕭全佑, "有機太陽能電池( Organic Solar Cell)" 國科會高瞻自然科學教學資料平台 , (2010).
42.N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, "PHOTOINDUCED ELECTRON-TRANSFER FROM A CONDUCTING POLYMER TO BUCKMINSTERFULLERENE," Science, 258 (5087), 1474-1476 (1992).
43.Zhang, W.; Saliba, M.; Stranks, S. D.; Sun, Y.; Shi, X.; Wiesner, U.;Snaith, H. J. Nano Lett. 2013, 13, 4505.
44.Bi, D.; Moon, S.-J.; Haggman, L.; Boschloo, G.; Yang, L.; Johansson, E. M. J.; Nazeeruddin, M. K.; Gratzel, M.; Hagfeldt, A. RSC Adv. 2013, 3, 18762.
45.Malinkiewicz, O.; Yella, A.; Lee, Y. H.; Espallargas, G. M.; Graetzel, M.; Nazeeruddin, M. K. Bolink, H. J., Nat. Photon. 2014, 8,128.
46.Zheng, L.; Chung, Y. H.; Ma, Y.; Zhang, L.; Xiao, L.; Chen, Z.; Wang, S.; Qu, B.; Gong, Q., Chem. Commun. 2014, 50, 11196.
47.Bo Xu , Esmaeil Sheibani , Peng Liu , Jinbao Zhang , Haining Tian , Nick Vlachopoulos , Gerrit Boschloo , Lars Kloo , Anders Hagfeldt , and Licheng Sun, Adv. Mater. 2014, 26, 6629–6634
48.N. J. Jeon, J. Lee, J. H. Noh, M. K. Nazeeruddin, M. Gr‥atzel and S. I. Seok, J. Am. Chem. Soc., 2013, 135, 19087–19090.
49.Paramaguru Ganesan, Kunwu Fu, Peng Gao, Ines Raabe, Kurt Schenk, Rosario Scopelliti, Jingshan Luo, Lydia H. Wong, Michael Gra‥tzelb and Mohammad Khaja Nazeeruddin, Energy & Environmental Science, 2015, April
50.H. Li, K. Fu, A. Hagfeldt, M. Gr‥atzel, S. G. Mhaisalkar and A. C. Grimsdale, Angew. Chem., Int. Ed., 2014, 53, 4085– 4088.
51.A. Krishna, D. Sabba, H. Li, J. Yin, P. P. Boix, C. Soci, S. G. Mhaisalkar and A. C. Grimsdale, Chem. Sci., 2014, 5, 2702.
52.H. Choi, S. Paek, N. Lim, Y. H. Lee, M. K. Nazeeruddin and J. Ko, Chem.–Eur. J., 2014, 20, 10894–10899.
53.P. Qin, S. Paek, M. I. Dar, N. Pellet, J. Ko, M. Gr‥atzel and M. K. Nazeeruddin, J. Am. Chem. Soc., 2014, 136, 8516–8519.
54.Nam Joong Jeon1*, Jun Hong Noh1*, Woon Seok Yang1, Young Chan Kim1, Seungchan Ryu1, Jangwon Seo1 & Sang Il Seok1,2, Nature, 2014, 6, July, 897-903
55.Heo, Jin HyuckIm, Sang Hyuk Noh, Jun Hong Mandal, Tarak N. Lim, Choong-Sun Chang, Jeong Ah Lee, Yong Hui Kim, Hi-jung Sarkar, Arpita NazeeruddinMd, K. Gratzel, Michael Seok, Sang Il, Nat Photon ,2013, Vol.7, 486-491
56.Ito, S.; Tanaka, S.; Vahlman, H.; Nishino, H.; Manabe, K.; Lund, P.ChemPhysChem 2014, 15, 1194. (2014)
57.G. Puckyte, B. Schmaltz, A. Tomkeviciene, M. Degbia , J.V. Grazulevicius , H. Melhem ,J. Boucle ,F. Tran-Van, Journal of Power Sources ,233, (2013) 86-92
58.Y. Xiao, G. Han, Y. Chang, H. Zhou, M. Li and Y. Li, J. Power Sources, 2014, 267, 1–8.
59.S. Ryu, J. H. Noh, N. J. Jeon, Y. Chan Kim, W. S. Yang, J. Seo and S. I. Seok, Energy Environ. Sci., 2014, 7, 2614–2618.
60.Katharina Neumann and Mukundan Thelakkat. RSC Adv., 2014,4, 43550-43559
61.Christians, J. A.; Fung, R. C.; Kamat, P. V. J. Am. Chem. Soc. 2014,136, 758.
62.K.-C. Wang, P.-S. Shen, M.-H. Li, S. Chen, M.-W. Lin, P. Chen and T.-F. Guo, ACS Appl. Mater. Interfaces, 2014, 6, 11851–11858 (2014)
63.J. Lee, S. Cho and C. Yang, Journal of Materials Chemistry 2011, 21, 8528-8531.
64.M. D. Perez, C. Borek, S. R. Forrest and M. E. Thompson, "Molecular and Morphological Influences on the Open Circuit Voltages of Organic Photovoltaic Devices," Journal of the American Chemical Society, 131 (26), 9281-9286 (2009).
65.K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganas and J. V. Manca, "On the origin of the open-circuit voltage of polymer-fullerene solar cells," Nature Materials, 8 (11), 904-909 (2009).
66.L. Yang, H. Zhou and W. You, "Quantitatively Analyzing the Influence of Side Chains on Photovoltaic Properties of Polymer-Fullerene Solar Cells," Journal of Physical Chemistry C, 114 (39), 16793-16800 (2010).
67.Dianyi Liu, Timothy L. Kelly, "Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques", nature photonics, Vol.8 February, 133-138 (2014)
68.Beek, W. J. E., Wienk, M. M., Kemerink, M., Yang, X. & Janssen, R. A. J. "Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells". J. Phys. Chem. B, 109, 9505–9516 (2005).
69.Pacholski, C., Kornowski, A. & Weller, H. " Self-assembly of ZnO: from nanodots to nanorods". Angew. Chem. Int. Ed. 41, 1188–1191 (2002)
70. Muhammad Fuzail , DSSC at 15% efficiency record (2014)
71.SIGMA-ALDRICH, Organic and Printed Electronics,Organic Photovoltaics
72.Ossila Ltd, Kroto Innovation Centre,Perovskites and Perovskite Solar Cells: An Introduction (2015)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 新穎發藍光材料與利用質子化製備可調變式光源應用於有機高分子發光二極體
2. 新穎發藍光聚芳香醚高分子之合成及其在發光二極體上之應用研究
3. 含1,2,4-三氮唑結構之聚芳香醚之合成和性質
4. 含末端di(2-picolyl)amine辨識基團之共軛聚芴高分子合成及其在螢光化學感測器感應行為探討
5. 含蒽醌結構之聚醚醯亞胺與聚胺酯之合成與性質研究
6. 具唑及三苯胺結構之芳香族聚醯胺、聚醯亞胺及電聚合高分子的合成及光電特性研究
7. 含雙咔唑取代基團之三苯胺及N-苯基咔唑衍生物的電聚合高分子薄膜之製備及其光電特性
8. 高分子側鏈含咔唑、矽苯修飾咔唑或三苯胺基團之合成及其高分子發光二極體之應用
9. 以三嗪為核心之星狀含噻吩共軛衍生物合成及其光伏特性研究
10. 側鏈含咔唑基團之芳香族聚醯胺與末端具咔唑或三苯胺基團的二醯胺及二醯亞胺所衍生的電聚合薄膜之製備及光電特性研究
11. 主鏈含苯氧基與三苯胺結構及側鏈含咔唑基團之新型芳香族聚醯亞胺的合成與電致變色性質之研究
12. 染料敏化太陽能電池吸光性質的計算研究
13. 含有不同雙極基團的電激發光高分子:合成、鑑定、光電性質與應用
14. 側鏈含芳香胺之聚噻吩共軛高分子之合成及太陽能電池應用與光電性質探討
15. 含電子供給和接受基團聚醯亞胺之合成與性質
 
無相關點閱論文