跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/25 02:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:龔仲偉
研究生(外文):Chung-Wei Kung
論文名稱:奈米結構與奈米孔洞薄膜之合成與其電化學應用
論文名稱(外文):Synthesis and Electrochemical Applications of Nanostructural and Nanoporous Thin Films
指導教授:何國川
指導教授(外文):Kuo-Chuan Ho
口試委員:廖英志吳嘉文陳林祈江偉宏周澤川
口試委員(外文):Ying-Chih LiaoChia-Wen (Kevin) WuLin-Chi ChenWei-Hung ChiangTse-Chuan Chou
口試日期:2015-06-08
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:233
中文關鍵詞:針葉狀奈米柱染料敏化太陽能電池電化學感測器電致色變金屬有機骨架超電容器
外文關鍵詞:Acicular nanorodsDye-sensitized solar cellsElectrochemical sensorsElectrochromismMetal-organic frameworksSupercapacitors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:400
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文將各種奈米結構與奈米孔洞之電極材料合成於導電基材上,並將所得到之修飾電極應用於多種電化學應用,包含電化學感測器、超電容器、染料敏化太陽能電池的對電極以及電致色變薄膜。
由於一維奈米結構陣列被預期能夠擁有較快的軸向電子傳輸,本論文的第一部分著重在一維奈米結構陣列之電活性材料。透過化學浴沉積法與燒結製程,氧化鈷的一維彎曲針葉狀奈米柱陣列可以被長在導電基材上。此修飾電極被成功應用於非酵素型之電化學葡萄糖感測器,並達到優良的表現。之後,具有三種不同表面結構(一維直立針葉狀奈米柱陣列、二維奈米片、二維網型奈米片)的氧化鈷奈米結構薄膜也被以類似的製程生長在導電基材上,並將之與原本的彎曲針葉狀奈米柱陣列比較。這些修飾電極被應用於電化學催化對乙酰氨基酚之氧化上,而結果發現氧化鈷的一維直立針葉狀奈米柱陣列擁有最好的電催化活性。接著,此氧化鈷的直立針葉狀奈米柱陣列被直接以溶劑熱法的方式轉換為硫化鈷的一維針葉狀奈米柱陣列。受限於其二維的材料特性,硫化鈷平常是很難直接生長出一維奈米結構的。此硫化鈷的一維針葉狀奈米柱陣列被應用於染料敏化太陽能電池的對電極以取代原本使用的白金,所組成的染料敏化太陽能電池可以達到與使用白金時相近的光電轉換效率。在第一部分的最後,透過溶劑熱之陰離子轉換製程,原本利用化學浴沉積法長在導電基材上的層狀碳酸鈷氫氧化物之直立針葉狀奈米柱陣列可以被轉換為氧化鈷的針葉狀奈米管陣列。利用奈米管具有比奈米柱較高之表面積的優勢,相對於透過燒結得到的氧化鈷針葉狀奈米柱陣列,此氧化鈷的針葉狀奈米管陣列可展現高出許多的比電容值。
另一方面,二維奈米結構被預期能夠展現較一維奈米結構高的表面積。在本論文的第二部分,將針對具電化學活性之二維奈米結構薄膜進行探討。透過定電位電鍍與紫外光臭氧的製程,二維之氧化鈷奈米片的薄膜可以被生長在可撓之鈦金屬基材上。此氧化鈷薄膜在超電容的應用上,可以在2.5 A/g的充放電電流之下達到1,033.3 F/g的比電容值。另外,透過以氧化鋅的微米花陣列當作模板,由許多二維空心奈米花瓣之聚3,4-二氧乙烯噻吩所組成的空心微米花陣列可以被生長在導電基材上。此具有二維奈米結構之聚3,4-二氧乙烯噻吩被預期可以提供許多的電催化位置,因此在應用於染料敏化太陽能電池的對電極時可以獲得優良的表現。
除了具奈米結構的材料之外,本論文也將探討擁有更高表面積的奈米孔洞材料。在所有分類的孔洞材料中擁有最高表面積的金屬有機骨架在本論文的最後一部分被選作電極材料。由鋯金屬節點與芘類有機連結器所組成的金屬有機骨架之一維針葉狀奈米柱薄膜可以長在導電玻璃基材上。這些芘類有機連結器具有電化學活性並且可以展現電致色變的行為。由於一維針葉狀奈米柱的奈米結構可以提供較快的軸向電荷傳輸速率,再加上此金屬有機骨架之中的規律一維孔洞可以提供迅速的離子傳輸,此金屬有機骨架薄膜可以展現快速且可逆的電致色變性質。為了尋求在水溶液中也可以進行電化學操作並且穩定的金屬有機骨架薄膜,另外一種由鋯金屬節點與具電活性的紫質類有機連結器所組成的金屬有機骨架之均勻薄膜被以溶劑熱法的方式成長在導電基材上。本研究發現此金屬有機骨架薄膜在水溶液中具備電化學活性及穩定性,進而開闢出許多適用於各種水相系統中的電化學應用。


In this dissertation, various nanostructural and nanoporous electrode materials were synthesized directly onto the conducting substrates, and the obtained modified electrodes were applied for various electrochemical applications, including electrochemical sensors, supercapacitors, counter electrodes (CEs) of dye-sensitized solar cells (DSSCs), and electrochromic thin films.
Since one-dimensional (1D) nanostructural arrays are expected to show a faster electronic conduction along the axial direction through the arrays to their substrate, 1D nanostructural arrays of electroactive materials were focused in the first part of this dissertation. The 1D bending acicular nanorod arrays (ANRAs) of cobalt oxide (Co3O4) were grown on conducting substrates by using chemical bath deposition (CBD) followed by calcination. The bending Co3O4 ANRAs were successfully applied for non-enzymatic electrochemical glucose sensors and achieved a promising performance. Thereafter, three different morphologies of Co3O4 nanostructural thin films, including the 1D straight ANRAs, 2D nanosheets, and 2D net-shaped nanosheets, were also grown on conducting substrates by similar approaches and compared with the original bending ANRAs. The electrocatalytic activities of these Co3O4 thin films for the oxidation of acetaminophen (AP) were investigated, and the result shows that the 1D straight ANRAs of Co3O4 exhibit the best electrocatalytic activity among them. Thereafter, the straight Co3O4 ANRAs were solvothermally converted into the 1D ANRAs of cobalt sulfide (CoS), which is very difficult to be grown as 1D nanostructure due to its two-dimensional (2D) nature. The obtained CoS ANRAs were used as the CEs of DSSCs to replace the conventional CE using platinum, and the obtained DSSC shows comparable cell efficiency compared to the DSSC using platinum. In the end of the first part of this dissertation, a solvothermal anion-exchange process was used to convert the straight ANRAs of layered cobalt carbonate hydroxide (LCCH), which were grown on conducting substrates by CBD, into the Co3O4 acicular nanotube arrays (ANTAs). Taking advantages of the higher surface area provided by nanotubes compared to that provided by nanorods, the Co3O4 ANTAs show a much higher specific capacitance compare to the original Co3O4 ANRAs obtained by calcining the LCCH ANRAs.
On the other hand, 2D nanostructures are expected to exhibit a higher surface area compared to the 1D nanostructures. In the second part of this dissertation, 2D nanostructural thin films of electrochemically active materials were explored. Thin films of Co3O4 2D nanosheets were electrodeposited on flexible titanium substrates by a potentiostatic method, followed by an UV-ozone treatment. The obtained thin film of Co3O4 nanosheets was applied for supercapacitors; a high specific capacitance of 1,033.3 F/g was obtained at a charge-discharge current density of 2.5 A/g. Also, poly(3,4-ethylenedioxythiophene) (PEDOT) hollow microflower arrays (HMFAs), with several 2D hollow nanopetals on each of the microflowers were fabricated on a conducting substrate, by using ZnO microflower arrays (MFAs) as the template. The 2D nanostructures of PEDOT are expected to provide numerous electrocatalytic sites, which result in the promising performance when they were utilized as the CEs of DSSCs.
Beyond the nanostructural materials, the nanoporous materials which possess even higher surface area started to be considered. Metal-organic frameworks (MOFs), which show the highest surface area among all categories of porous materials, were chosen as electrode materials in the last part of this dissertation. Thin films composed of 1D acicular nanorods of a MOF constructed from zirconium-based nodes and pyrene-based linkers were grown on conducting glass substrates. The pyrene-based linkers are electrochemically active and show electrochromic behavior. Due to the fast charge-transport rate provided by the 1D acicular nanorods and the facile ion diffusion in regular 1D pores of the MOF, the obtained MOF thin film can exhibit facile and reversible electrochromism. In order to make a MOF thin film that is electrochemically addressable and stable in aqueous solutions, uniform thin films of another MOF, which is constructed from the electrochemically active porphyrin linkers and zirconium-based nodes, were solvothermally grown on conducting substrates. The MOF thin films were found to be electrochemically addressable and stable in aqueous solution, which opens up several opportunities for utilizing such MOF thin films in various electrochemical applications operated in aqueous systems.


致謝 I
中文摘要 III
Abstract V
Table of contents VIII
List of tables XV
List of figures XVI
Nomenclatures XXX

Chapter 1 Introduction 1
1.1 Overview of nanostructural and nanoporous materials as electrode materials 1
1.1.1 Electrochemical system and electrode materials 1
1.1.2 Nanostructural materials 2
1.1.3 Nanoporous materials 5
1.2 Introductions to individual electrochemical applications 8
1.2.1 Electrochemical sensors 8
1.2.2 Supercapacitors 10
1.2.3 Electrocatalysis in DSSCs 12
1.2.4 Electrochromic thin films 14
1.3 Scope of this dissertation 15

Chapter 2 Cobalt oxide acicular nanorod arrays with high sensitivity for the non-enzymatic detection of glucose 19
2.1 Introduction of Chapter 2 19

2.2 Experimental procedure 21
2.2.1 Chemicals 21
2.2.2 Apparatus 21
2.2.3 Preparation of the Co3O4 bANRAs modified FTO electrode 22
2.2.4 Amperometric detection of glucose 22
2.3 Results and discussion 22
2.3.1 Characterization of the films of LCCH and Co3O4 bANRAs 22
2.3.2 Electrooxidation behavior of glucose at the Co3O4 bANRAs modified electrode 27
2.3.3 Effect of NaOH concentration on glucose sensing 28
2.3.4 Effect of calcination temperature for the thin film on glucose sensing 30
2.3.5 Effect of film thickness on glucose sensing 31
2.3.6 Electrochemical process for glucose sensing 33
2.3.7 Amperometric detection of glucose 34
2.4 Conclusion of Chapter 2 37

Chapter 3 Synthesis of cobalt oxide nanostructural thin films in the presence of various anions and their application for the detection of acetaminophen 39
3.1 Introduction of Chapter 3 39
3.2 Experimental procedure 41
3.2.1 Chemicals 41
3.2.2 Apparatus 42
3.2.3 Preparation of the Co3O4 modified electrode 42
3.2.4 Preparation of real samples for analysis 42
3.3 Results and discussion 43
3.3.1 Characterization of the films of LCCH and cobalt oxide 43
3.3.2 Electrooxidation behavior of AP at the Co3O4/FTO electrode 46
3.3.3 Effect of morphology of the Co3O4/FTO electrodes on AP detection 48
3.3.4 Effect of thickness of the Co3O4 ANRAs thin film on AP detection 51
3.3.5 Effect of calcination temperature of Co3O4 ANRAs on AP detection 53
3.3.6 Amperometric detection of AP 56
3.3.7 AP detection in real samples 59
3.4 Conclusion of Chapter 3 63

Chapter 4 CoS acicular nanorod arrays for the counter electrode of an efficient dye-sensitized solar cell 65
4.1 Introduction of Chapter 4 65
4.2 Experimental procedure 67
4.2.1 Chemicals 67
4.2.2 Apparatus 67
4.2.3 Preparation of the CoS ANRAs-CE 68
4.2.4 Fabrication of the DSSC 69
4.3 Results and discussion 69
4.3.1 Crystallinity of the films 69
4.3.2 Morphological characterization of the films 71
4.3.3 UV-visible and XPS spectra of the films 76
4.3.4 Electrocatalytic activities of the CEs toward I-/I3- redox couple 79
4.3.5 Long-term stability test in the I-/I3- electrolyte 81
4.3.6 Performance of DSSCs using various counter electrodes 82
4.4 Conclusion of Chapter 4 88

Chapter 5 Low-temperature and template-free fabrication of cobalt oxide acicular nanotube arrays and their application for supercapacitors 89
5.1 Introduction of Chapter 5 89
5.2 Experimental procedure 91
5.2.1 Chemicals 91
5.2.2 Apparatus 91
5.2.3 Preparation of the LCCH ANRAs, Co¬3O4 ANRAs, and Co¬3O4 ANTAs on graphite substrates 91
5.3 Results and discussion 92
5.3.1 XRD patterns of the films grown on graphite substrates 92
5.3.2 Morphological characterizations of the films grown on graphite substrates 93
5.3.3 Mechanism for the formation of Co3O4 acicular nanotubes 95
5.3.4 Electrochemical behaviours of the films investigated by CV methods 96
5.3.5 Capacitance performances of the films investigated by chronopotentiometric methods 99
5.4 Conclusion of Chapter 5 106

Chapter 6 Synthesis of Co3O4 nanosheets via electrodeposition followed by ozone treatment and their application to high-performance supercapacitors 108
6.1 Introduction of Chapter 6 108
6.2 Experimental procedure 109
6.2.1 Chemicals 109
6.2.2 Apparatus 109
6.2.3 Preparation of the flexible Co3O4 modified Ti electrode 110
6.2.4 Estimation of mass of the thin films 110
6.3 Results and discussion 111
6.3.1 Characterization of the films before and after the UV-ozone treatment 111
6.3.2 Electrochemical behavior of Co(OH)2/Ti and Co3O4/Ti 115
6.3.3 Effect of NaOH concentration in the electrolyte 118
6.3.4 Effect of charge-discharge current density 119
6.3.5 Long-term stability 120
6.3.6 Comparison with literature 121
6.4 Conclusion of Chapter 6 123

Chapter 7 Hollow microflower arrays of PEDOT and their application for the counter electrode of a dye-sensitized solar cell 124
7.1 Introduction of Chapter 7 124
7.2 Experimental procedure 126
7.2.1 Chemicals 126
7.2.2 Apparatus 127
7.2.3 Fabrication of the CEs with PEDOT-HMFAs and flat PEDOT 127
7.2.4 Fabrication of the DSSC 128
7.3 Results and discussion 128
7.3.1 Characterization of the films 128
7.3.2 Effect of electrodeposition charge density on the morphology of PEDOT-HMFAs 135
7.3.3 Electrocatalytic activities of the CEs with the flat PEDOT and the PEDOT-HMFAs 138
7.3.4 Long-term stability test in the I-/I3- electrolyte 141
7.3.5 Performance of the DSSCs using various CEs 142
7.4 Conclusion of Chapter 7 145

Chapter 8 Metal–organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism 147
8.1 Introduction of Chapter 8 147
8.2 Experimental procedure 149
8.2.1 Chemicals 149
8.2.2 Apparatus 150
8.2.3 Preparation of the NU-901 MOF thin film 151
8.3 Results and discussion 153
8.3.1 Characterization of the NU-901 thin films 153
8.3.2 Electrochemical and spectroelectrochemical properties of the NU-901 thin films 158
8.3.3 Mechanism for the color change investigated by EPR 160
8.3.4 Kinetics of electrochromic switching 161
8.3.5 Stability of the electrochromism 162
8.3.6 Electrochemistry of the H4TBAPy ligand in solution 163
8.4 Conclusion of Chapter 8 164

Chapter 9 Post metalation of solvothermally grown electroactive porphyrin metal-organic framework thin films 165
9.1 Introduction of Chapter 9 165
9.2 Experimental procedure 167
9.2.1 Chemicals 167
9.2.2 Apparatus 168
9.2.3 Growth of the MOF-525 thin film 168
9.2.4 Post metalation of the MOF-525 thin films 169
9.3 Results and discussion 170
9.3.1 Characterization of the MOF-525 powder and thin film 170
9.3.2 Characterization of the Zn-MOF-525 and Co-MOF-525 thin films 173
9.3.3 Electrochemical properties of the MOF-525 and metalated MOF-525 thin films 176
9.4 Conclusion of Chapter 9 180

Chapter 10 Comprehensive discussion, conclusions, and suggestions 181
10.1 Comprehensive discussions 181
10.2 General conclusions 185
10.3 Suggestions 188

References 192

Appendix A Curriculum Vitae 225


[1]J. Wang, “Analytical Electrochemistry,” John Wiley & Sons, Hoboken, New Jersey (2006).
[2]P. Simon, Y. Gogotsi, “Materials for electrochemical capacitors,” Nat. Mater., 7 (2008) 845-854.
[3]J. M. Tarascon, M. Armand, “Issues and challenges facing rechargeable lithium batteries,” Nature, 414 (2001) 359-367.
[4]A. J. Bard, M. A. Fox, “Artificial photosynthesis: solar splitting of water to hydrogen and oxygen,” Acc. Chem. Res., 28 (1995) 141-145.
[5]B. C. H. Steele, A. Heinzel, “Materials for fuel-cell technologies,” Nature, 414 (2001) 345-352.
[6]P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, “Electrochromism and Electrochromic Devices,” Cambridge University Press, New York (2007).
[7]P. Bertoncello, I. Ciani, F. Li, P. R. Unwin, “Measurement of apparent diffusion coefficients within ultrathin nafion Langmuir-Schaefer films: comparison of a novel scanning electrochemical microscopy approach with cyclic voltammetry,” Langmuir, 22 (2006) 10380-10388.
[8]M. Shi, F. C. Anson, “Rapid oxidation of Ru(NH3)63+ by Os(bpy)33+ within Nafion coatings on electrodes,” Langmuir, 12 (1996) 2068-2075.
[9]A. Safranj, S. Gershuni, J. Rabani, “Hydrophobic and ionic exchange of tris(2,2’-bipyridine)ruthenium(II), methylviologen, and sulfonatopropylviologen in Nafion films,” Langmuir, 9 (1993) 3676-3681.
[10]C. Burda, X. Chen, R. Narayanan, M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev., 105 (2005) 1025-1102.
[11]M. T. M. Koper, “Structure sensitivity and nanoscale effects in electrocatalysis,” Nanoscale, 3 (2011) 2054-2073.
[12]Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, Y. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater., 125 (2003) 353-389.
[13]A. K. Wanekaya, W. Chen, N. V. Myung, A. Mulchandani, “Nanowire-based electrochemical biosensors,” Electroanalysis, 18 (2006) 533-550.
[14]M. Law, J. Goldberger, P. D. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res., 34 (2004) 83-122.
[15]Z. Zhuang, X. Su, H. Yuan, Q. Sun, D. Xiao, M. M. Choi, “An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode,” Analyst, 133 (2008) 126-132.
[16]X. W. Sun, J. X. Wang, “Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode,” Nano Lett., 8 (2008) 1884-1889.
[17]S. L. Chou, J. Z. Wang, S. Y. Chew, H. K. Liu, S. X. Dou, “Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors,” Electrochem. Commun., 10 (2008) 1724-1727.
[18]O. Rabin, P. R. Herz, Y. M. Lin, A. I. Akinwande, S. B. Cronin, M. S. Dresselhaus, “Formation of thick porous anodic alumina films and nanowire arrays on silicon wafers and glass,” Adv. Funct. Mater., 13 (2003) 631-638.
[19]Y. G. Li, B. Tan, Y. Y. Wu, “Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability,” Nano Lett., 8 (2008) 265-270.
[20]D. Chen, W. Zhao, T. P. Russell, “P3HT nanopillars for organic photovoltaic devices nanoimprinted by AAO templates,” ACS Nano, 6 (2012) 1479-1485.
[21]Y. Li, D. S. Xu, Q. M. Zhang, D. P. Chen, F. Z. Huang, Y. J. Xu, G. L. Guo, Z. N. Gu, “Preparation of cadmium sulfide nanowire arrays in anodic aluminum oxide templates,” Chem. Mater., 11 (1999) 3433-3435.
[22]G. H. Yue, P. X. Yana, J. Z. Liu, X. Y. Fan, R. F. Zhuo, “Fabrication, structure, magnetic properties of highly ordered cobalt disulfide nanowire arrays,” Appl. Phys. Lett., 87 (2005) 262505.
[23]H. Jha, F. Schmidt-Stein, N. K. Shrestha, M. Kettering, I. Hilger, P. Schmuki, “Formation of magnetic aluminium oxyhydroxide nanorods and use for hyperthermal effects,” Nanotechnology, 22 (2011) 115601.
[24]J. Sarkar, G. G. Khan, A. Basumallick, “Nanowires: properties, applications and synthesis via porous anodic aluminium oxide template,” Bull. Mater. Sci., 30 (2007) 271-290.
[25]G. E. J. Poinern, N. Ali, D. Fawcett, “Progress in nano-engineered anodic aluminium oxide membrane development,” Materials, 4 (2011) 487-526.
[26]M. Döbbelin, R. Tena-zaera, P. M. Carrasco, J.-R. Sarasua, G. Cabañero, D. Mecerreyes, “Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) nanotube arrays using ZnO templates,” J. Polym. Sci., Part A: Polym. Chem., 48 (2010) 4648-4653.
[27]S. Berger, A. Ghicov, Y.-C. Nah, P. Schmuki, “Transparent TiO2 nanotube electrodes via thin layer anodization: fabrication and use in electrochromic devices,” Langmuir, 25 (2009) 4841-4844.
[28]Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, G. Cao, “Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells,” Angew. Chem. Int. Ed., 47 (2008) 2402-2406.
[29]C. W. Kung, H. W. Chen, C. Y. Lin, Y. H. Lai, R. Vittal, K. C. Ho, “Electrochemical synthesis of a double-layer film of ZnO nanosheets/nanoparticles and its application for dye-sensitized solar cells,” Prog. Photovolt: Res. Appl., 22 (2014) 440-451.
[30]Y. H. Cheng, C. W. Kung, L. Y. Chou, R. Vittal, K. C. Ho, “Poly(3,4-ethylenedioxythiophene) (PEDOT) hollow microflowers and their application for nitrite sensing,” Sens. Actuators, B, 192 (2014) 762-768.
[31]Y. H. Lai, C. Y. Lin, H. W. Chen, J. G. Chen, C. W. Kung, R. Vittal, K. C. Ho, “Fabrication of a ZnO film with a mosaic structure for a high efficient dye-sensitized solar cell,” J. Mater. Chem., 20 (2010) 9379-9385.
[32]C. Z. Yuan, L. Yang, L. R. Hou, L. F. Shen, X. G. Zhang, X. W. Lou, “Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors,” Energy Environ. Sci., 5 (2012) 7883-7887.
[33]C. Z. Yuan, L. R. Hou, L. Yang, D. K. Li, L. F. Shen, F. Zhang, X. G. Zhang, “Facile interfacial synthesis of flower-like hierarchical a-MnO2 sub-microspherical superstructures constructed by two-dimension mesoporous nanosheets and their application in electrochemical capacitors,” J. Mater. Chem., 21 (2011) 16035-16041.
[34]K. K. Lee, P. Y. Loh, C. H. Sow, W. S. Chin, “CoOOH nanosheets on cobalt substrate as a non-enzymatic glucose sensor,” Electrochem. Commun., 20 (2012) 128-132.
[35]J. Y. Lin, J. H. Liao, S. W. Chou, “Cathodic electrodeposition of highly porous cobalt sulfide counter electrodes for dye-sensitized solar cells,” Electrochim. Acta, 56 (2011) 8818-8826.
[36]Y. Wang, D. X. Cao, G. L. Wang, S. S. Wang, J. Y. Wen, J. L. Yin, “Spherical clusters of β-Ni(OH)2 nanosheets supported on nickel foam for nickel metal hydride battery,” Electrochim. Acta, 56 (2011) 8285-8290.
[37]S. Kitagawa, R. Kitaura, S.-i. Noro, “Functional porous coordination polymers,” Angew. Chem. Int. Ed., 43 (2004) 2334-2375.
[38]Z. A. ALOthman, “A review: fundamental aspects of silicate mesoporous materials,” Materials, 5 (2012) 2874-2902.
[39]G. X. Wang, H. Liu, J. Horvat, B. Wang, S. Z. Qiao, J. Park, H. Ahn, “Highly ordered mesoporous cobalt oxide nanostructures: synthesis, characterisation, magnetic properties, and applications for electrochemical energy devices,” Chem. Eur. J., 16 (2010) 11020-11027.
[40]D. D. Zhao, M. W. Xu, W. J. Zhou, J. Zhang, H. L. Li, “Preparation of ordered mesoporous nickel oxide film electrodes via lyotropic liquid crystal templated electrodeposition route,” Electrochim. Acta, 53 (2008) 2699-2705.
[41]T. Grewe, X. H. Deng, C. Weidenthaler, F. Schüth, H. Tüysüz, “Design of ordered mesoporous composite materials and their electrocatalytic activities for water oxidation,” Chem. Mater., 25 (2013) 4926-4935.
[42]Y. Ma, W. Tong, H. Zhou, S. L. Suib, “A review of zeolite-like porous materials,” Microporous Mesoporous Mater., 37 (2000) 243-252.
[43]H. Dolas, O. Sahin, C. Saka, H. Demir, “A new method on producing high surface area activated carbon: The effect of salt on the surface area and the pore size distribution of activated carbon prepared from pistachio shell,” Chem. Eng. J., 166 (2011) 191-197.
[44]S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, “Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles,” Nature, 412 (2001) 169-172.
[45]T. F. Jaramillo, J. Bonde, J. D. Zhang, B. L. Ooi, K. Andersson, J. Ulstrup, I. Chorkendorff, “Hydrogen evolution on supported incomplete cubane-type [Mo3S4]4+ electrocatalysts,” J. Phys. Chem. C, 112 (2008) 17492-17498.
[46]S. J. Guo, S. J. Dong, E. K. Wang, “Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation,” ACS Nano, 4 (2010) 547-555.
[47]D. A. Blom, J. R. Dunlap, T. A. Nolan, L. F. Allard, “Preparation of cross-sectional samples of proton exchange membrane fuel cells by ultramicrotomy for TEM,” J. Electrochem. Soc., 150 (2003) A414-A418.
[48]H. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi, “The chemistry and applications of metal-organic frameworks,” Science, 341 (2013) 974.
[49]G. Férey, “Hybrid porous solids: past, present, future,” Chem. Soc. Rev., 37 (2008) 191-214.
[50]O. K. Farha, A. O. Yazaydin, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr, J. T. Hupp, “De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities,” Nat. Chem., 2 (2010) 944-948.
[51]J. R. Li, J. Sculley, H. C. Zhou, “Metal-organic frameworks for separations,” Chem. Rev., 112 (2012) 869-932.
[52]L. Q. Ma, C. Abney, W. B. Lin, “Enantioselective catalysis with homochiral metal-organic frameworks,” Chem. Soc. Rev., 38 (2009) 1248-1256.
[53]L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, “Metal-organic framework materials as chemical sensors,” Chem. Rev., 112 (2012) 1105-1125.
[54]O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen, A. Ö. Yazaydın, J. T. Hupp, “Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? ” J. Am. Chem. Soc., 134 (2012) 15016-15021.
[55]A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. E. Gabaly, H. P. Yoon, F. Léonard, M. D. Allendorf, “Tunable electrical conductivity in metal-organic framework thin-film devices,” Science, 343 (2014) 66-69.
[56]S. R. Ahrenholtz, C. C. Epley, A. J. Morris, “Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism,” J. Am. Chem. Soc., 136 (2014) 2464-2472.
[57]M. Jahan, Q. Bao, K. P. Loh, “Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction,” J. Am. Chem. Soc., 134 (2012) 6707-6713.
[58]H. Hosseini, H. Ahmar, A. Dehghani, A. Bagheri, A. Tadjarodi, A. R. Fakhari, “A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of L-cysteine,” Biosens. Bioelectron., 42 (2013) 426-429.
[59]G. Jia, W. Zhang, Z. Jin, W. An, Y. Gao, X. Zhang, J. Liu, “Electrocatalytically active MOF/graphite oxide hybrid for electrosynthesis of dimethyl carbonate,” Electrochim. Acta, 144 (2014) 1-6.
[60]X. Wang, Q. Wang, Q. Wang, F. Gao, F. Gao, Y. Yang, H. Guo, “Highly dispersible and stable copper terephthalate metal-organic framework-graphene oxide nanocomposite for an electrochemical sensing application,” ACS Appl. Mater. Interfaces, 6 (2014) 11573-11580.
[61]M. Jahan, Z. Liu, K. P. Loh, “A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR,” Adv. Funct. Mater., 23 (2013) 5363-5372.
[62]J. Yang, P. Xiong, C. Zheng, H. Qiu, M. Wei, “Metal-organic frameworks: a new promising class of materials for a high performance supercapacitor electrode,” J. Mater. Chem. A, 2 (2014) 16640-16644.
[63]Y. Zhang, A. Nsabimana, L. Zhu, X. Bo, C. Han, M. Li, L. Guo, “Metal organic frameworks/macroporous carbon composites with enhanced stability properties and good electrocatalytic ability for ascorbic acid and hemoglobin,” Talanta, 129 (2014) 55-62.
[64]K. F. Babu, M. A. Kulandainathan, I. Katsounaros, L. Rassaei, A. D. Burrows, P. R. Raithby, F. Marken, “Electrocatalytic activity of BasoliteTM F300 metal-organic-framework structures,” Electrochem. Commun., 12 (2010) 632-635.
[65]I. Hod, W. Bury, D. M. Karlin, P. Deria, C. W. Kung, M. J. Katz, M. So, B. Klahr, D. Jin, Y. W. Chung, T. W. Odom, O. K. Farha, J. T. Hupp, “Directed growth of electroactive metal-organic framework thin films using electrophoretic deposition,” Adv. Mater., 26 (2014) 6295-6300.
[66]H. Fei, S. Pullen, A. Wagner, S. Ott, S. M. Cohen, “Functionalization of robust Zr(IV)-based metal-organic framework films via a postsynthetic ligand exchange,” Chem. Commun., 51 (2015) 66-69.
[67]C. R. Wade, M. Y. Li, M. Dincă, “Facile deposition of multicolored electrochromic metal-organic framework thin films,” Angew. Chem. Int. Ed., 52 (2013) 13377-13381.
[68]A. J. Bard, L. R. Faulkner, “Electrochemical Methods: Fundamentals and Applications,” 2nd ed., John Wiley & Sons, New York (2000).
[69]F. Patolsky, A. Lichtenstein, I. Willner, “Detection of single-base DNA mutations by enzyme-amplified electronic transduction,” Nat. Biotechnol., 19 (2001) 253-257.
[70]S. Park, H. Boo, T. D. Chung, “Electrochemical non-enzymatic glucose sensors,” Anal. Chim. Acta, 556 (2006) 46-57.
[71]C. Liu, F. Li, L. P. Ma, H. M. Cheng, “Advanced materials for energy storage,” Adv. Mater., 22 (2010) E28-E62.
[72]J. Xu, L. Gao, J. Y. Cao, W. C. Wang, Z. D. Chen, “Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material,” Electrochim. Acta, 56 (2010) 732-736.
[73]S. K. Mondal, N. Munichandraiah, “Anodic deposition of porous RuO2 on stainless steel for supercapacitor studies at high current densities,” J. Power Sources, 175 (2008) 657-663.
[74]Q. H. Huang, X. Y. Wang, J. Li, “Characterization and performance of hydrous manganese oxide prepared by electrochemical method and its application for supercapacitors,” Electrochim. Acta, 52 (2006) 1758-1762.
[75]J. Cheng, G. P. Cao, Y. S. Yang, “Characterization of sol-gel-derived NiOx xerogels as supercapacitors,” J. Power Sources, 159 (2006) 734-741.
[76]B. Oregan, M. Grätzel, “High-efficiency solar-cell based on dye-sensitized colloidal TiO2 films,” Nature, 353 (1991) 737-740.
[77]G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett., 6 (2006) 215-218.
[78]G. Hashmi, K. Miettunen, T. Peltola, J. Halme, I. Asghar, K. Aitola, M. Toivola, P. Lund, “Review of materials and manufacturing options for large area flexible dye solar cells,” Renew. Sust. Energ. Rev., 15 (2011) 3717-3732.
[79]Z. Huang, X. H. Liu, K. X. Li, D. M. Li, Y. H. Luo, H. Li, W. B. Song, L. Q. Chen, Q. B. Meng, “Application of carbon materials as counter electrodes of dye-sensitized solar cells,” Electrochem. Commun., 9 (2007) 596-598.
[80]J. D. Roy-Mayhew, D. J. Bozym, C. Punckt, I. A. Aksay, “Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells,” ACS Nano, 4 (2010) 6203-6211.
[81]Q. D. Tai, B. L. Chen, F. Guo, S. Xu, H. Hu, B. Sebo, X. Z. Zhao, “In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells,” ACS Nano, 5 (2011) 3795-3799.
[82]H. C. Sun, D. Qin, S. Q. Huang, X. Z. Guo, D. M. Li, Y. H. Luo, Q. B. Meng, “Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique,” Energy Environ. Sci., 4 (2011) 2630-2637.
[83]S. Das, P. Sudhagar, S. Nagarajan, E. Ito, S. Y. Lee, Y. S. Kang, W. Choi, “Synthesis of graphene-CoS electro-catalytic electrodes for dye sensitized solar cells,” Carbon, 50 (2012) 4815-4821.
[84]D. R. Rosseinsky, R. J. Mortimer, “Electrochromic systems and the prospects for devices,” Adv. Mater., 13 (2001) 783-793.
[85]H. W. Heuer, R. Wehrmann, S. Kirchmeyer, “Electrochromic window based on conducting poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate),” Adv. Funct. Mater., 12 (2002) 89-94.
[86]R. J. Mortimer, A. L. Dyer, J. R. Reynolds, “Electrochromic organic and polymeric materials for display applications,” Displays, 27 (2006) 2-18.
[87]R. Baetens, B. P. Jelle, A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review,” Sol. Energy Mater. Sol. Cells, 94 (2010) 87-105.
[88]R. J. Mortimer, “Electrochromic materials,” Annu. Rev. Mater. Res., 41 (2011) 241-268.
[89]C. Santato, M. Odziemkowski, M. Ulmann, J. Augustynski, “Crystallographically oriented mesoporous WO3 films:  synthesis, characterization, and applications,” J. Am. Chem. Soc., 123 (2001) 10639-10649.
[90]G. A. Niklasson, C. G. Granqvist, “Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these,” J. Mater. Chem., 17 (2007) 127-156.
[91]K. Itaya, K. Shibayama, H. Akahoshi, S. Toshima, “Prussian‐blue‐modified electrodes: an application for a stable electrochromic display device,” J. Appl. Phys., 53 (1982) 804.
[92]A. P. Baioni, M. Vidotti, P. A. Fiorito, E. A. Ponzio, S. I. C. de Torresi, “Synthesis and characterization of copper hexacyanoferrate nanoparticles for building up long-term stability electrochromic electrodes,” Langmuir, 23 (2007) 6796-6800.
[93]T. H. Lin, K. C. Ho, “A complementary electrochromic device based on polyaniline and poly(3,4-ethylenedioxythiophene) ,” Sol. Energy Mater. Sol. Cells, 90 (2006) 506-520.
[94]C. Y. Tseng, C. W. Hu, K. C. Huang, L. C. Chang, R. Vittal, K. C. Ho, “Ion transport across the film of poly(5,6-dimethoxyindole-2-carboxylic acid) in relation to its electrochromic switching: an electrochemical quartz crystal microbalance study,” Electrochim. Acta, 101 (2013) 232-237.
[95]J. Wang, “Electrochemical glucose biosensors,” Chem. Rev., 108 (2008) 814-825.
[96]L. C. Clark Jr., C. Lyons, “Electrode systems for continuous monitoring in cardiovascular surgery,” Ann. NY Acad. Sci., 102 (1962) 29-45.
[97]S. J. Updike, G. P. Hicks, “The enzyme electrode,” Nature, 214 (1967) 986-988.
[98]R. Wilson, A. P. F. Turner, “Glucose oxidase: An ideal enzyme,” Biosens. Bioelectron., 7 (1992) 165-185.
[99]T. Yao, “A chemically-modified enzyme membrane electrode as an amperometric glucose sensor,” Anal. Chim. Acta, 148 (1983) 27-33.
[100]H. Yang, T. D. Chung, Y. T. Kim, C. A. Choi, C. H. Jun, H. C. Kim, “Glucose sensor using a microfabricated electrode and electropolymerized bilayer films,” Biosens. Bioelectron., 17 (2002) 251-259.
[101]E. Reitz, W. Z. Jia, M. Gentile, Y. Wang, Y. Lei, “CuO nanospheres based nonenzymatic glucose sensor,” Electroanalysis, 20 (2008) 2482-2486.
[102]L. C. Jiang, W. D. Zhang, “A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode,” Biosens. Bioelectron., 25 (2010) 1402-1407.
[103]J. Chen, W. D. Zhang, J. S. Ye, “Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite,” Electrochem. Commun., 10 (2008) 1268-1271.
[104]Y. Liu, H. Teng, H. Q. Hou, T. Y. You, “Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode,” Biosens. Bioelectron., 24 (2009) 3329-3334.
[105]H. Heli, H. Yadegari, “Nanoflakes of the cobaltous oxide, CoO: synthesis and characterization,” Electrochim. Acta, 55 (2010) 2139-2148.
[106]Y. Ding, Y. Wang, L. A. Su, M. Bellagamba, H. Zhang, Y. Lei, “Electrospun Co3O¬4 nanofibers for sensitive and selective glucose detection,” Biosens. Bioelectron., 26 (2010) 542-548.
[107]Y. Y. Gao, S. L. Chen, D. X. Cao, G. L. Wang, J. L. Yin, “Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam,” J. Power Sources, 195 (2010) 1757-1760.
[108]X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, M. B. Chan-Park, H. Zhang, L. H. Wang, W. Huang, P. Chen, “3D graphene cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection,” ACS Nano, 6 (2012) 3206-3213.
[109]X. H. Xia, J. P. Tu, J. Zhang, J. Y. Xiang, X. L. Wang, X. B. Zhao, “Fast electrochromic properties of self-supported Co3O4 nanowire array film,” Sol. Energy Mater. Sol. Cells, 94 (2010) 386-389.
[110]D. Barreca, D. Bekermann, E. Comini, A. Devi, R. A. Fischer, A. Gasparotto, M. Gavagnin, C. Maccato, C. Sada, G. Sberveglieri, E. Tondello, “Plasma enhanced-CVD of undoped and fluorine-doped Co3O4 nanosystems for novel gas sensors,” Sens. Actuators, B, 160 (2011) 79-86.
[111]C. Y. Liu, C. F. Chen, J. P. Leu, “Tunable interconnectivity of mesostructured cobalt oxide materials for sensing applications,” Sens. Actuators, B, 137 (2009) 700-703.
[112]K. I. Choi, H. R. Kim, K. M. Kim, D. W. Li, G. Z. Cao, J. H. Lee, “C2H5OH sensing characteristics of various Co3O4 nanostructures prepared by solvothermal reaction,” Sens. Actuators, B, 146 (2010) 183-189.
[113]A. Salimi, H. Mamkhezri, R. Hallaj, S. Soltanian, “Electrochemical detection of trace amount of arsenic(III) at glassy carbon electrode modified with cobalt oxide nanoparticles,” Sens. Actuators, B, 129 (2008) 246-254.
[114]A. Arvinte, A. C. Westermann, A. M. Sesay, V. Virtanen, “Electrocatalytic oxidation and determination of insulin at CNT-nickel-cobalt oxide modified electrode,” Sens. Actuators, B, 150 (2010) 756-763.
[115]A. Salimi, R. Hallaj, S. Soltanian, H. Mamkhezri, “Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles,” Anal. Chim. Acta, 594 (2007) 24-31.
[116]Y. L. Li, J. Z. Zhao, Y. Y. Dan, D. H. Ma, Y. Zhao, S. N. Hou, H. B. Lin, Z. C. Wang, “Low temperature aqueous synthesis of highly dispersed Co3O4 nanocubes and their electrocatalytic activity studies,” Chem. Eng. J., 166 (2011) 428-434.
[117]Q. W. Li, G. A. Luo, Y. Q. Shu, “Response of nanosized cobalt oxide electrodes as pH sensors,” Anal. Chim. Acta, 409 (2000) 137-142.
[118]E. Hosono, S. Fujihara, I. Honma, M. Ichihara, H. S. Zhou, “Synthesis of the CoOOH fine nanoflake film with the high rate capacitance property,” J. Power Sources, 158 (2006) 779-783.
[119]L. Pan, M. Xu, Z. D. Zhang, “Synthesis and electrocatalytic properties of Co3O4 nanocrystallites with various morphologies,” J. Cluster Sci., 21 (2010) 655-667.
[120]P. Porta, R. Dragone, G. Fierro, M. Inversi, M. Lojacono, G. Moretti, “Preparation and characterisation of cobalt-copper hydroxysalts and their oxide products of decomposition,” J. Chem. Soc., Faraday Trans., 88 (1992) 311-319.
[121]A. Guinier, “X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies,” Dover Publications, Canada (1994).
[122]W. Estrada, M. C. A. Fantini, S. C. de Castro, C. N. Polo da Fonseca, A. Gorenstein, “Radio frequency sputtered cobalt oxide coating: structural, optical, and electrochemical characterization,” J. Appl. Phys., 74 (1993) 5835-5841.
[123]L. Saghatforoush, M. Hasanzadeh, G. Karim-Nezhad, S. Ershad, N. Shadjou, B. Khalilzadeh, M. Hajjizadeh, “Kinetic study of the electrooxidation of mefenamic acid and indomethacin catalysed on cobalt hydroxide modified glassy carbon electrode,” Bull. Kor. Chem. Soc., 30 (2009) 1341-1348.
[124]I. G. Casella, M. Gatta, “Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions,” J. Electroanal. Chem., 534 (2002) 31-38.
[125]C. Barbero, G. A. Planes, M. C. Miras, “Redox coupled ion exchange in cobalt oxide films,” Electrochem. Commun., 3 (2001) 113-116.
[126]K. Nakaoka, M. Nakayama, K. Ogura, “Electrochemical deposition of spinel-type cobalt oxide from alkaline solution of Co2+ with glycine,” J. Electrochem. Soc., 149 (2002) C159-C163.
[127]M. Longhi, L. Formaro, “An old workhorse of oxide investigations: new features of Co3O4,” J. Electroanal. Chem., 464 (1999) 149-157.
[128]T. R. I. Cataldi, I. G. Casella, E. Desimoni, “Cobalt-based glassy carbon chemically modified electrode for constant-potential amperometric detection of carbohydrates in flow-injection analysis and liquid chromatography,” Anal. Chim. Acta, 270 (1992) 161-171.
[129]E. Scavetta, B. Ballarin, D. Tonelli, “A cheap amperometric and optical sensor for glucose determination,” Electroanalysis, 22 (2010) 427-432.
[130]W. Y. Su, S. H. Cheng, “Electrochemical oxidation and sensitive determination of acetaminophen in pharmaceuticals at poly(3,4-ethylenedioxythiophene)-modified screen-printed electrodes,” Electroanalysis, 22 (2010) 707-714.
[131]R. N. Goyal, V. K. Gupta, M. Oyama, N. Bachheti, “Differential pulse voltammetric determination of paracetamol at nanogold modified indium tin oxide electrode,” Electrochem. Commun., 7 (2005) 803-807.
[132]H. Z. Toklu, A. O. Sehirli, A. Velioglu-Ogunc, S. Cetinel, G. Sener, “Acetaminophen-induced toxicity is prevented by β-d-glucan treatment in mice,” Eur. J. Pharmacol., 543 (2006) 133-140.
[133]M. K. Srivastava, S. Ahmad, D. Singh, I. C. Shukla, “Titrimetric determination of dipyrone and paracetamol with potassium hexacyanoferrate(III) in an acidic medium,” Analyst, 110 (1985) 735-737.
[134]P. Nagaraja, K. C. S. Murthy, K. S. Rangappa, “Spectrophotometric method for the determination of paracetamol and phenacetin,” J. Pharm. Biomed. Anal., 17 (1998) 501-506.
[135]J. L. Vilchez, R. Blanc, R. Avidad, A. Naval´on, “Spectrofluorimetric determination of paracetamol in pharmaceuticals and biological fluids,” J. Pharm. Biomed. Anal., 13 (1995) 1119-1125.
[136]A. M. Di Pietra, R. Gatti, V. Andrisano, V. Cavrini, “Application of high-performance liquid chromatography with diode-array detection and on-line post-column photochemical derivatization to the determination of analgesics,” J. Chromatogr. A, 729 (1996) 355-361.
[137]J. L. P´erez, M. A. Bello, “Determination of paracetamol in dosage forms by non-suppressed ion chromatography,” Talanta, 48 (1999) 1199-1202.
[138]A. Kunkel, S. Gunter, H. Watzig, “Determination of pharmaceuticals in plasma by capillary electrophoresis without sample pretreatment reproducibility, limit of quantitation and limit of detection,” Electrophoresis, 18 (1997) 1882-1889.
[139]J. Wang, “Portable electrochemical systems,” Trends Anal. Chem., 21 (2002) 226-232.
[140]X. Chen, J. N. Zhu, Q. Xi, W. S. Yang, “A high performance electrochemical sensor for acetaminophen based on single-walled carbon nanotube-graphene nanosheet hybrid films,” Sens. Actuators, B, 161 (2012) 648-654.
[141]T. L. Lu, Y. C. Tsai, “Sensitive electrochemical determination of acetaminophen in pharmaceutical formulations at multiwalled carbon nanotube-alumina-coated silica nanocomposite modified electrode,” Sens. Actuators, B, 153 (2011) 439-444.
[142]J. M. Zen, Y. S. Ting, “Simultaneous determination of caffeine and acetaminophen in drug formulations by square-wave voltammetry using a chemically modified electrode,” Anal. Chim. Acta, 342 (1997) 175-180.
[143]M. S. M. Quintino, K. Araki, H. E. Toma, L. Angnes, “Batch injection analysis utilizing modified electrodes with tetraruthenated porphyrin films for acetaminophen quantification,” Electroanalysis, 14 (2002) 1629-1634.
[144]J. C. Song, J. Yang, J. F. Zeng, J. Tan, L. Zhang, “Graphite oxide film-modified electrode as an electrochemical sensor for acetaminophen,” Sens. Actuators, B, 155 (2011) 220-225.
[145]H. Razmi, E. Habibi, “Amperometric detection of acetaminophen by an electrochemical sensor based on cobalt oxide nanoparticles in a flow injection system,” Electrochim. Acta, 55 (2010) 8731-8737.
[146]M. Oikawa, S. Fujihara, “Crystal growth of Ce2O(CO3)2‧H2O in aqueous solutions: film formation and samarium doping,” J. Solid State Chem., 178 (2005) 2036-2041.
[147]J. Bisquert, G. Garcia-Belmonte, P. Bueno, E. Longo, L. O. S. Bulhões, “Impedance of constant phase element (CPE)-blocked diffusion in film electrodes,” J. Electroanal. Chem., 452 (1998) 229-234.
[148]R. Xu, H. C. Zeng, “Dimensional control of cobalt-hydroxide-carbonate nanorods and their thermal conversion to one-dimensional arrays of Co3O4 nanoparticles,” J. Phys. Chem. B, 107 (2003) 12643-12649.
[149]A. I. Gasco-Lopez, R. Izquierdo-Hornillos, A. Jiminez, “Development and validation of a high-performance liquid chromatography method for the determination of cold relief ingredients in chewing gum,” J. Chromatogr. A, 775 (1997) 179-185.
[150]A. Marín, E. García, A. García, C. Barbas, “Validation of a HPLC quantification of acetaminophen, phenylephrine and chlorpheniramine in pharmaceutical formulations: capsules and sachets,” J. Pharm. Biomed. Anal., 29 (2002) 701-714.
[151]H. A. A. Hashem, “Chromatographic application on calixarene bonded stationary phases: a stability indicating method for simultaneous determination of paracetamol, caffeine and acetylsalicylic acid in excedrin tablets,” Chromatographia, 71 (2010) 31-35.
[152]P. Koblová, H. Sklenářová, I. Brabcová, P. Solich, “Development and validation of a rapid HPLC method for the determination of ascorbic acid, phenylephrine, paracetamol and caffeine using a monolithic column,” Anal. Methods, 4 (2012) 1588-1591.
[153]T. Belal, T. Awad, C. R. Clark, “Determination of paracetamol and tramadol hydrochloride in pharmaceutical mixture using HPLC and GC–MS,” J. Chromatogr. Sci., 47 (2009) 849-854.
[154]M. J. Gómez, A. Agüera, M. Mezcua, J. Hurtado, F. Mocholí, A. R. Fernández-Alba, “Simultaneous analysis of neutral and acidic pharmaceuticals as well as related compounds by gas chromatography–tandem mass spectrometry in wastewater,” Talanta, 73 (2007) 314-320.
[155]T. Saito, T. Yamagiwa, I. Kishiyama, S. Miyazaki, A. Nakamoto, M. Nishida, A. Namera, S. Inokuchi, “Monolithic spin column extraction and GC-MS for simultaneously detecting nine cold medication compounds and the drug bromoisovaleryl urea in human serum,” Chromatographia, 70 (2009) 519-526.
[156]R. Pernites, R. Ponnapati, M. J. Felipe, R. Advincula, “Electropolymerization molecularly imprinted polymer (E-MIP) SPR sensing of drug molecules: pre-polymerization complexed terthiophene and carbazole electroactive monomers,” Biosens. Bioelectron., 26 (2011) 2766-2771.
[157]P. Grange, B. Delmon, “The role of cobalt and molybdenum sulphides in hydrodesulphurisation catalysts: a review,” J. Less-Common Met., 36 (1974) 353-360.
[158]S. J. Bao, C. M. Li, C. X. Guo, Y. Qiao, “Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors,” J. Power Sources, 180 (2008) 676-681.
[159]P. Justin, G. R. Rao, “CoS spheres for high-rate electrochemical capacitive energy storage application,” Int. J. Hydrogen Energy, 35 (2010) 9709-9715.
[160]Z. Yang, C. Y. Chen, H. T. Chang, “Supercapacitors incorporating hollow cobalt sulfide hexagonal nanosheets,” J. Power Sources, 196 (2011) 7874-7877.
[161]Q. Wang, L. Jiao, Y. Han, H. Du, W. Peng, Q. Huan, D. Song, Y. Si, Y. Wang, H. Yuan, “CoS2 hollow spheres: fabrication and their application in lithium-ion batteries,” J. Phys. Chem. C, 115 (2011) 8300-8304.
[162]Q. R. Hu, S. L. Wang, Y. Zhang, W. H. Tang, “Synthesis of cobalt sulfide nanostructures by a facile solvothermal growth process,” J. Alloys Compd., 491 (2010) 707-711.
[163]Z. Wang, L. Pan, H. Hu, S. Zhao, “Co9S8 nanotubes synthesized on the basis of nanoscale Kirkendall effect and their magnetic and electrochemical properties,” CrystEngComm, 12 (2010) 1899-1904.
[164]X. Chen, Z. Zhang, Z. Qiu, C. Shi, X. Li, “Hydrothermal fabrication and characterization of polycrystalline linneite (Co3S4) nanotubes based on the Kirkendall effect,” J. Colloid Interface Sci., 308 (2007) 271-275.
[165]G. H. Yue, P. X. Yan, X. Y. Fan, M. X. Wang, D. M. Qu, Z. G. Wu, C. Li, D. Yan, “Structure and properties of cobalt disulfide nanowire arrays fabricated by electrodeposition,” Electrochem. Solid-State Lett., 10 (2007) D29-D31.
[166]M. Wang, A. M. Anghel, B. Marsan, N.-L. C. Ha, N. Pootrakulchote, S. M. Zakeeruddin, M. Grätzel, “CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells,” J. Am. Chem. Soc., 131 (2009) 15976-15977.
[167]J. Y. Lin, J. H. Liao, T. C. Wei, “Honeycomb-like CoS counter electrodes for transparent dye-sensitized solar cells,” Electrochem. Solid-State Lett., 14 (2011) D41-D44.
[168]R. Xu, H. C. Zeng, “Self-generation of tiered surfactant superstructures for one-pot synthesis of Co3O4 nanocubes and their close- and non-close-packed organizations,” Langmuir, 20 (2004) 9780-9790.
[169]N. Khaorapapong, A. Ontam, M. Ogawa, “Very slow formation of copper sulfide and cobalt sulfide nanoparticles in montmorillonite,” Appl. Clay Sci., 51 (2011) 182-186.
[170]B. K. Pandey, A. K. Shahi, R. K. Swarnkar, R. Gopal, “Magnetic property of novel cobalt sulfate nanoparticles synthesized by pulsed laser ablation,” Sci. Adv. Mater., 4 (2012) 537-543.
[171]S. Sohrabnezhad, D. R. Ochbelagh, M. K. Biroon, “Gamma ray effects on optical properties of CoS nanoparticles,” Spectrochim. Acta, Part A, 96 (2012) 796-800.
[172]J. Yang, H. W. Liu, W. N. Martens, R. L. Frost, “Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs,” J. Phys. Chem. C, 114 (2010) 111-119.
[173]C. V. Schenck, J. G. Dillard, J. W. Murray, “Surface-analysis and the adsorption of Co(II) on goethite,” J. Colloid Interface Sci., 95 (1983) 398-409.
[174]G. Valiulienė, A. Žieliene, J. Vinkevičius, “Investigation of the interaction between Co sulfide coatings and Cu(I) ions by cyclic voltammetry and XPS,” J. Solid State Electrochem., 6 (2002) 396-402.
[175]S. J. Bao, Y. B. Li, C. M. Li, Q. L. Bao, Q. Lu, J. Guo, “Shape evolution and magnetic properties of cobalt sulfide,” Cryst. Growth Des., 8 (2008) 3745-3749.
[176]T. Baird, K. C. Campbell, P. J. Holliman, R. W. Hoyle, M. Huxam, D. Stirling, B. P. Williams, M. Morris, “Cobalt-zinc oxide absorbents for low temperature gas desulfurization,” J. Mater. Chem., 9 (1999) 599-605.
[177]C. Loussot, P. Afanasiev, M. Vrinat, H. Jobic, P. C. Leverd, “Amorphous cobalt oxysulfide as a hydrogen trap,” Chem. Mater., 18 (2006) 5659-5668.
[178]S. M. Bulatovic, “Handbook of Flotation Reagents: Chemistry, Theory and Practice: Flotation of Sulfide Ores,” Elsevier, the Netherlands (2007).
[179]C. H. Yoon, R. Vittal, J. Lee, W. S. Chae, K. J. Kim, “Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode,” Electrochimica Acta, 53 (2008) 2890-2896.
[180]M. X. Wu, X. Lin, T. H. Wang, J. S. Qiu, T. L. Ma, “Low-cost dye-sensitized solar cell based on nine kinds of carbon counter electrodes,” Energy Environ. Sci., 4 (2011) 2308-2315.
[181]E. Olsen, G. Hagen, S. E. Lindquist, “Dissolution of platinum in methoxy propionitrile containing LiI/I2,” Sol. Energy Mater. Sol. Cells, 63 (2000) 267-273.
[182]H. W. Chen, C. W. Kung, C. M. Tseng, T. C. Wei, N. Sakai, S. Morita, M. Ikegami, T. Miyasaka, K. C. Ho, “Plastic based dye-sensitized solar cells using Co9S8 acicular nanotube arrays as the counter electrode,” J. Mater. Chem. A, 1 (2013) 13759-13768.
[183]M. J. Deng, F. L. Huang, I. W. Sun, W. T. Tsai, J. K. Chang, “An entirely electrochemical preparation of a nano-structured cobalt oxide electrode with superior redox activity,” Nanotechnology, 20 (2009) 175602.
[184]J. C. Deng, L. T. Kang, G. L. Bai, Y. Li, P. Y. Li, X. G. Liu, Y. Z. Yang, F. Gao, W. Liang, “Solution combustion synthesis of cobalt oxides (Co3O4 and Co3O4/CoO) nanoparticles as supercapacitor electrode materials,” Electrochim. Acta, 132 (2014) 127-135.
[185]X. X. Qing, S. Q. Liu, K. L. Huang, K. Z. Lv, Y. P. Yang, Z. G. Lu, D. Fang, X. X. Liang, “Facile synthesis of Co3O4 nanoflowers grown on Ni foam with superior electrochemical performance,” Electrochim. Acta, 56 (2011) 4985-4991.
[186]F. Zhang, C. Z. Yuan, X. J. Lu, L. J. Zhang, Q. Che, X. G. Zhang, “Facile growth of mesoporous Co3O4 nanowire arrays on Ni foam for high performance electrochemical capacitors,” J. Power Sources, 203 (2012) 250-256.
[187]H. N. Zhang, Y. J. Chen, W. W. Wang, G. H. Zhang, M. Zhuo, H. M. Zhang, T. Yang, Q. H. Li, T. H. Wang, “Hierarchical Mo-decorated Co3O4 nanowire arrays on Ni foam substrates for advanced electrochemical capacitors,” J. Mater. Chem. A, 1 (2013) 8593-8600.
[188]Z. Wen, L. P. Zhu, W. M. Mei, Y. G. Li, L. Hu, L. W. Sun, W. T. Wan, Z. Z. Ye, “A facile fluorine-mediated hydrothermal route to controlled synthesis of rhombus-shaped Co3O4 nanorod arrays and their application in gas sensing,” J. Mater. Chem. A, 1 (2013) 7511-7518.
[189]K. Cheng, F. Yang, Y. Xu, L. Cheng, Y. Y. Bao, D. X. Cao, G. L. Wang, “Pd doped Co3O4 nanowire array as the H2O2 electroreduction catalyst,” J. Power Sources, 240 (2013) 442-447.
[190]V. Yagmur, F. E. Atalay, H. Kaya, D. Avcu, E. Aydogmus, “Electrochemical capacitance of cobalt oxide nanotubes on nickel foam,” Acta Phys. Pol., A, 123 (2013) 215-217.
[191]G. Tong, J. Guan, Q. Zhang, “In-situ generated gas bubble-directed self-assembly: synthesis, and peculiar magnetic and electrochemical properties of vertically aligned arrays of high-density Co3O4 nanotubes,” Adv. Funct. Mater., 23 (2013) 2406-2414.
[192]G. Tong, Y. Liu, J. Guan, “In-situ gas bubble-assisted one-step synthesis of polymorphic Co3O4 nanostructures with improved electrochemical performance for lithium ion batteries,” J. Alloys Compd., 601 (2014) 167-174.
[193]Z. Fei, S. He, L. Li, W. Ji, C. T. Au, “Morphology-directed synthesis of Co3O4 nanotubes based on modified Kirkendall effect and its application in CH4 combustion,” Chem. Commun., 48 (2012) 853-855.
[194]J. Chivot, L. Mendoza, C. Mansour, T. Pauporté, M. Cassir, “New insight in the behaviour of Co-H2O system at 25-150 °C, based on revised Pourbaix diagrams,” Corros. Sci., 50 (2008) 62-69.
[195]Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos, “Formation of hollow nanocrystals through the nanoscale Kirkendall effect,” Science, 304 (2004) 711-714.
[196]W. S. Wang, M. Dahl, Y. D. Yin, “Hollow nanocrystals through the nanoscale Kirkendall effect,” Chem. Mater., 25 (2013) 1179-1189.
[197]R. R. Sowell, R. E. Cuthrell, D. M. Mattox, R. D. Bland, “Surface cleaning by ultraviolet radiation,” J. Vac. Sci. Technol., 11 (1974) 474-475.
[198]J. R. Vig, “UV /ozone cleaning of surfaces,” J. Vac. Sci. Technol. A, 3 (1985) 1027-1034.
[199]C. K. Xu, J. M. Wu, U. V. Desai, D. Gao, “Multilayer assembly of nanowire arrays for dye-sensitized solar cells,” J. Am. Chem. Soc., 133 (2011) 8122-8125.
[200]M. L. Sham, J. K. Kim, “Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatments,” Carbon, 44 (2006) 768-777.
[201]J. H. Lee, S. B. Wee, M. S. Kwon, H. H. Kim, J. M. Choi, M. S. Song, H. B. Park, H. Kim, U. Paik, “Strategic dispersion of carbon black and its application to ink-jet-printed lithium cobalt oxide electrodes for lithium ion batteries,” J. Power Sources, 196 (2011) 6449-6455.
[202]T. Yoshida, D. Komatsu, N. Shimokawa, H. Minoura, “Mechanism of cathodic electrodeposition of zinc oxide thin films from aqueous zinc nitrate baths,” Thin Solid Films, 451 (2004) 166-169.
[203]M. Dinamani, P. V. Kamath, “Electrocatalysis of oxygen evolution at stainless steel anodes by electrosynthesized cobalt hydroxide coatings,” J. Appl. Electrochem., 30 (2000) 1157-1161.
[204]T. Yoshida, M. Tochimoto, D. Schlettwein, D. Wöhrle, T. Sugiura, H. Minoura, “Self-assembly of zinc oxide thin films modified with tetrasulfonated metallophthalocyanines by one-step electrodeposition,” Chem. Mater., 11 (1999) 2657-2667.
[205]J. R. S. Brownson, C. Lévy-Clément, “Nanostructured α- and β-cobalt hydroxide thin films,” Electrochim. Acta, 54 (2009) 6637-6644.
[206]Z. P. Xu, H. C. Zeng, “Control of surface area and porosity of Co3O4 via intercalation of oxidative or nonoxidative anions in hydrotalcite-like precursors,” Chem. Mater., 12 (2000) 3459-3465.
[207]T. Yoshino, N. Baba, “Characterization and properties of electrochromic cobalt oxide thin film prepared by electrodeposition,” Sol. Energy Mater. Sol. Cells, 39 (1995) 391-397.
[208]R. S. Jayashree, P. V. Kamath, “Electrochemical synthesis of α-cobalt hydroxide,” J. Mater. Chem., 9 (1999) 961-963.
[209]J. Ismail, M. F. Ahmed, P. V. Kamath, “Organic additive-mediated synthesis of novel cobalt(II) hydroxides,” J. Solid State Chem., 114 (1995) 550-555.
[210]P. V. Kamath, G. H. A. Therese, “On the existence of hydrotalcite-like phases in the absence of trivalent cations,” J. Solid State Chem., 128 (1997) 38-41.
[211]S. L. Xiong, C. Z. Yuan, X. G. Zhang, B. J. Xi, Y. T. Qian, “Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors,” Chem. Eur. J., 15 (2009) 5320-5326.
[212]R. B. Rakhi, W. Chen, D. Y. Cha, H. N. Alshareef, “Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance,” Nano Lett., 12 (2012) 2559-2567.
[213]L. Yang, S. Cheng, Y. Ding, X. B. Zhu, Z. L. Wang, M. L. Liu, “Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors,” Nano Lett., 12 (2012) 321-325.
[214]C. Z. Yuan, L. Yang, L. R. Hou, J. Y. Li, Y. X. Sun, X. G. Zhang, L. F. Shen, X. J. Lu, S. L. Xiong, X. W. Lou, “Flexible hybrid paper made of monolayer Co3O4 microsphere arrays on rGO/CNTs and their application in electrochemical capacitors,” Adv. Funct. Mater., 22 (2012) 2560-2566.
[215]X. H. Xia, J. P. Tu, X. L. Wang, C. D. Gua, X. B. Zhao, “Mesoporous Co3O4 monolayer hollow-sphere array as electrochemical pseudocapacitor material,” Chem. Commun., 47 (2011) 5786-5788.
[216]W. Du, R. M. Liu, Y. W. Jiang, Q. Y. Lu, Y. Z. Fan, F. Gao, “Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor,” J. Power Sources, 227 (2013) 101-105.
[217]D. W. Wang, Q. H. Wang, T. M. Wang, “Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors,” Inorg. Chem., 50 (2011) 6482-6492.
[218]Y. Cao, F. L. Yuan, M. S. Yao, J. H. Bang, J. H. Lee, “A new synthetic route to hollow Co3O4 octahedra for supercapacitor applications,” CrystEngComm, 16 (2014) 826-833.
[219]F. L. Meng, Z. G. Fang, Z. X. Li, W. W. Xu, M. J. Wang, Y. P. Liu, J. Zhang, W. R. Wang, D. Y. Zhao, X. H. Guo, “Porous Co3O4 materials prepared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors,” J. Mater. Chem. A, 1 (2013) 7235-7241.
[220]D. L. Yan, H. Zhang, L. Chen, G. S. Zhu, S. C. Li, H. R. Xu, A. B. Yu, “Biomorphic synthesis of mesoporous Co3O4 microtubules and their pseudocapacitive performance,” ACS Appl. Mater. Interfaces, 6 (2014) 15632-15637.
[221]S. Kirchmeyer, K. Reuter, “Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene) ,” J. Mater. Chem., 15 (2005) 2077-2088.
[222]C. Y. Lin, V. S. Vasantha, K. C. Ho, “Detection of nitrite using poly(3,4-ethylenedioxythiophene) modified SPCEs ,” Sens. Actuators, B, 140 (2009) 51-57.
[223]Q. B. Pei, G. Zuccarello, M. Ahlskog, O. Inganäs, “Electrochromic and highly stable poly(3,4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue,” Polymer, 35 (1994) 1347-1351.
[224]F. C. Krebs, S. A. Gevorgyan, J. Alstrup, “A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies,” J. Mater. Chem., 19 (2009) 5442-5451.
[225]K. S. Ryu, Y. G. Lee, Y. S. Hong, Y. J. Park, X. Wu, K. M. Kim, M. G. Kang, N. G. Park, S. H. Chang, “Poly(ethylenedioxythiophene) (PEDOT) as polymer electrode in redox supercapacitor,” Electrochim. Acta, 50 (2004) 843-847.
[226]H. Mao, X. C. Liu, D. M. Chao, L. L. Cui, Y. X. Li, W. J. Zhang, C. Wang, “Preparation of unique PEDOT nanorods with a couple of cuspate tips by reverse interfacial polymerization and their electrocatalytic application to detect nitrite,” J. Mater. Chem., 20 (2010) 10277-10284.
[227]Y. Li, Y. Feng, W. Feng, “The synthesis of poly(3,4-ethylenedioxythiophene) micro/nano-spheres by the demulsifying treatment,” Synth. Met., 162 (2012) 781-787.
[228]X. X. Bai, X. J. Hu, S. Y. Zhou, J. Yan, C. H. Sun, P. Chen, L. F. Li, “Controlled fabrication of highly conductive three-dimensional flowerlike poly(3,4-ethylenedioxythiophene) nanostructures,” J. Mater. Chem., 21 (2011) 7123-7129.
[229]S. L. Cho, S. B. Lee, “Fast electrochemistry of conductive polymer nanotubes: synthesis, mechanism, and application,” Acc. Chem. Res., 41 (2008) 699-707.
[230]J. W. Back, S. Lee, C. R. Hwang, C. S. Chi, J. Y. Kim, “Fabrication of conducting PEDOT nanotubes using vapor deposition polymerization,” Macromol. Res., 19 (2011) 33-37.
[231]O. S. Kwon, S. J. Park, J. S. Lee, E. Park, T. Kim, H. W. Park, S. A. You, H. Yoon, J. Jang, “Multidimensional conducting polymer nanotubes for ultrasensitive chemical nerve agent sensing,” Nano Lett., 12 (2012) 2797-2802.
[232]S. Thomas, T. G. Deepak, G. S. Anjusree, T. A. Arun, S. V. Naira, A. S. Nair, “A review on counter electrode materials in dye-sensitized solar cells,” J. Mater. Chem. A, 2 (2014) 4474-4490.
[233]K. M. Lee, P. Y. Chen, C. Y. Hsu, J. H. Huang, W. H. Ho, H. C. Chen, K. C. Ho, “A high-performance counter electrode based on poly(3,4-alkylenedioxythiophene) for dye-sensitized solar cells,” J. Power Sources, 188 (2009) 313-318.
[234]S. Ahmad, J. H. Yum, Z. Xianxi, M. Grätzel, H. J. Butt, M. K. Nazeeruddin, “Dye-sensitized solar cells based on poly(3,4-ethylenedioxythiophene) counter electrode derived from ionic liquids,” J. Mater. Chem., 20 (2010) 1654-1658.
[235]J. M. Pringle, V. Armel, D. R. MacFarlane, “Electrodeposited PEDOT-on-plastic cathodes for dye-sensitized solar cells,” Chem. Commun., 46 (2010) 5367-5369.
[236]R. Trevisan, M. Döbbelin, P. P. Boix, E. M. Barea, R. Tena-Zaera, I. Mora-Seró, J. Bisquert, “PEDOT nanotube arrays as high performing counter electrodes for dye sensitized solar cells. Study of the interactions among electrolytes and counter electrodes,” Adv. Energy Mater., 1 (2011) 781-784.
[237]X. Crispin, S. Marciniak, W. Osikowicz, G. Zotti, A. W. D. Van Der Gon, F. Louwet, M. Fahlman, L. Groenendaal, F. De Schryver, W. R. Salaneck, “Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate): A photoelectron spectroscopy study,” J. Polym. Sci., Part B: Polym. Phys., 41 (2003) 2561-2583.
[238]J. Hwang, F. Amy, A. Kahn, “Spectroscopic study on sputtered PEDOT • PSS: role of surface PSS layer,” Org. Electron., 7 (2006) 387-396.
[239]H. Yan, H. Okuzaki, “Effect of solvent on PEDOT/PSS nanometer-scaled thin films: XPS and STEM/AFM studies,” Synth. Met., 159 (2009) 2225-2228.
[240]A. J. Nelson, S. Glenis, A. J. Frank, “XPS and UPS investigation of PF6 doped and undoped poly 3‐methyl thiophene,” J. Chem. Phys., 87 (1987) 5002-5006.
[241]Y. M. Shul''ga, A. V. Bulatov, R. A. T. Could, W. V. Konze, L. H. Pignolet, “X-ray photoelectron spectroscopy of a series of heterometallic gold-platinum phosphine cluster compounds,” Inorg. Chem., 31 (1992) 4704-4706.
[242]E. M. P. Steinmiller, K. S. Choi, “Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production,” Proc. Natl. Acad. Sci., 106 (2009) 20633-20636.
[243]U. Lang, N. Naujoks, J. Dual, “Mechanical characterization of PEDOT:PSS thin films,” Synth. Met., 159 (2009) 473-479.
[244]Y. Wang, W. Z. Jia, T. Strout, Y. Ding, Y. Lei, “Preparation, characterization and sensitive gas sensing of conductive core-sheath TiO2-PEDOT nanocables,” Sensors, 9 (2009) 6752-6763.
[245]T. Jacobsen, K. West, “Diffusion impedance in planar, cylindrical and spherical symmetry,” Electrochim. Acta, 40 (1995) 255-262.
[246]M. Jahan, Q. L. Bao, J. X. Yang, K. P. Loh, “Structure-directing role of graphene in the synthesis of metal-organic framework nanowire,” J. Am. Chem. Soc., 132 (2010) 14487-14495.
[247]R. Li, Y. P. Yuan, L. G. Qiu, W. Zhang, J. F. Zhu, “A rational self-sacrificing template route to metal-organic framework nanotubes and reversible vapor-phase detection of nitroaromatic explosives,” Small, 8 (2012) 225-230.
[248]W. J. Rieter, K. M. L. Taylor, H. Y. An, W. L. Lin, W. B. Lin, “Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents,” J. Am. Chem. Soc., 128 (2006) 9024-9025.
[249]S. Giri, S. K. Saha, “Superparamagnetic-to-diamagnetic transition in hydroxo-bridged trinuclear copper(II) complex nanorods,” J. Phys. Chem. C, 114 (2010) 11723-11729.
[250]Z. Karimi, A. Morsali, “Modulated formation of metal-organic frameworks by oriented growth over mesoporous silica,” J. Mater. Chem. A, 1 (2013) 3047-3054.
[251]Y. S. Li, H. Bux, A. Feldhoff, G. L. Li, W. S. Yang, J. Caro, “Controllable synthesis of metal-organic frameworks: from MOF nanorods to oriented MOF membranes,” Adv. Mater., 22 (2010) 3322-3326.
[252]J. L. Zhuang, K. Lommel, D. Ceglarek, I. Andrusenko, U. Kolb, S. Maracke, U. Sazama, M. Froba, A. Terfort, “Synthesis of a new copper-azobenzene dicarboxylate framework in the form of hierarchical bulk solids and thin films without and with patterning,” Chem. Mater., 23 (2011) 5366-5374.
[253]J. E. Mondloch, W. Bury, D. Fairen-Jimenez, S. Kwon, E. J. Demarco, M. H. Weston, A. A. Sarjeant, S. T. Nguyen, P. C. Stair, R. Q. Snurr, O. K. Farha, J. T. Hupp, “Vapor-phase metalation by atomic layer deposition in a metal-organic framework,” J. Am. Chem. Soc., 135 (2013) 10294-10297.
[254]M. Hara, S. Tojo, K. Kawai, T. Majima, “Formation and decay of pyrene radical cation and pyrene dimer radical cation in the absence and presence of cyclodextrins during resonant two-photon ionization of pyrene and sodium 1-pyrene sulfonate,” Phys. Chem. Chem. Phys., 6 (2004) 3215-3220.
[255]D. Fairen-Jimenez, Y. J. Colon, O. K. Farha, Y. S. Bae, J. T. Hupp, R. Q. Snurr, “Understanding excess uptake maxima for hydrogen adsorption isotherms in frameworks with rht topology,” Chem. Commun., 48 (2012) 10496-10498.
[256]M. Gingras, V. Placide, J. M. Raimundo, G. Bergamini, P. Ceroni, V. Balzani, “Polysulfurated pyrene-cored dendrimers: luminescent and electrochromic properties,” Chem. Eur. J., 14 (2008) 10357-10363.
[257]L. Y. Xu, J. S. Zhao, R. M. Liu, H. T. Liu, J. F. Liu, H. S. Wang, “Electrosyntheses and characterizations of novel electrochromic and fluorescent copolymers based on 2,2’-bithiophene and pyrene,” Electrochim. Acta, 55 (2010) 8855-8862.
[258]Y. Mao, J. K. Thomas, “Photochemical reactions of pyrene on surfaces of γ-alumina and silica-alumina,” Langmuir, 8 (1992) 2501-2508.
[259]Y. Mao, J. K. Thomas, “Chemical reactions of molecular oxygen in surface-mediated photolysis of aromatic compounds on silica-based surfaces,” J. Phys. Chem., 99 (1995) 2048-2056.
[260]C. L. Gaupp, D. M. Welsh, R. D. Rauh, J. R. Reynolds, “Composite coloration efficiency measurements of electrochromic polymers based on 3,4-alkylenedioxythiophenes,” Chem. Mater., 14 (2002) 3964-3970.
[261]M. Oyama, J. Matsui, “Kinetic analysis of the reactions of 1-substituted pyrene cation radicals with water in acetonitrile,” J. Electroanal. Chem., 570 (2004) 77-82.
[262]N. C. Burtch, H. Jasuja, K. S. Walton, “Water stability and adsorption in metal-organic frameworks,” Chem. Rev., 114 (2014) 10575-10612.
[263]J. E. Mondloch, M. J. Katz, N. Planas, D. Semrouni, L. Gagliardi, J. T. Hupp, O. K. Farha, “Are Zr6-based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse,” Chem. Commun., 50 (2014) 8944-8946.
[264]J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, “A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability,” J. Am. Chem. Soc., 130 (2008) 13850-13851.
[265]H. L. Jiang, D. Feng, K. Wang, Z. Y. Gu, Z. Wei, Y. P. Chen, H. C. Zhou, “An exceptionally stable, porphyrinic Zr metal-organic framework exhibiting pH-dependent fluorescence,” J. Am. Chem. Soc., 135 (2013) 13934-13938.
[266]B. Meunier, “Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage,” Chem. Rev., 92 (1992) 1411-1456.
[267]K. M. Kadish, K. M. Smith, R. Guilard, “The Porphyrin Handbook,” Academic Press, New York (2000).
[268]P. J. Dandliker, F. Diederich, M. Gross, C. B. Knobler, A. Louati, E. M. Sanford, “Dendritic porphyrins: modulating redox potentials of electroactive chromophores with pendant multifunctionality,” Angew. Chem. Int. Ed. Engl., 33 (1994) 1739-1742.
[269]T. Ye, Y. F. He, E. Borguet, “Adsorption and electrochemical activity:  an in situ electrochemical scanning tunneling microscopy study of electrode reactions and potential-induced adsorption of porphyrins,” J. Phys. Chem. B, 110 (2006) 6141-6147.
[270]Y. J. Tu, H. C. Cheng, I. Chao, C. R. Cho, R. J. Chen, Y. O. Su, “Intriguing electrochemical behavior of free base porphyrins: effect of porphyrin-meso-phenyl interaction controlled by position of substituents on meso-phenyls,” J. Phys. Chem. A, 116 (2012) 1632-1637.
[271]H. Schulenburg, S. Stankov, V. Schunemann, J. Radnik, I. Dorbandt, S. Fiechter, P. Bogdanoff, H. Tributsch, “Catalysts for the oxygen reduction from heat-treated iron(III) tetramethoxyphenylporphyrin chloride:  structure and stability of active sites,” J. Phys. Chem. B, 107 (2003) 9034-9041.
[272]C. Costentin, S. Drouet, M. Robert, J. M. Saveant, “A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst,” Science, 338 (2012) 90-94.
[273]Q. A. Ma, S. Y. Ai, H. S. Yin, Q. P. Chen, T. T. Tang, “Towards the conception of an amperometric sensor of L-tyrosine based on Hemin/PAMAM/MWCNT modified glassy carbon electrode,” Electrochim. Acta, 55 (2010) 6687-6694.
[274]M. E. Kosal, J. H. Chou, S. R. Wilson, K. S. Suslick, “A functional zeolite analogue assembled from metalloporphyrins,” Nat. Mater., 1 (2002) 118-121.
[275]O. K. Farha, A. M. Shultz, A. A. Sarjeant, S. T. Nguyen, J. T. Hupp, “Active-site-accessible, porphyrinic metal-organic framework materials,” J. Am. Chem. Soc., 133 (2011) 5652-5655.
[276]D. W. Feng, Z. Y. Gu, J. R. Li, H. L. Jiang, Z. W. Wei, H. C. Zhou, “Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts,” Angew. Chem. Int. Ed., 51 (2012) 10307-10310.
[277]A. Bétard, R. A. Fischer, “Metal-organic framework thin films: from fundamentals to applications,” Chem. Rev., 112 (2012) 1055-1083.
[278]M. C. So, S. Jin, H. J. Son, G. P. Wiederrecht, O. K. Farha, J. T. Hupp, “Layer-by-layer fabrication of oriented porous thin films based on porphyrin-containing metal-organic frameworks,” J. Am. Chem. Soc., 135 (2013) 15698-15701.
[279]R. Makiura, S. Motoyama, Y. Umemura, H. Yamanaka, O. Sakata, H. Kitagawa, “Surface nano-architecture of a metal-organic framework,” Nat. Mater., 9 (2010) 565-571.
[280]W. Morris, B. Volosskiy, S. Demir, F. Gandara, P. L. McGrier, H. Furukawa, D. Cascio, J. F. Stoddart, O. M. Yaghi, “Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks,” Inorg. Chem., 51 (2012) 6443-6445.
[281]S. Afzal, W. A. Daoud, S. J. Langford, “Self-cleaning cotton by porphyrin-sensitized visible-light photocatalysis,” J. Mater. Chem., 22 (2012) 4083-4088.
[282]W. Q. Zheng, N. Shan, L. X. Yu, X. Q. Wang, “UV-visible, fluorescence and EPR properties of porphyrins and metalloporphyrins,” Dyes Pigments, 77 (2008) 153-157.
[283]M. Y. Lee, O. K. Song, J. C. Seo, D. H. Kim, H. J. Kim, K. M. Kim, “Transient absorption, time-resolved fluorescence and resonance Raman spectroscopic studies of bis(meso-tetraphenylporphyrin)zirconium and bis(meso-tetraphenylporphyrin)zirconium hexachloroantimonate,” J. Phys. Chem., 96 (1992) 8374-8377.
[284]G. D. Bajju, G. Devi, S. Katoch, M. Bhagat, Deepmala, Ashu, S. Kundan, S. K. Anand, “Synthesis, spectroscopic, and biological studies on new zirconium(IV) porphyrins with axial ligand,” Bioinorg. Chem. Appl., 2013 (2013) 903616.
[285]H. Dehghani, M. Payam, M. R. Mansournia, “Sitting-atop complex formation of free base meso-tetraarylporphyrins with zirconium(IV) chloride,” Polyhedron, 27 (2008) 2416-2420.
[286]J. Rochford, D. Chu, A. Hagfeldt, E. Galoppini, “Tetrachelate porphyrin chromophores for metal oxide semiconductor sensitization: effect of the spacer length and anchoring group position,” J. Am. Chem. Soc., 129 (2007) 4655-4665.
[287]S. O. Obare, T. Ito, G. J. Meyer, “Controlling reduction potentials of semiconductor-supported molecular catalysts for environmental remediation of organohalide pollutants,” Environ. Sci. Technol., 39 (2005) 6266-6272.
[288]C. Montella, “Discussion of the potential step method for the determination of the diffusion coefficients of guest species in host materials: part I. Influence of charge transfer kinetics and ohmic potential drop,” J. Electroanal. Chem., 518 (2002) 61-83.
[289]M. Yagi, T. Sato, “Temperature-controlled charge transfer mechanism in a polymer film incorporating a redox molecule as studied by potential-step chronocouloabsorptometry,” J. Phys. Chem. B, 107 (2003) 4975-4981.
[290]P. Bertoncello, I. Ciani, F. Li, P. R. Unwin, “Measurement of apparent diffusion coefficients within ultrathin nafion Langmuir-Schaefer films:  comparison of a novel scanning electrochemical microscopy approach with cyclic voltammetry,” Langmuir, 22 (2006) 10380-10388.
[291]C. Lin, J. A. Ritter, B. N. Popov, “Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors,” J. Electrochem. Soc., 145 (1998) 4097-4103.
[292]V. Srinivasan, J. W. Weidner, “Capacitance studies of cobalt oxide films formed via electrochemical precipitation,” J. Power Sources, 108 (2002) 15-20.
[293]R. Vittal, K. C. Ho, “Cobalt oxide electrodes-problem and a solution through a novel approach using cetyltrimethylammonium bromide (CTAB),” Cat. Rev.-Sci. Eng., 57 (2015) 145-191.
[294]V. Patil, P. Joshi, M. Chougule, S. Sen, “Synthesis and characterization of Co3O4 thin film,” Soft Nanosci. Lett., 2 (2012) 1-7.
[295]J. Xu, Q. Wang, X. Wang, Q. Xiang, B. Liang, D. Chen, G. Shen, “Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth,” ACS Nano, 7 (2013) 5453-5462.
[296]X. Xia, C. Zhu, J. Luo, Z. Zeng, C. Guan, C. F. Ng, H. Zhang, H. J. Fan, “Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application,” small, 10 (2014) 766-773.
[297]C. Y. Lin, D. Mersch, D. A. Jefferson, E. Reisner, “Cobalt sulphide microtube array as cathode in photoelectrochemical water splitting with photoanodes,” Chem. Sci., 5 (2014) 4906-4913.
[298]Y. Yan, B. Y. Xia, N. Li, Z. Xu, A. Fisherc, X. Wang, “Vertically oriented MoS2 and WS2 nanosheets directly grown on carbon cloth as efficient and stable 3-dimensional hydrogen-evolving cathodes,” J. Mater. Chem. A, 3 (2015) 131-135.
[299]P. Deria, J. E. Mondloch, E. Tylianakis, P. Ghosh, W. Bury, R. Q. Snurr, J. T. Hupp, O. K. Farha, “Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: synthesis and CO2 adsorption studies,” J. Am. Chem. Soc., 135 (2013) 16801-16804.
[300]M. C. So, M. H. Beyzavi, R. Sawhney, O. Shekhah, M. Eddaoudi, S. S. Al-Juaid, J. T. Hupp, O. K. Farha, “Post-assembly transformations of porphyrin-containing metal-organic framework (MOF) films fabricated via automated layer-by-layer coordination,” Chem. Commun., 51 (2015) 85-88.
[301]H. Winnischofer, S. d. S. Lima, K. Araki, H. E. Toma, “Electrocatalytic activity of a new nanostructured polymeric tetraruthenated porphyrin film for nitrite detection,” Anal. Chim. Acta, 480 (2003) 97-107.
[302]C. J. Chang, Z. H. Loh, C. Shi, F. C. Anson, D. G. Nocera, “Targeted proton delivery in the catalyzed reduction of oxygen to water by bimetallic pacman porphyrins,” J. Am. Chem. Soc., 126 (2004) 10013-10020.
[303]C. M. N. Azevedo, K. Araki, L. Angnes, H. E. Toma, “Electrostatically assembled films for improving the properties of tetraruthenated porphyrin modified electrodes,” Electroanalysis, 10 (1998) 467-471.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top