跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/26 08:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林京誼
研究生(外文):Jing-Yi Lin
論文名稱:適應性相場模式在矽晶片電致區熔之研究
論文名稱(外文):Adaptive Phase Field Modeling of Electric Zone Melting of Silicon Wafers
指導教授:藍崇文藍崇文引用關係
指導教授(外文):Chung-Wen Lan
口試委員:何國川高振宏王丞浩
口試日期:2015-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:76
中文關鍵詞:電致區熔矽晶片相場模式
外文關鍵詞:electric zone meltingsilicon wafersphase-field model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:87
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今太陽能電池產業使用的矽晶片,大多由單向凝固的晶錠切片而來,由於切割損失,造成高純度矽的浪費。而直拉薄片可以省去切割程序,但由於雜質、位錯等問題,使得現有的技術尚難有實際的應用。電致區熔是一個新的概念技術,利用電流的焦耳加熱形成熔區,無須接觸模具就能夠應用於矽薄片的生長,是項有趣且具潛力的技術。本論文以前人發展的電致區熔實驗為基礎,利用相場模式研究電致區熔的熱場、界面行為。為了更深入了解熔區的寬度和物性、熱條件之間的關係,亦發展了一理論熱平衡模式,來預測熔區寬。由理論結果吾人發現,若散熱愈少,則熔區的寬度反而會下降,其原因在於固體較低的溫梯使電流被分散。選取合理的物性與熱條件,理論解與相場模型能得到幾乎相同的結果,且與實驗結果非常接近。熔區的遷移是依靠燈源的移動,但速率被侷限在6 mm/min,是由於晶片的變形導致燈源聚焦效果下降,透過熔化端的保溫或是增強燈源功率,增加熔區兩端的固體溫梯差距,能夠讓移動速率明顯上升。第二部分則探討不同物理性質的雜質顆粒對於介面行為的影響,顆粒接觸熔區的比例與導電度對介面的影響有關。顆粒接觸的熔區多,介面受到影響愈多。顆粒導電性高,發現熔區包覆顆粒,類似實驗上觀察到的短路現象,熔區在靠近時突然彎向顆粒。此外,利用焦耳加熱的分布,也能夠解釋介面變形的原因,結果與實驗相當吻合。

中文摘要 I
Abstract II
目錄 III
符號說明 V
表目錄 VII
圖目錄 VIII
第1章 緒論 1
1.1 前言 1
1.2 直拉薄片生長技術 3
1.5 電致區熔法 4
1.4 雜質顆粒與介面行為 12
1.5 相場模式 16
1.5-1 Thin Interface Model 17
1.5-2相場模式與電場的耦合 18
1.6 研究動機 19
第2章 主導方程式與數值方法 20
2.1 熔區寬與電流關係 20
2.2 相場模式 24
2.3 數值方法 33
2.3-1 有限體積法 33
2.3-2 適應性網格結構 33
第3章 結果與討論 35
3.1 靜態熔區 35
3.2 熔區遷移與溫場變化 41
3.2-1 溫度轉換 49
3.2-2 增加移動速率 52
3.3 雜質顆粒與介面行為 57
結論 72
未來展望 73
參考文獻 74


[1] E.P.I. Association, Global market outlook for photovoltaics 2014–2018, EPIA Report, (2014).
[2] H. Rodriguez, I. Guerrero, W. Koch, A.L. Endrös, D. Franke, C. Häßler, J.P. Kalejs, H.J. Möller, Bulk Crystal Growth and Wafering for PV, Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, Ltd (2011) 218-264.
[3] H. Lange, I.A. Schwirtlich, Ribbon Growth on Substrate (RGS) — A new approach to high speed growth of silicon ribbons for photovoltaics, Journal of Crystal Growth, 104 (1990) 108-112.
[4] R.W. Gurtler, A. Baghdadi, R.J. Ellis, I.A. Lesk, Silicon ribbon growth via the ribbon-to-ribbon (RTR) technique: Process update and material characterization, Journal of Electronic Materials, 7 (1978) 441-477.
[5] K.V. Ravi, The growth of EFG silicon ribbons, Journal of Crystal Growth, 39 (1977) 1-16.
[6] E.M. Sachs, D. Ely, J. Serdy, Edge stabilized ribbon (ESR) growth of silicon for low cost photovoltaics, Journal of Crystal Growth, 82 (1987) 117-121.
[7] H. Yamatsugu, H. Mitsuyasu, S. Takakura, R. Oishi, K. Yoshida, Crystallization on dipped substrate wafer technology for crystallinesilicon solar cells reduces wafer costs, 23rd European Photovoltaic Solar Energy Conference, Feria Valencia, (2008).
[8] E.M. Sachs, R.L. Wallace, E.T. Hantsoo, A.M. Lorenz, G.S. Hudelson, R. Jonczyk, Methods for efficiently making thin semiconductor bodies from molten material for solar cells and the like, U.S. Patents (2012).
[9] W.G. Pfann, Principles of zone melting, New York: John Wiley & Sons (1958).
[10] W.G. Pfann, Zone-melting with joule heat, U.S. Patents (1960).
[11] I. Costa, M.C. Brito, J.M. Serra, J. Maia Alves, A. Vallêra, Experimental characterization of a linear electric molten zone in silicon, Journal of Crystal Growth, 354 (2012) 198-201.
[12] A. Vallêra, J. Serra, J.M. Alves, M. Brito, R. Gamboa, J. Henriques, Method for the growth of semiconductor ribbons, U.S. Patents (2010).
[13] M.C. Brito, A. Amaral, J.M. Alves, J.M. Serra, I. Costa, A.M. Vallêra, Modeling a linear electric molten zone in a silicon ribbon, Progress in Photovoltaics: Research and Applications, 17 (2009) 365-371.
[14] A. Vallêra, M.A. Jorge, M.C. Brito, Linear electric molten zone in semiconductors, Applied Physics Letters, 90 (2007) 232111.

[15] I. Costa, M.C. Brito, G. Gaspar, J.M. Serra, J.M. Alves, A. Vallêra, Electric molten zone crystallization of silicon wafers, Semiconductor Science and Technology, 28 (2013) 125023.
[16] H. Kawamura, H. Fukuyama, M. Watanabe, T. Hibiya, Normal spectral emissivity of undercooled liquid silicon, Measurement Science and Technology, 16 (2005) 386.
[17] D.M. Pera, New silicon ribbons growth method by linear electric molten zone stimulated by laser, 7th International Workshop on Crystalline Silicon Solar Cells, (2013).
[18] 吳明昌, 電區融晶體生長與界面型態的觀察研究, 碩士論文,台灣大學化學工程研究所, (2014).
[19] M.C. Wu, C.F. Yang, C.W. Lan, Minority lifetime degradation of silicon wafers after electric zone melting, Journal of Crystal Growth, 420 (2015) 74-79.
[20] A. Yeckel, A.G. Salinger, J.J. Derby, Theoretical analysis and design considerations for float-zone refinement of electronic grade silicon sheets, Journal of Crystal Growth, 152 (1995) 51-64.
[21] M.C. Fleming, Solidifacation Processing, McGraw- Hill, New York, (1974).
[22] D.R. Uhlmann, B. Chalmers, K.A. Jackson, Interaction Between Particles and a Solid‐Liquid Interface, Journal of Applied Physics, 35 (1964) 2986-2993.
[23] D. Shangguan, S. Ahuja, D.M. Stefanescu, An analytical model for the interaction between an insoluble particle and an advancing solid/liquid interface, Metallurgical Transactions A, 23 (1992) 669-680.
[24] A.W. Rempel, M.G. Worster, The interaction between a particle and an advancing solidification front, Journal of Crystal Growth, 205 (1999) 427-440.
[25] H. Shibata, H. Yin, S. Yoshinaga, T. Emi, M. Suzuki, In-situ Observation of Engulfment and Pushing of Nonmetallic Inclusions in Steel Melt by Advancing Melt/Solid Interface, Isij International, 38 (1998) 149-156.
[26] J. Glimm, J. Grove, B. Lindquist, O.A. McBryan, G. Tryggvason, The Bifurcation of Tracked Scalar Waves, Siam Journal on Scientific and Statistical Computing, 9 (1988) 61-79.
[27] M. Sussman, P. Smereka, S. Osher, A Level Set Approach for Computing Solutions to Incompressible 2-phase Flow, Journal of Computational Physics, 114 (1994) 146-159.
[28] G.J. Fix, Free Boundary problems: theory and applications, 2 (1983) 580.
[29] A. Karma, W.-J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions, Physical Review E, 57 (1998) 4323-4349.
[30] L.N. Brush, A phase field model with electric current, Journal of Crystal Growth, 247 (2003) 587-596.
[31] L.N. Brush, B.T. Murray, Crystal growth with applied current, Journal of Crystal Growth, 250 (2003) 170-173.
[32] A. Monas, R. Spatschek, C. Hüter, F. Tabatabaei, E.A. Brener, M. Apel, Phase field modeling of phase transitions stimulated by Joule heating, Journal of Crystal Growth, 375 (2013) 39-48.
[33] S. Kimura, K. Terashima, A review of measurement of thermophysical properties of silicon melt, Journal of Crystal Growth, 180 (1997) 323-333.
[34] H.J. Scheel, P. Capper, Crystal Growth Technology: From Fundamentals and Simulation to Large-scale Production, John Wiley & Sons (2011).
[35] W. Fulkerson, J.P. Moore, R.K. Williams, R.S. Graves, D.L. McElroy, Thermal Conductivity, Electrical Resistivity, and Seebeck Coefficient of Silicon from 100 to 1300 Celsius, Physical Review, 167 (1968) 765-782.
[36] 林華愷, 適應性相場模式在多晶高非均向性晶體生長之研究, 碩士論文,台灣大學化學工程研究所, (2010).
[37] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena (Revised Second Edition ed.), John Wiley & Sons, (2007).
[38] C.W. Lan, Modeling of ellipsoid mirror furnace for floating-zone crystal growth, Journal of Crystal Growth, 173 (1997) 561.
[39] 劉其俊, 適應性有限體積法的開發及其在固化上的應用, 碩士論文,台灣大學化學工程研究所, (2001).
[40] 陳昶志, 三維適應性相場模式在樹枝狀晶體生長之研究, 博士論文,台灣大學化學工程研究所, (2010).
[41] 莊明軒, 適應性等位函數法在固化問題之模擬, 碩士論文,台灣大學化學工程研究所, (2006).
[42] 許晉銘, 在強制對流下樹枝狀晶體成長之適應性相場模式, 碩士論文,台灣大學化學工程研究所, (2002).
[43] H. Petter, S. Fredrik, C. Anna-Karin, L. Bengt, Emissivity compensated spectral pyrometry for varying emissivity metallic measurands, Measurement Science and Technology, 25 (2014) 025010.
[44] T. Nishi, H. Shibata, H. Ohta, Thermal Diffusivities and Conductivities of Molten Germanium and Silicon, Materials Transactions, 44 (2003) 2369-2374.
[45] H.S. Schnydersy, J.B.V. Zytveld, Electrical resistivity and thermopower of liquid Ge and Si, Journal of Physics Condensed Matter, (1996).
[46] R.W. Keyes, The Electrical Conductivity of Liquid Germanium, Physical Review, 84 (1951) 367-368.
[47] R.W. Powell, F.H. Schofield, The thermal and electrical conductivities of carbon and graphite to high temperatures, Proceedings of the Physical Society, 51 (1939) 153.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top