跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/30 00:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳承哲
研究生(外文):Cheng-Che Wu
論文名稱:添加 N-甲基吡咯烷酮及N-甲基嗎啉對於二氧化碳水合物熱力學與動力學之實驗量測
論文名稱(外文):Measurement of Thermodynamics and Kinetics of Carbon Dioxide Hydrate in the Presence of 1-Methyl-2-pyrrolidone and 4-Methylmorpholine
指導教授:陳延平陳延平引用關係
指導教授(外文):Yan-Ping Chen
口試委員:陳立仁林祥泰
口試委員(外文):Li-Jen ChenShiang-Tai Lin
口試日期:2015-06-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:116
中文關鍵詞:二氧化碳水合物等容溫度循環法熱力學相平衡鹽水水合物生成動力學N-甲基吡咯烷酮N-甲基嗎啉
外文關鍵詞:Carbon dioxide hydrateisochoric methodthermodynamicsbrinekinetics1-Methyl-2-pyrrolidone4-Methylmorpholine
相關次數:
  • 被引用被引用:2
  • 點閱點閱:58
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用一套高壓設備,並採用等容溫度循環法,進行二氧化碳水合物之熱力學與動力學實驗。目的在於測量含有化學添加劑的二氧化碳水合物之熱力學相平衡數據,以及二氧化碳水合物生成的動力學數據,以作為未來工程設計、探採與操作的基礎資料。本研究所選用之添加劑為N-甲基吡咯烷酮及N-甲基嗎啉。

本研究之實驗結果顯示,添加N-甲基吡咯烷酮對於二氧化碳水合物的生成有熱力學上抑制之效果,使二氧化碳水合物的相平衡曲線往低溫高壓的方向移動,其抑制效果在30 wt% N-甲基吡咯烷酮時最大,可減少平衡溫度約6.1 K。而添加N-甲基嗎啉對於二氧化碳水合物亦為熱力學上抑制的效果,在20 wt% 時可降低平衡溫度約5.7 K。此外,為了模擬添加劑在海洋環境中的效果,本研究進行二氧化碳+鹽水+添加劑之水合物系統相平衡量測,實驗結果發現添加N-甲基吡咯烷酮及N-甲基嗎啉皆使二氧化碳水合物相平衡曲線往更低溫和更高壓的方向移動。

在熱力學實驗過程中,觀察發現添加N-甲基吡咯烷酮之二氧化碳水合物系統,其在動力學上具有促進水合物生成的效果,故本研究以N-甲基吡咯烷酮為添加劑進行動力學實驗。由實驗之結果證實,相較於純水系統而言,添加N-甲基吡咯烷酮可縮短水合物生成之誘導時間並增加水合物之生成量。

摘要 I
Abstract II
目錄 IV
表目錄 VI
圖目錄 VIII
第一章 緒論 1
1-1 水合物簡介 2
1-2 二氧化碳捕捉與封存 4
1-3 二氧化碳水合物介紹及應用 7
1-4 研究方向與目的 9
第二章 文獻回顧 11
2-1 水合物相律及相圖 11
2-2 水合物形成機制 13
2-3 水合物之熱力學研究 14
2-4 水合物之動力學研究 17
2-5 水合物之結構鑑定 19
第三章 實驗方法 21
3-1 實驗設備與藥品 22
3-2 實驗步驟 23
3-2.1 熱力學實驗步驟 23
3-2.2 動力學實驗步驟 25
3-3 實驗數據分析 27
3-3.1 熱力學實驗數據分析 27
3-3.2 動力學實驗數據分析 28
第四章 結果與討論 29
A. 二氧化碳水合物之熱力學相平衡實驗 29
4A-1 溫度循環流程之討論 29
4A-2 二氧化碳水合物之對比實驗量測 30
4A-3 化學添加劑之篩選及快速溫度循環測試實驗 32
4A-4 二氧化碳+純水+ N-甲基吡咯烷酮之水合物系統相平衡實驗 34
4A-4.1 二氧化碳+純水+N-甲基吡咯烷酮之水合物相平衡數據 34
4A-4.2 二氧化碳+純水+N-甲基吡咯烷酮之水合物結構預測 35
4A-5 二氧化碳+純水+ N-甲基嗎啉之水合物系統相平衡實驗 35
4A-5.1 二氧化碳+純水+ N-甲基嗎啉之水合物相平衡數據 35
4A-5.2 二氧化碳+純水+ N-甲基嗎啉之水合物結構預測 36
4A-6 N-甲基吡咯烷酮與 N-甲基嗎啉之添加劑討論 36
4A-7二氧化碳+鹽水+添加劑之水合物系統相平衡實驗 38
4A-7.1 二氧化碳+鹽水+添加劑之水合物相平衡數據 38
4A-7.2 二氧化碳+鹽水+添加劑之水合物結構預測 39
B. 二氧化碳水合物之動力學實驗 41
4B-1 動力學升壓實驗流程之討論 41
4B-2 動力學實驗操作條件之選擇 42
4B-3 動力學實驗結果討論 43
4B-3.1 二氧化碳水合物系統之添加劑效應探討 43
4B-3.2 二氧化碳+純水+N-甲基吡咯烷酮系統之過冷溫度探討 44
4B-3.3 二氧化碳+純水+N-甲基吡咯烷酮系統之操作壓力探討 45
第五章 結論 47
參考文獻 111


Bishnoi, P.R. and Dholabhai, P.D. Experimental study on propane hydrate equilibrium conditions in aqueous electrolyte solutions, Fluid Phase Equilibria, 83, 455-462 (1993)
Bruce JP, Frome M, Haites E, Janzen HH, Lal R, Paustian K. Carbon sequestration in soil. Soil and Water Conservation Society 54, 382–389 (1999)
Chatti, I., Delahaye, A., Fournaison, L. and Petitet, J.P. Benefits and drawbacks of clathrate hydrates: a review of their areas of interest, Energ Conversion Management, 46 , 1333-1343 (2005)
Chen, Q., Yu, Y., Zeng, P., Yang,W., Liang, Q., Peng, X., Liu, Y. and Hu, Y. Effect of 1-butyl-3-methylimidazolium tetrafluoroborate on the formation rate of CO2 hydrate. Journal of Natural Gas Chemistry, 17, 264–267 (2008)
Chun, M.H. and Lee, H. Phase equilibria of carbon dioxide hydrate system in the presence of sucrose, glucose and fructose, Journal of Chemical & Engineering Data, 44, 1081-1084 (1999)
Clarke, M.A., Majumdar, A. and Bishnoi, P.R. Experimental investigation of carbon dioxide hydrate formation conditions in the presence of KNO3, MgSO4, and CuSO4, Journal of Chemical & Engineering Data, 49, 1436-1439 (2004)
Dholabhai, P.D., Englezos, P., Kalogerakis, N. and Bishnoi, P.R. Equilibrium conditions for methane hydrate formation in aqueous mixed electrolyte solutions, Canadian Journal of Chemical Engineering, 69, 800-805 (1991)
Duc, N.H., Chauvy, F., Herri, J.M. CO2 capture by hydrate crystallization-A potential solution for gas emission of steelmaking industry, Energy Conversion and Management, 48 (4), 1313-1322 (2007)
Fan, S.S. and Guo, T.M. Hydrate formation of CO2-rich binary and quaternary gas mixtures in aqueous sodium chloride solutions, Journal of Chemical & Engineering Data, 44, 829-832 (1999)
Goel, N. In situ methane hydrate dissociation with carbon dioxide sequestration: Current knowledge and issues, Journal of Petroleum Science and Engineering, 51, 169-184 (2006)
Han, F. X., Lindner, J. S., Wang, C. Making carbon dioxide sequestration a paying proposition, Naturwissenschaften, 94, 170-182 (2007)
Hatakeyama, T., Aida, E., Yokomori, T., Ohmura, R. and Ueda, T. Fire extinction using carbon dioxide hydrate, Industrial & Engineering Chemistry Research, 48 4083-4087 (2009)
He, Y., Rudolph, E. S. J., Zitha, P. L. J.,Golombok, M. Kinetics of CO2 and methane hydrate formation: An experimental analysis in the bulk phase, Fuel 90, 272-279.(2011)
Heriot-Watt University Hydrate model : http://www.pet.hw.ac.uk/research/hydrate/ (2008)
Herzog, H.J. What future for carbon capture and sequestration? Environmental Science & Technology, 35, 148A–153A (2001)
Kang, S.P. and Lee, H. Recovery of CO2 from flue gas using gas hydrate: Thermodynamic verification through phase equilibrium measurements, Environmental Science and Technology, 34, 4397-4400 (2000)
Karpinski, P. H., Crystallization as a mass transfer phenomenon. Chem. Engng Sci. 35,2321-2324 (1980)
Kelland, M.A. History of the development of low dosage hydrate inhibitors, Energy and Fuels, 20, 825-847 (2006)
Kempe, S. Carbon in the rock cycle. In: Bolin B, Degens ET, Kempe S (eds) The global carbon cycle. Wiley, Chichester, UK, 343–377 (1979)
Koh, C.A., Sum, A.K. and Sloan, E. D. Gas hydrates: Unlocking the energy from icy cages, Journal of Applied Physics, 106, 1061101-1 - 1061101-14 (2009)
Lederhos, J.P., Long, J.P., Sum, A., Christiansen, R.L. and Sloan, E.D., Effective kinetic inhibitors for natural gas hydrates, Chemical Engineering Science, 51, 1221-1229 (1996)
Lee, J.W., Lu,H. Moudrakovski, I.L., Ratcliffe, C.I. and Ripmeester, J.A. Thermodynamic and molecular-scale analysis of new systems of water-soluble hydrate formers + CH4 , Journal of Physical Chemistry B, 114, 13393–13398 (2010)
Lee, Y., Lee, S., Park, S., Kim, Y., Lee, J.W., Seo, Y. 2-Propanol as a co-guest of structure II hydrate in the presence of help gases, Journal of Physical Chemistry B,117, 2449-2445 (2013)
Li, S., Fan, S., Wang, J., Lang, X. and Wang, Y. Semiclathrate hydrate phase equilibria for CO2 in the presence of tetra-n-butyl ammonium halide (bromide, chloride, or fluoride), Journal of Chemical & Engineering Data, 55, 3212–3215 (2010)
Lino, K., Sakakibara, Y., Suginaka, T., Ohmura, R. Phase equilibria for the ionic semiclathrate hydrate formed with tetrabutylphosphonium chloride plus CO2, CH4, or N2, Journal of Chemical Thermodynamics, 71, 133-136 (2014)
Maekawa, T. Equilibrium conditions for carbon dioxide hydrates in the presence of aqueous solutions of alcohols, glycols, and glycerol, Journal of Chemical and Engineering Data, 55, 1280-1284 (2010)
Maekawa, T. Equilibrium conditions of clathrate hydrates formed from carbon dioxide and aqueous acetone solutions, Fluid Phase Equilibria, 303, 76–79 (2011)
Majumdar, A., Maini, B., Bishnoi, P.R., Clarke, M.A. Three-Phase Equilibrium Conditions of TiAAB Semiclathrates Formed from N2, CO2, and Their Mixtures, Journal of Chemical and Engineering Data, 57, 2322-2327 (2012)
Mayoufi, M., Dalmazzone, D., Furst, W., Delahaye, A., Fournaison, L. CO2 Enclathration in Hydrates of Peralkyl-(Ammonium/Phosphonium) Salts: Stability Conditions and Dissociation Enthalpies, Journal of Chemical and Engineering Data, 55, 1271-1275 (2010)
Metz, B., Davidson, O., Coninck, H.C.D., Loos, M. and Meyer, L.A. IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, New York, (2005)
Meysel, P., Oellricha, L., Bishnoi, P.R. and Clarke, M.A. Experimental investigation of incipient equilibrium conditions for the formation of semi-clathrate hydrates from quaternary mixtures of (CO2 + N2 + TBAB + H2O). Journal of Chemical Thermodynamics, 43, 1475–1479 (2011)
Mohammadi, A.H., Afzal, W. and Richon, D. Gas hydrates of methane, ethane, propane, and carbon dioxide in the presence of single NaCl, KCl, and CaCl2 aqueous solutions: Experimental measurements and predictions of dissociation conditions, Journal of Chemical Thermodynamics, 40, 1693-1697 (2008)
Mohammadi, A.H., Anderson, R., and Tohidi, B. Carbon Monoxide Clathrate Hydrates: Equilibrium Data and Thermodynamic Modeling. AIChE Journal October , 51, No. 10 (2005)
Mohammadi, A.H. and Richon, D. Phase equilibria of clathrate hydrates of methyl cyclopentane, methyl cyclohexane, cyclopentane or cyclohexane plus carbon dioxide, Chemical Engineering Science, 64, 5319-5322 (2009)
Mohammadi, A.H. and Richon, D. Clathrate hydrate dissociation conditions for the methane plus cycloheptane/cyclooctane plus water and carbon dioxide plus cycloheptane/cyclooctane plus water systems, Chemical Engineering Science, 65, 3356-3361 (2010a)
Mohammadi, A.H. and Richon, D. Clathrate hydrate of isopentane + carbon dioide and isopentane + methane: experimental measurements of dissociation conditions, Oil & Gas Science and Technology - Rev. IFP Energies nouvelles, 65, 879-882 (2010b)
Mooijer-van den Heuvel, M.M., Witteman, R. and Peters, C.J. Phase behaviour of gas hydrates of carbon dioxide in the presence of tetrahydropyran, cyclobutanone, cyclohexane and methylcyclohexane, Fluid Phase Equilibria, 182, 97-110 (2001)
Ng, H.J. and Robinson, D.B. Hydrate formation in systems containing methane, ethane, propane, carbon-dioxide or hydrogen-sulfide in the presence of methanol, Fluid Phase Equilibria, 21, 145-155 (1985)
North, W.J., Blackwell, V.R. and Morgan, J.J. Studies of CO2 hydrate formation and dissolution. Environmental Science Technology, 32, 5, 6767–7681. (1998)
Ota, M., Morohashi, K., Abe, Y., Watanabe, M., Smith, R.L. and Inomata, H. Replacement of CH4 in the hydrate by use of liquid CO2. Energy Conversion and Management, 46, 1680–1691 (2005)
Park, S., Ro, H., Lee, J.W., Kang, H., Lee, H. Morpholine-Induced Thermodynamic and Kinetic Inhibitions on Gas Hydrate Formation, Energy Fuels, 27, 6581-6586 (2013)
Peng, X., Hu, K., Liu, Y., Jin, C., Lin, H. Separation of ionic liquids from dilute aqueous solutions using the method based on CO2 hydrates, Journal of Natural Gas Chemistry, 19, 81–85 (2010)
Rochelle, C.A., Camps, A.P., Long, D., Milodowski, A., Bateman, K., Gunn, D., Jackson, P., Lovell, M.A. and Rees, J. Can CO2 hydrate assist in the underground storage of carbon dioxide?, Geological Society, London, Special Publications, 319, 171-183 (2009)
Roosta, H., Varaminian, F. and Khosharay, Sh. Experimental study of CO2 hydrate formation kinetics with and without kinetic and thermodynamic promoters, Scientia Iranica, Transactions C: Chemistry and Chemical Engineering 21(3), 753-762 (2014)
Sa, J.H., Lee, B.R., Park, D.H., Han, K., Chun, H.D. and Lee, K.H. Amino acids as natural inhibitors for hydrate formation in CO2 sequestration, Environmental Science Technology, 45, 5885-5891 (2011)
Sabil, K.M., Duarte, A.R.C., Zevenbergen, J., Ahmad, M.M., Yusup, S., Omar, A.A. and Peters, C. Kinetic of formation for single carbon dioxide and mixed carbon dioxide and tetrahydrofuran hydrates in water and sodium chloride aqueous solution. International Journal of Greenhouse Gas Control, 4, 798–805 (2010)
Sabil, K.M., Witkamp, G.J. and Peters, C.J. Phase equilibria in ternary (carbon dioxide + tetrahydrofuran + water) system in hydrate-forming region: Effects of carbon dioxide concentration and the occurrence of pseudo-retrograde hydrate phenomenon, Journal of Chemical Thermodynamics, 42, 8–16 (2010)
Sabil, K.M., Witkamp, G.J. and Peters, C.J. Phase equilibria of mixed carbon dioxide and tetrahydrofuran hydrates in sodium chloride aqueous solutions. Fluid Phase Equilibria, 284, 38–43 (2009)
Seo, Y., Kang, S.P., Lee, S. and Lee, H. Experimental measurements of hydrate phase equilibria for carbon dioxide in the presence of THF, propylene oxide, and 1,4-dioxane, Journal of Chemical and Engineering Data, 53, 2833–2837 (2008)
Servio, P., Lagers, F., Peters, C. and Englezos, P. Gas hydrate phase equilibrium in the system methane–carbon dioxide–neohexane and water, Fluid Phase Equilibria, 158–160, 795–800 (1999)
Shen, R., Tezuka, K., Uchida, T., Ohmura, R. Hydrate phase equilibrium in the system of (carbon dioxide + 2,2-dimethyl butane + water) at temperatures below freezing point of water, Journal of Chemical Thermodynamic, 53, 27-29 (2012)
Sloan, E.D. Fundamental principles and applications of natural gas hydrates, Nature, 426, 353-359 (2003)
Sloan, E.D. and Fleyfel, F. Hydrate dissociation enthalpy and guest size. Fluid Phase Equilibria, 76, 123-140 (1992)
Sloan, E.D. and Koh, C.A. Clathrate Hydrates of Natural Gases, Third Edition,1-699 (2008)
Stewart, P.B. and Munjal, P. Solubility of carbon dioxide in pure water, synthetic sea water, and synthetic sea water concentrates at -5 ℃ to 25 ℃ and 10 atm to 45 atm pressure, Journal of Chemical and Engineering Data, 15, 67-71 (1970)
Szycher, M. Szycher''s Handbook of Polyurethanes, Second Edition, 773 (2012)
Tezuka, K., Shen, R., Watanabe, T., Takeya, S., Alavi, S., Ripmeester, R.A., Ohmura, R., Synthesis and characterization of a structure H hydrate formed with carbon dioxide and 3,3-dimethyl-2-butanone, Chemical Communications, 49, 505 (2013)
Tohidi, B., Burgass, R.W., Danesh, A., Ostergaard, K.K. and Todd, A.C. Improving the accuracy of gas hydrate dissociation point measurements, Annals of the New York Academy of Science, 912, 924-931 (2000)
Tohidi, B., Yang, J.H., Salehabadi, M., Anderson, R. and Chapoy, A., CO2 hydrates could provide secondary safety factor in subsurface sequestration of CO2, Environmental Science Technology, 44, 1509-1514 (2010)
Tumba, K., Reddy, P., et al, Naidoo, P. and Ramjugernath, D. Phase equilibria of methane and carbon dioxide clathrate hydrates in the presence of aqueous solutions of tributylmethylphosphonium methylsulfate ionic liquid, Journal of Chemical and Engineering Data, 56, 3620–3629 (2011)
Wendland, M., Hasse, H. and Maurer, G. Experimental pressure−temperature data on three- and four-phase equilibria of fluid, hydrate, and ice phases in the system carbon dioxide−water, Journal of Chemical & Engineering Data, 44 , 901-906 (1999)
Zhang, J. and Lee, J.W. Enhanced kinetics of CO2 hydrate formation under static conditions. Industrial Engineering Chemimstry Research, 48, 5934–5942 (2009)
王欣薇 添加1,3-二氧六環、乙醯胺及環戊醇對於二氧化碳水合物熱力學與動力學之實驗量測,國立台灣大學化學工程學研究所碩士論文 (2014)
吳翊萍 添加環戊酮、環己酮及2-甲基-2-丙醇對於二氧化碳水合物分解狀態與動力學之實驗量測,國立台灣大學化學工程學研究所碩士論文 (2013)
歐陽湘 國際溫室氣體減量及二氧化碳捕獲與封存,經濟部能源期刊,10,4-9 (2011)
孫志高,石磊,樊栓獅,郭開華,王如竹 氣體水合物相平衡測定方法研究,
石油與天然氣化工,30,164-166 (2001)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top