跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 17:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄧有衡
研究生(外文):Yu-Heng Deng
論文名稱:高濃度均勻混摻沸⽯咪唑酯⾻架- 8奈米粒⼦之新穎高效有機無機複合薄膜在乙醇/⽔滲透蒸發上的應⽤
論文名稱(外文):A Novel and Efficient Mixed Matrix Membrane (MMM) for Pervaporation of Ethanol/Water Mixtures owing to High and Homogeneous Loading of Zeolitic Imidazolate Frameworks-8 (ZIF-8) Nanoparticles
指導教授:吳嘉文吳嘉文引用關係
指導教授(外文):Chia-Wen Wu
口試委員:莊瑞鑫童國倫林義呂幸江
口試委員(外文):Ruey-Shin JuangKuo-Lun TungYi-Feng LinShing-jiang Lue
口試日期:2015-06-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:78
中文關鍵詞:滲透蒸發沸⽯咪唑酯骨架聚乙烯醇有機無機複合薄膜交聯劑
外文關鍵詞:pervaporationZIF-8PVAMMMscrosslinker
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了克服有機無機複合薄膜製備上產生的兩大問題:無機粒子與有機相間相分離的現象和高混摻無機粒子下的不良表現性,我們成功利用水相合成的ZIF-8奈米粒子混摻PVA高分子,製備出新穎且有效的有機無機複合薄膜。此製備過程無須將ZIF-8粒子乾燥,合成出的粒子直接加入高分子中形成PVA/ZIF-8 有機無機複合薄膜。添加ZIF-8奈米粒子增加了薄膜在滲透蒸發上乙醇除水的通量和分離因數,若進一步用戊二醛交聯高分子,此表現性可再被改善。結果顯示薄膜經交聯後,在滲透蒸發上乙醇除水的表現性大幅增加。ZIF-8混摻量在39%時有最好的通量和分離因數,分別為0.486 kg/m2h 和4725。此外,穿透性(permeability)為原膜的三倍,分離因數則為原膜的九倍。此優異的表現性亦可歸因於ZIF-8奈米粒子的分子篩效應。

To overcome the problems of phase separation between polymer and fillers and low separation performance of a membrane at high filler loading, we have synthesized a novel and efficient mixed matrix membrane (MMM) by incorporating water-based synthesis of ZIF-8 nanoparticles into polyvinyl alcohol (PVA) membranes. The ZIF-8 nanoparticles without drying is preferred for the fabrication of PVA/ZFI-8 MMMs. The incorporation of ZIF-8 nanoparticles does increase both of the flux and separation factor of a PVA membrane. However, both of the pervaporation performances of PVA/ZIF-8 MMMs could be further improved by crosslinking with glutaraldehyde (GA). The result shows that PVA/ZIF-8 MMMs with GA have superb performances on pervaporation separation of ethanol dehydration. The best flux and separation factor of PVA/ZIF-8 MMMs with GA are 0.486 kg/m2h and 4725 respectively when the doped amount of ZIF-8 nanoparticles is 39.0 wt%. The permeability is three times as much as that of pristine PVA with GA crosslinked and the separation factor is nearly 9 times as much as that of the pristine PVA with GA crosslinked.

1. INTRODUCTION 1
1.1. Fuel ethanol 1
1.2 Pervaporation 3
1.3 Polymeric membranes 6
1.4. Mixed matrix membranes (MMMs) 11
1.5. Zeolitic imidazolate frameworks (ZIFs) 16
2. PAPER SURVEY 19
2.1. PVA membranes for pervaporation of water-ethanol separation 19
2.2 MMMs for pervaporation of water-ethanol separation 29
3. OBJECTIVE 38
4. EXPERIMENTAL 40
4.1. Chemicals and Materials 40
4.2. Equipment 41
4.3. Synthesis of ZIF-8 nanoparticles suspension solution 42
4.3.1. Synthesis of ZIF-8 nanoparticles suspension solution with particles drying 42
4.3.2. Synthesis of ZIF-8 nanoparticles suspension solution without particles drying 42
4.4. Polyvinyl alcohol (PVA) polymer solution 43
4.5. Crosslinker solution 43
4.6. PVA/ZIF-8 MMMs 43
4.7. Characterization and pervaporation measurement 44
4.7.1. Field-emission scanning electron microscope (FESEM) 44
4.7.2 Specific surface area analyzer 45
4.7.3. X-ray diffracatometer (XRD) 45
4.7.4. Thermogravimetry/differential thermal analysis thermoanalyzer (TG-DTA) 46
4.7.5. Ultraviolet spectrophotometer (UV spectrophotometer) 46
4.7.6. Degree of swelling (DS) test 46
4.7.7. Pervaporation measurement 47
5. RESULTS and DISCUSSION 50
5.1. Characterization of ZIF-8 nanoparticles 50
5.2 The suspension ability test of ZIF-8 nanoparticles in water 52
5.3. SEM images of PVA/ZIF-8 MMMs 55
5.4. XRD patterns of PVA/ZIF-8 MMMs 57
5.5. The TGA curve of PVA/ZIF-8 MMMs 58
5.6. Pervaporation performance of PVA/ZIF-8 MMMs without GA 60
5.7. Pervaporation performance of PVA/ZIF-8 MMMs with GA 63
6. CONCLUSIONS 71
7. FUTURE PROSPECT 72
REFERENCE 73


(1)J. Hakes, U.S. Energy Information Administration (2000)
(2)British Petroleum Company, BP statistical review of world energy (2013). (http://bp.com/statisticalreview), (2013)
(3)Acelerating Industry Innovation – 2012 Ethanol Industry Outlook (http://ethanolrfa.3cdn.net/d4ad995ffb7ae8fbfe_1vm62ypzd.pdf), (2012)
(4)M. Balat and H. Balat, Recent trends in global production and utilization of bio-ethanol fuel, Applied Energy, 86, 2273-2282, (2009)
(5)Annual energy review 2011 (www.eia.gov/aer), (2012)
(6)R. E. B. J.G. Wijmans, The solution-diffusion model- a review Journal of Membrane Science, 107, 1-21, (1995)
(7)X. F. a. R. Y. M. Huang, Liquid Separation by Membrane Pervaporation- A Review, Industrial & Engineering Chemistry Research, 36, 1048-1066, (1997)
(8)B. Smitha, Separation of organic–organic mixtures by pervaporation—a review, Journal of Membrane Science, 241, 1-21, (2004)
(9)P. D. Chapman, T. Oliveira, A. G. Livingston, and K. Li, Membranes for the dehydration of solvents by pervaporation, Journal of Membrane Science, 318, 5-37, (2008)
(10)M. Ulbricht, Advanced functional polymer membranes, Polymer, 47, 2217-2262, (2006)
(11)B. Bolto, T. Tran, M. Hoang, and Z. Xie, Crosslinked poly(vinyl alcohol) membranes, Progress in Polymer Science, 34, 969-981, (2009)
(12)C. E. Reid and E. J. Breton, Water and ion flow across cellulosic membranes, Journal of Applied Polymer Science, 1, 133-143, (1959)
(13)K.-H. L. Choong-Kyun Yeom, Pervaporation separation of water-acetic acid mixtures through poly(vinyl alcohol) membranes crosslinked with glutaraldehyde Journal of Membrane Science, 109, 257-265, (1996)
(14)T.-S. Chung, L. Y. Jiang, Y. Li, and S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Progress in Polymer Science, 32, 483-507, (2007)
(15)E. Okumuş, T. Gürkan, and L. Yılmaz, Effect of fabrication and process parameters on the morphology and performance of a PAN-based zeolite-filled pervaporation membrane, Journal of Membrane Science, 223, 23-38, (2003)
(16)Y.-J. Fu, C.-C. Hu, K.-R. Lee, and J.-Y. Lai, Separation of ethanol/water mixtures by pervaporation through zeolite-filled polysulfone membrane containing 3-aminopropyltrimethoxysilane, Desalination, 193, 119-128, (2006)
(17)H. Sun, L. Lu, X. Chen, and Z. Jiang, Surface-modified zeolite-filled chitosan membranes for pervaporation dehydration of ethanol, Applied Surface Science, 254, 5367-5374, (2008)
(18)J.-M. Yeh, M.-Y. Yu, and S.-J. Liou, Dehydration of water–alcohol mixtures by vapor permeation through PVA/clay nanocomposite membrane, Journal of Applied Polymer Science, 89, 3632-3638, (2003)
(19)Y.-C. Wang, S.-C. Fan, K.-R. Lee, C.-L. Li, S.-H. Huang, H.-A. Tsai, and J.-Y. Lai, Polyamide/SDS–clay hybrid nanocomposite membrane application to water–ethanol mixture pervaporation separation, Journal of Membrane Science, 239, 219-226, (2004)
(20)D. Q. Vu, W. J. Koros, and S. J. Miller, Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results, Journal of Membrane Science, 211, 311-334, (2003)
(21)S. Qiu, L. Wu, G. Shi, L. Zhang, H. Chen, and C. Gao, Preparation and Pervaporation Property of Chitosan Membrane with Functionalized Multiwalled Carbon Nanotubes, Industrial & Engineering Chemistry Research, 49, 11667-11675, (2010)
(22)G. Clarizia, C. Algieri, and E. Drioli, Filler-polymer combination: a route to modify gas transport properties of a polymeric membrane, Polymer, 45, 5671-5681, (2004)
(23)E. V. Perez, K. J. Balkus Jr, J. P. Ferraris, and I. H. Musselman, Mixed-matrix membranes containing MOF-5 for gas separations, Journal of Membrane Science, 328, 165-173, (2009)
(24)S. Basu, A. Cano-Odena, and I. F. J. Vankelecom, MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations, Separation and Purification Technology, 81, 31-40, (2011)
(25)H. B. Tanh Jeazet, C. Staudt, and C. Janiak, Metal-organic frameworks in mixed-matrix membranes for gas separation, Dalton Transactions, 41, 14003-14027, (2012)
(26)G. M. Shi, T. Yang, and T. S. Chung, Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols, Journal of Membrane Science, 415–416, 577-586, (2012)
(27)X. Dong and Y. S. Lin, Synthesis of an organophilic ZIF-71 membrane for pervaporation solvent separation, Chemical Communications, 49, 1196-1198, (2013)
(28)C.-H. Kang, Y.-F. Lin, Y.-S. Huang, K.-L. Tung, K.-S. Chang, J.-T. Chen, W.-S. Hung, K.-R. Lee, and J.-Y. Lai, Synthesis of ZIF-7/chitosan mixed-matrix membranes with improved separation performance of water/ethanol mixtures, Journal of Membrane Science, 438, 105-111, (2013)
(29)G. Dong, H. Li, and V. Chen, Challenges and opportunities for mixed-matrix membranes for gas separation, Journal of Materials Chemistry A, 1, 4610, (2013)
(30)T. C. Bowen, R. D. Noble, and J. L. Falconer, Fundamentals and applications of pervaporation through zeolite membranes, Journal of Membrane Science, 245, 1-33, (2004)
(31)A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe, and O. M. Yaghi, Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks, Accounts of Chemical Research, 43, 58-67, (2010)
(32)B. Wang, A. P. Cote, H. Furukawa, M. O/''Keeffe, and O. M. Yaghi, Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs, Nature, 453, 207-211, (2008)
(33)R. Banerjee, H. Furukawa, D. Britt, C. Knobler, M. O’Keeffe, and O. M. Yaghi, Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties, Journal of the American Chemical Society, 131, 3875-3877, (2009)
(34)S. R. Venna and M. A. Carreon, Highly Permeable Zeolite Imidazolate Framework-8 Membranes for CO2/CH4 Separation, Journal of the American Chemical Society, 132, 76-78, (2010)
(35)M. J. C. Ordoñez, K. J. Balkus Jr, J. P. Ferraris, and I. H. Musselman, Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes, Journal of Membrane Science, 361, 28-37, (2010)
(36)Y. Li, F. Liang, H. Bux, W. Yang, and J. Caro, Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation, Journal of Membrane Science, 354, 48-54, (2010)
(37)C. Gücüyener, J. van den Bergh, J. Gascon, and F. Kapteijn, Ethane/Ethene Separation Turned on Its Head: Selective Ethane Adsorption on the Metal−Organic Framework ZIF-7 through a Gate-Opening Mechanism, Journal of the American Chemical Society, 132, 17704-17706, (2010)
(38)Y. Pan and Z. Lai, Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions, Chemical Communications, 47, 10275-10277, (2011)
(39)Y. Liu, E. Hu, E. A. Khan, and Z. Lai, Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture, Journal of Membrane Science, 353, 36-40, (2010)
(40)G. Lu and J. T. Hupp, Metal−Organic Frameworks as Sensors: A ZIF-8 Based Fabry−Pérot Device as a Selective Sensor for Chemical Vapors and Gases, Journal of the American Chemical Society, 132, 7832-7833, (2010)
(41)W.-w. Zhan, Q. Kuang, J.-z. Zhou, X.-j. Kong, Z.-x. Xie, and L.-s. Zheng, Semiconductor@Metal–Organic Framework Core–Shell Heterostructures: A Case of ZnO@ZIF-8 Nanorods with Selective Photoelectrochemical Response, Journal of the American Chemical Society, 135, 1926-1933, (2013)
(42)S. K. Yong, W. L. Sang, Y. K. Un, and S. S. Jyong, Pervaporation of water-ethanol mixtures through crosslinked and surface-modified poly(vinyl alcohol) membrane, Journal of Membrane Science, 51, 215-226, (1990)
(43)R. Y. M. Huang, Pervaporation Membrane Separation Processes, Membrane Science and Technology Series 1, (1991)
(44)A. Yamasaki, T. Iwatsubo, T. Masuoka, and K. Mizoguchi, Pervaporation of ethanol/water through a poly(vinyl alcohol)/cyclodextrin (PVA/CD) membrane, Journal of Membrane Science, 89, 111-117, (1994)
(45)L. Liang and E. Ruckenstein, Polyvinyl alcohol-polyacrylamide interpenetrating polymer network membranes and their pervaporation characteristics for ethanol-water mixtures, Journal of Membrane Science, 106, 167-182, (1995)
(46)E. Ruckenstein and L. Liang, Pervaporation of ethanol-water mixtures through polyvinyl alcohol-polyacrylamide interpenetrating polymer network membranes unsupported and supported on polyethersulfone ultrafiltration membranes: a comparison, Journal of Membrane Science, 110, 99-107, (1996)
(47)E. Ruckenstein and L. Liang, Poly(acrylic acid)–poly(vinyl alcohol) semi- and interpenetrating polymer network pervaporation membranes, Journal of Applied Polymer Science, 62, 973-987, (1996)
(48)Y.-M. Sun and T.-L. Huang, Pervaporation of ethanol-water mixtures through temperature-sensitive poly(vinyl alcohol-g-N-isopropyacrylamide) membranes, Journal of Membrane Science, 110, 211-218, (1996)
(49)C. H. Lee and W. H. Hong, Influence of different degrees of hydrolysis of poly(vinyl alcohol) membrane on transport properties in pervaporation of IPA/water mixture, Journal of Membrane Science, 135, 187-193, (1997)
(50)W.-Y. Chiang and Y.-H. Lin, Properties of modified poly(vinyl alcohol) membranes prepared by the grafting of new polyelectrolyte copolymers for water–ethanol mixture separation, Journal of Applied Polymer Science, 86, 2854-2859, (2002)
(51)M. Rafik, A. Mas, M. F. Guimon, C. Guimon, A. Elharfi, and F. Schué, Plasma-modified poly(vinyl alcohol) membranes for the dehydrationof ethanol, Polymer International, 52, 1222-1229, (2003)
(52)V. S. Praptowidodo, Influence of swelling on water transport through PVA-based membrane, Journal of Molecular Structure, 739, 207-212, (2005)
(53)M. L. Gimenes, L. Liu, and X. Feng, Sericin/poly(vinyl alcohol) blend membranes for pervaporation separation of ethanol/water mixtures, Journal of Membrane Science, 295, 71-79, (2007)
(54)Q. G. Zhang, Q. L. Liu, A. M. Zhu, Y. Xiong, and L. Ren, Pervaporation performance of quaternized poly(vinyl alcohol) and its crosslinked membranes for the dehydration of ethanol, Journal of Membrane Science, 335, 68-75, (2009)
(55)K. Zhou, Q. G. Zhang, G. L. Han, A. M. Zhu, and Q. L. Liu, Pervaporation of water–ethanol and methanol–MTBE mixtures using poly (vinyl alcohol)/cellulose acetate blended membranes, Journal of Membrane Science, 448, 93-101, (2013)
(56)Z. Gao, Y. Yue, and W. Li, Application of zeolite-filled pervaporation membrane, Zeolites, 16, 70-74, (1996)
(57)T. Uragami, T. Katayama, T. Miyata, H. Tamura, T. Shiraiwa, and A. Higuchi, Dehydration of an Ethanol/Water Azeotrope by Novel Organic−Inorganic Hybrid Membranes Based on Quaternized Chitosan and Tetraethoxysilane, Biomacromolecules, 5, 1567-1574, (2004)
(58)H.-M. Guan, T.-S. Chung, Z. Huang, M. L. Chng, and S. Kulprathipanja, Poly(vinyl alcohol) multilayer mixed matrix membranes for the dehydration of ethanol–water mixture, Journal of Membrane Science, 268, 113-122, (2006)
(59)Z. Huang, Y. Shi, R. Wen, Y.-H. Guo, J.-F. Su, and T. Matsuura, Multilayer poly(vinyl alcohol)–zeolite 4A composite membranes for ethanol dehydration by means of pervaporation, Separation and Purification Technology, 51, 126-136, (2006)
(60)L. Y. Ye, Q. L. Liu, Q. G. Zhang, A. M. Zhu, and G. B. Zhou, Pervaporation characteristics and structure of poly(vinyl alcohol)/poly(ethylene glycol)/tetraethoxysilane hybrid membranes, Journal of Applied Polymer Science, 105, 3640-3648, (2007)
(61)Y. Pan, Y. Liu, G. Zeng, L. Zhao, and Z. Lai, Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system, Chemical Communications, 47, 2071-2073, (2011)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top