跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/07 12:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭獻隆
研究生(外文):Hsien-Lung Kuo
論文名稱:甲縮醛之製程設計與柴油添加劑聚甲氧基二甲醚之製程探討
論文名稱(外文):Design of Process for the Production of Methylal and A Promising Diesel Additive: Poly(oxymethylene) Dimethyl Ethers
指導教授:錢義隆
指導教授(外文):I-Lung Chien
口試委員:陳誠亮陳逸航王國彬程建凱
口試日期:2015-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:132
中文關鍵詞:柴油添加劑甲縮醛聚甲氧基二甲醚程序最適化反應蒸餾
外文關鍵詞:Diesel additivesMethylalPOMDMEOptimizationTAC
相關次數:
  • 被引用被引用:3
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
柴油的應用日益增加,然而燃燒柴油所伴隨的煙塵與煙灰嚴重影響環境與人類的生活,因此逐漸受到關注與管制。使用聚甲氧基二甲醚作為柴油添加劑可以顯著地減少煙塵排放,加上其與柴油絕佳的相容性,在未來將有很大的發展潛力。本研究針對其製程進行探討,先由上游的甲縮醛穩態、動態控制程序到下游的聚甲氧基二甲醚穩態程序,設計出可行的系統架構。

本研究前段提出以結合萃取蒸餾與反應蒸餾的程序,在室壓1 atm下製得高純度的甲縮醛(99.0 wt%),並以年度總成本作為最適化函數,獲得最適化的系統設計變數包含回流比、精餾段、萃取段、反應段以及氣提段的板數。接著並深入探討其控制架構與消除干擾之策略,由閉環與開環溫度敏感度分析中提出三點溫度控制與雙點溫度控制架構,由實驗結果發現,以固定再沸器熱負載與甲醇進料流率比值的設計架構為最合適的選擇。

本研究後段探討下游的聚甲氧基二甲醚程序,先以再現文獻中實驗結果做為目標,製得純度達99.0 wt.%的OME 3-5,接著改變其設計、調整產品塔的塔壓,使其再沸器與高溫蒸氣溫差達20 K,再以最適化探討程序,決定包含三支蒸餾塔各別的總板數與進料位置。由最適化的結果中可以發現,第一支蒸餾塔存在再混合效應,使得分離效果不彰,因此遂提出以氣相回流的熱整合架構以消除再混合效應,而其結果顯示,再沸器總能量消耗可以降低,但降幅仍不敵額外加裝氣體壓縮器的購置成本,以及其昂貴的電力成本,因此證明此舉在經濟上並不可行。


The demand of diesel fuel is increasing in recent years in terms of transportation. However, the smog produced by burning diesel in the engine has been a major concern for the environment and human‘s health. One way to fix this is to add a promising diesel additive, Poly(oxymethylene) dimethyl ethers (OME 3-5), into diesel fuels to make it more well burned. In this thesis, two production processes will be the main focus including upstream methylal process and downstream OME process.

In the first half of this work, the upstream methylal process will be presented which is the integration of extractive and reactive distillation column and the production of high-purity methylal (99.0 wt.%) is guaranteed. The optimization in terms of total annual cost (TAC) will be implemented and the reflux ratio, rectifying, extractive, reactive and stripping stages will be determined. Furthermore, several control schemes will be introduced to see if the disturbances are rejected in the transient state. It is found that by fixing the ratio of reboiler duty to the feed rate of methanol is the most appropriate two-point temperature control strategy.

In the bottom half of this work, the downstream OME process will be presented. Results from the literature that 99.0 wt.% of OME 3-5 will be produced. Few improvements will be made to satisfy reasonable TAC optimization in terms of all feed stages and total stages. Results show that the remixing effect is occurred. A thermally-coupled design is then introduced to eliminate this effect. Though it reduces total reboiler duties in the process, it’s still not economically viable since it requires the installation of a compressor as well as its expensive electricity costs.


1. 緒論 1
1.1 前言 1
1.2 文獻回顧 9
1.2.1 甲縮醛系統 9
1.2.2 聚甲氧基二甲醚系統 11
1.3 研究動機 13
1.4 組織架構 14

2. 甲縮醛系統中之成分、熱力學及動力學模式 16
2.1 前言 16
2.2 成分的建立 17
2.3 熱力學模式參數建立與結果 18
2.3.1 選定熱力學模式與參數輸入 18
2.3.2 沸點排序、相圖(T-xy、P-xy)及相對揮發度 20
2.4 動力學模式建立與參數 26

3. 甲縮醛系統之程序模擬 31
3.1 前言 31
3.2 穩態架構設計:結合萃取蒸餾與反應蒸餾 32
3.2.1 設計理念 32
3.2.2 最適化設計 35
3.2.2.1 最適化過程 35
3.2.2.2 穩態結果與討論 42
3.3 動態架構設計:控制策略與干擾排除 48
3.3.1 基本控制概念 48
3.3.2 三點溫度控制架構 50
3.3.3 雙點溫度控制架構 58
3.3.3.1 固定回流比之雙點溫控 60
3.3.3.2 固定再沸器熱負載與甲醇進料流率比值之雙點溫控 67
3.3.4 控制結果與討論 74

4. 聚甲氧基二甲醚系統之成分、熱力學及動力學模式 76
4.1 前言 76
4.2 成分的建立 77
4.3 熱力學模式參數建立與結果 78
4.3.1 選定熱力學模式與參數輸入 78
4.3.2 沸點排序、相圖(T-xy、P-xy) 84
4.4 動力學模式建立與參數 92
4.4.1 化學反應總覽 92
4.4.2 主反應之反應機構 93
4.4.3 副反應之反應機構 95

5. 聚甲氧基二甲醚系統之程序模擬 97
5.1 前言 97
5.2 穩態架構設計:反應器與簡單蒸餾程序 98
5.2.1 設計理念 98
5.2.2 再現文獻結果與討論 100
5.2.3 最適化設計 105
5.2.3.1 最適化流程 105
5.2.3.2 結果與討論 110
5.3 穩態架構設計:反應器與熱整合蒸餾程序 116
5.3.1 設計理念 116
5.3.2 結果與討論 118

6. 結論 124

參考文獻 127
附錄 130
A. 年度總成本計算公式 130



[1] Outlook for Energy: A View to 2040, Exxon Mobil Corporation, 2014.
[2] Burger, J.; Siegert, M.; Strofer, E.; Hasse, H. Poly (oxymethylene dimethyl ethers as components of tailored diesel fuel: Properties, synthesis and purification concepts. Fuel, 2010, 89, 3315-3319.
[3] Pellegrini, L.; Marchionna, M.; Patrini. R., Combustion behavior and emission performance of neat and blended polyoxymethylene dimethyl ethers in a light-duty diesel engine. SAE Technical Paper, 2012, 01-1053.
[4] Masamoto, J.: Matsuzaki, K. Development of methylal synthesis by reactive distillation. Journal of Chemical Engineering of Japan, 1994, 27, 1-5
[5] Qiao, X.; Zeng, C.Y. Intrinsic kinetics of methylal synthesis in the presence of resin. Journal of Chemical Engineering of Chinese Universities, 1998, 12, 157-161.
[6] Zhang, X., Zhang, S., Jian, C. Synthesis of methylal by catalytic distillation. Chemical Engineering Research and Design, 2011, 89, 573-580.
[7] Liu, H.; Gao, H.; Ma, Y.; Gao, Z.; Eli, W. Synthesis of high-purity methylal via extractive catalytic distillation. Chemical Engineering Technology, 2012, 35, 841-846.
[8] Kuhnert, C.; Albert, M.; Breyer, S.; Hahnenstein, I.; Hasse, H.; Maurer, G. Phase equilibrium in formaldehyde containing multicomponent mixtures: experimental results for fluid phase equilibria of (formaldehyde + (water or methanol) + methylal) and (formaldehyde + water + methanol + methylal) and comparison with predictions. Industrial and Engineering Chemistry Research, 2006, 45, 5155-5164.
[9] Drunsel, J-O.; Renner, M.; Hasse, H. Experimental study and model of reaction kinetics of heterogeneously catalyzed methylal synthesis. Chemical Engineering Research and Design, 2012, 90, 696-703.

[10] Zhao, Q.; Wang, H.; Qin, Z-F.; Wu, Z-W.; Wu, J-B.; Fan, W-B. Wang, J-G. Synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene with molecular sieves as catalysts. Journal of Fuel Chemistry and Technology, 2011, 39, 918-923.
[11] Gao, X.; Tang, W.; Liu, Z.; Gao, H. Catalytic performance of HZSM-5 molecular sieve for synthesis of polyoxymethylene dimethyl ethers. Chinese Journal of Catalysis, 2012, 33, 1389-1394.
[12] Li, H.; Song, H.; Chen, L.; Xia, C. Designed SO_4^(2-)/Fe_2 O_3-SiO_2 solid acids for polyoxymethylene dimethyl ethers synthesis: the acid sites control and reaction pathways. Applied Catalysis B: Environmental, 2015, 165, 466-476.
[13] Zhang, J.; Fang, D.; Liu, D. Evaluation of Zr-Alumina in production of polyoxymethylene dimethyl ethers from methanol and formaldehyde: Perfomance tests and kinetic investigations. Industrial and Engineering Chemistry Research, 2014, 53, 13589-13597.
[14] Zhang, J.; Shi, M.; Fang, D. Reaction kinetics of the production of polyoxymethylene dimethyl ethers from methanol and formaldehyde with acid cation exchange resin catalyst. Reaction, Kinetics, Mechanisms and Catalysts, 2014, 113, 459-470.
[15] Burger, J.; Strofer, E.; Hasse, H. Chemical equilibrium and reaction kinetics of the heterogeneously catalyzed formation of poly(oxymethylene) dimethyl ethers from methylal and trioxane. Industrial and Engineering Chemistry Research, 2012, 51, 12751-12761.
[16] Burger, J.; Strofer, E.; Hasse, H. Production process for diesel fuel components poly(oxymethylene) dimethyl ethers from methane-based products by hierarchical optimization with varying model depth. Chemical Engineering Research and Design, 2013, 91, 2648-2662.
[17] Burger, J. A novel process for the production of diesel fuel additives by hierarchical design. University of Kaiserlautern, Dissertation, 2012.
[18] Agreda, V.H.; Partin, L. R.; Heise, W. H. High-purity methyl acetate production via reactive distillation. Chemical Engineering Progress. 1990, 86, 40-46.
[19] Malone, M. F.; Doherty, M. F. Reactive distillation. Industrial Engineering Chemical Research, 2000, 39, 3953-3957.
[20] Luyben, W. L.; Yu, C. C. Reactive distillation design and control. John Wiley & Sons, Inc.: Hoboken, New Jersey, 2008.
[21] Chang, J.W.; Yu. C.C. The relative gain for non-square multivariable systems. Chemical Engineering Science. 1990, 45, 1309-1323.
[22] Tang, Y-Y.; Chen, Y-W.; Huang, H-P.; Yu, C-C.; Hung, S-B.; Lee, M-J. Design of reactive distillations for acetic acid esterification. AIChE J., 2005, 51, 1683-1699.
[23] Triantafillou, C.; Smith, R. The design and operation of fully thermally coupled distillation columns. Transactions of the Institution of Chemical Engineers, 1992, 70, 118.
[24] Hernandez, S.; Pereira-Pech, S.; Jimenez, A.; Rico-Ramirez, V. Energy efficiency of an indirect thermally coupled distillation sequence. The Canadian Journal of Chemical Engineering, 2003, 81, 1087.
[25] Agrawal, R.; Fidkowski, Z. T. Are thermally coupled distillation columns always thermodynamically more efficient for ternary distillations? Industial Engineering Chemical Research, 1998, 37, 3444.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top