跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 07:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳定隆
研究生(外文):Ding-Long Chen
論文名稱:液滴於具結構親溶液表面之蒸發現象及濕潤行為
論文名稱(外文):Vaporization and Wetting Behaviors of Liquid Droplet on Solventphilic Patterned Surface
指導教授:陳立仁陳立仁引用關係
口試委員:林析右蔡瑞瑩
口試日期:2015-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:中文
論文頁數:78
中文關鍵詞:接觸角前進角親溶液蒸發結構表面
外文關鍵詞:contact angleadvancing contact anglesolventphilicvaporizationpatterned surface
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要對溶液與其相親的結構表面進行濕潤行為的探討,此處指稱的相親代表液滴於表面上形成小於90度的接觸角。我們選用正辛醇作為液體、PDMS作為基材,正辛醇於PDMS的前進角為38度、後退角25度,從接觸角可看出PDMS跟正辛醇的相親性。實驗方式包含觀察不同幾何結構表面上液滴蒸發行為,及前進角與後退角的測量兩個部份。
我們以PDMS製備不同大小、間隔的規則排列方柱結構,進行蒸發行為觀察時,可以發現結構不同所觀察到的蒸發型式也相異,我們可以將蒸發性態歸納為三種:Wenzel state、Cassie impregnating wetting state及Mixed state,三者差異可由半毛細現象是否發生及液滴蒸發方式看出差異。Wenzel state 的樣品不發生半毛細現象,並維持固定後退角度值;Cassie impregnating wetting state的樣品最大特色是半毛細現象,過程中幾乎觀察不到後退角;Mixed state則有上述兩種狀態的部份特色,其不發生半毛細現象,但過程中後退角近乎觀察不到。此三種狀態的出現與結構有相關性,蒸發狀態的變化趨勢因柱狀結構變高、柱子間隔變窄,從Wenzel state轉為Mixed state,最後變為Cassie impregnating wetting state。
本文用兩種測量角度的方式:貼泡法與埋針法,測量樣品的前進角與後退角。我們發現貼泡法得到的角度趨勢則與埋針法不同,前者隨粗糙度增加前進角下降,粗糙度變高後,前進角轉變為定值;後者隨粗糙度增加前進角增加,粗糙度變高後,轉變為定值,進入Cassie impregnating wetting state。後者變化雖不符Wenzel模型預測,但是經由置換液體可以證明具有再現性,對於貼泡法與埋針法不同的角度變化化趨勢目前沒有適合的解釋方式,這也表示使用貼泡法測量前進角與後退角仍有許多我們許要釐清的問題。
本研究提供接觸角小於90度時,結構變化對表面濕潤行為及角度的影響,希望能對溶液與表面相親的濕潤狀態,提供不一樣的看法。


Our research was focus on the wetting behavior of liquid droplet on solventphilic patterned surface. Contact angle of liquid droplet on a surface below than 90° was referred to the solventphilic surface. We chose octanol as the liquid droplet, PDMS as the solid surface. The advancing contact angle of octanol was 38°, the receding contact angle of octanol was 25°. The contact angle showed the affinity between the PDMS and octanol. The experiment included two parts: vaporization process of an octanol droplet deposited on the patterned PDMS surfaces and contact angle measurement.
We used PDMS as the substrate to create series of different width and spacing pillar surface. When we observed the vaporization process of an octanol, it could be found that different pattern geometry showed different vaporization process. The vaporization process could be characterized into three kinds: Wenzel state, Cassie impregnating wetting state and Mixed state. Hemi-wicking and vaporization sequence of droplet differed from each other. The hemi-wicking wasn’t found in the process and receding with a constant angle when droplet was in Wenzel state. Hemi-wicking was the key feature of Cassie impregnating wetting state. But receding contact angle couldn’t be seen. Mixed state had both characteristics of Wenzel state and Cassie impregnating wetting state. No hemi-wicking and receding contact angle couldn’t be observed when droplet in Mixed state. From the observation of vaporization process, we know pattern geometry could affect the wetting states. Narrower pillar spacing and taller pillar would change the vaporization process from Wenzel state to Mixed state then the Cassie impregnating wetting state.
We used two kinds of method to measure the advancing and receding contact angle. One was captive bubble method, the other was embedded-needle method. We got different tendency in contact angle with these two methods. When captive bubble was conducted, the advancing contact angle decreased as the surface roughness was increased. Eventually, the advancing contact angles become a constant when the surface roughness is further increased, i.e., the region of Cassie impregnating wetting state. However, when embedded-needle method was used, the advancing contact angle increased as the surface roughness was increased. Eventually, the advancing contact angles became constant when the surface roughness was further increased. The advancing contact angle measured by embedded-needle method didn’t meet the Wenzel model, but the result can be reproduced even we changed other kind of liquid. There was still no clear explanation to why captive bubble method could get the tendency of advancing contact angle decreased as the roughness increased. We still have long way to clarify the captive bubble method.
This research provides another opinion when we deal with the wetting behavior and vaporization process in solventphilic surface.


第一章 緒論 1
第二章 文獻回顧 5
2.1 表面濕潤現象 5
2.2 粗糙表面的接觸角 6
2.3 前進角與後退角 9
2.4 遲滯現象 11
2.5 濕潤行為的轉換 11
2.6 接觸線在結構上的釘扎(pinning)效應 12
第三章 實驗部分 19
3.1 實驗藥品 19
3.2 實驗步驟 21
3.2.1 樣品製備 21
3.2.2 負光阻(SU-8)凹槽母片製作 21
3.2.3 樣品的製造 22
3.2.4 濕潤行為觀察 25
3.2.5 埋針法接觸角測量系統 26
3.2.6 貼泡法接觸角測量系統 26
第四章 結果與討論 29
4.1 正辛醇在具結構PDMS表面的三種蒸發行為觀察 30
4.2 結構對蒸發狀態的影響 37
4.3 正辛醇在表面上之前進角與後退角 42
4.3.1 貼泡法觀察PDMS結構表面之前進、後退角 42
4.3.2 埋針法觀察PDMS結構表面之前進、後退角 45
4.3.3 埋針法測量角度變化討論 46
4.3.4 貼泡法與埋針法綜合討論 53
第五章 結論 65
附錄 68
參考文獻 76


(1) Cortese, B.; D’Amone, S.; Manca, M.; Viola, I.; Cingolani, R.; Gigli, G. Superhydrophobicity due to the Hierarchical Scale Roughness of PDMS Surfaces. Langmuir 2008, 24 (6), 2712–2718.
(2) Quéré, D. Wetting and Roughness. Annu. Rev. Mater. Res. 2008, 38 (1), 71–99.
(3) Yeh, K. Y.; Chen, L. J.; Chang, J. Y. Contact Angle Hysteresis on Regular Pillar-like Hydrophobic Surfaces. Langmuir 2008, 24 (1), 245–251.
(4) Vorobyev, a. Y.; Guo, C. Multifunctional Surfaces Produced by Femtosecond Laser Pulses. J. Appl. Phys. 2015, 033103.
(5) Ishino, C.; Reyssat, M.; Reyssat, E.; Okumura, K.; Quéré, D. Wicking within Forests of Micropillars. Europhys. Lett. 2007, 79 (5), 56005.
(6) Ishino, C.; Okumura, K. Wetting Transitions on Textured Hydrophilic Surfaces. Eur. Phys. J. E 2008, 25 (4), 415–424.
(7) Priest, C.; Forsberg, P. S. H.; Sedev, R.; Ralston, J. Structure-Induced Spreading of Liquid in Micropillar Arrays. Microsyst. Technol. 2012, 18 (2), 167–173.
(8) Picknett, R. .; Bexon, R. The Evaporation of Sessile or Pendant Drops in Still Air. J. Colloid Interface Sci. 1977, 61 (2), 336–350.
(9) Dorrer, C.; Rühe, J. Superaerophobicity: Repellence of Air Bubbles from Submerged, Surface-Engineered Silicon Substrates. Langmuir 2012, 28 (42), 14968–14973.
(10) Xue, J.; Shi, P.; Zhu, L.; Ding, J.; Chen, Q.; Wang, Q. A Modified Captive Bubble Method for Determining Advancing and Receding Contact Angles. Appl. Surf. Sci. 2014, 296, 133–139.
(11) Wenzel, R. N. Resistance of Solid Surfaces to Wetting by Water. J. Ind. Eng. Chem. (Washington, D. C.) 1936, 28, 988–994.
(12) Cassie, B. D. Of Porous Surfaces,. 1944, No. 5, 546–551.
(13) Neumann, A.W.; Spelt, J. K. Applied Surface Thermodynamics; 1996.
(14) Bico, J.; Tordeux, C.; Quéré, D. Rough Wetting. Europhys. Lett. 2007, 55 (2), 214–220.
(15) Courbin, L.; Denieul, E.; Dressaire, E.; Roper, M.; Ajdari, A.; Stone, H. a. Imbibition by Polygonal Spreading on Microdecorated Surfaces. Nat. Mater. 2007, 6 (9), 661–664.
(16) Forsberg, P. S. H.; Priest, C.; Brinkmann, M.; Sedev, R.; Ralston, J. Contact Line Pinning on Microstructured Surfaces for Liquids in the Wenzel State. Langmuir 2010, 26 (2), 860–865.
(17) Yang, Y.-J. Modeling the Wetting Behavior of Heterogemeous Patterned Surface by Numerical Method. Master thesis, Department of Chemical Engineering, National Taiwan University, 2011.
(18) Dorrer, C.; Rühe, J. Drops on Microstructured Surfaces Coated with Hydrophilic Polymers: Wenzel’s Model and beyond. Langmuir 2008, 24 (5), 1959–1964.
(19) Lin, S. Y.; Chen, L. J. Evaporation of Sessile Drops with and without Suspended Nanoparticles on Homogeneous Stripes Surfaces. Master thesis, Department of Chemical Engineering, National Taiwan University, 2014.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top