跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 18:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林俞廷
研究生(外文):Yu-Ting Lin
論文名稱:高透濕性聚氨酯材料研究應用
論文名稱(外文):Synthesis and Characterization of Highly Water-Permeable of PEG-based Polyurethane
指導教授:謝國煌謝國煌引用關係
指導教授(外文):Kuo-Huang Hsieh
口試委員:林江珍陳思賢
口試日期:2015-07-06
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:78
中文關鍵詞:聚氨酯聚乙二醇透濕性生物相容性黏著性
外文關鍵詞:PolyurethanePoly(ethylene glycol)WVTRBiocompatibilityAdhesion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現在應用在醫療方面的生醫材料種類是越來越多,其中近年來以高透濕性材料為特色的應用有著很大的發展潛力,因此也引起許多國內外學者投入相關研究。
而本論文研究主要分成兩個部分:
第一個部分研究方向為提高聚氨酯的透濕能力與其機械強度,期望能在生醫材料方面有更廣泛用途,利用不同重量比的聚二元醇,聚乙二醇(Poly(ethylene glycol))與聚丙二醇(poly(propylene glycol))和1,6-己二異氰酸酯(Hexamethylene diisocyanate)進行聚氨酯合成反應後,再塗佈成膜對其進行熱性質、拉伸、水氣穿透、生物相容性等性質分析。
第二部分亦是第一部分的延伸,由直鏈型改為星狀型聚氨酯,研究方向為合成星狀聚氨酯水凝膠(Polyurethane hydrogel),利用聚丙三醇(Poly(propylene glycol) triol)和二異氰酸異佛爾酮(Isophorone diisocyanate, IPDI),調整不同比例的聚二元醇,聚乙二醇(Poly(ethylene glycol))與聚丙二醇(poly(propylene glycol))來合成星狀的聚氨酯水凝膠,並對其熱性質、水氣透過率、黏著性等進行分析探討。


In my study, it was mainly composed of two major parts. The polymer materials were designed to be with high water vapor transmission rate and well mechanical properties. In the first part, both PEG(poly(ethylene glycol)) and PPG(poly(propylene glycol)) acted as the soft segment were introduced into the procedure of synthesizing polyurethane. We could find the influences of various molar ratio of PEG and PPG on their thermal property, mechanical property, water vapor transmission rate, biocompatibility, and so on.
In the second part of the study, it was followed by the first part. By using the PPG triol (Poly(propylene glycol) triol) and changing the molar ratio of polydiols, different star-shaped polyurethane hydrogel were produced. To see the performance of polyurethane hydrogel, thermal property, water vaper transmission rate, adhesion and so forth were analysized.


致謝 I
中文摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1. 前言 1
1.2. 研究目的 2
第二章 文獻回顧 3
2.1. 聚氨酯 3
2.1.1. 聚氨酯簡介 3
2.1.2. 聚氨酯的微觀相分離 5
2.1.3. 聚氨酯的合成反應與催化劑 6
2.2. 聚氨酯材料 10
2.2.1. 聚氨酯薄膜與彈性體材料 10
2.2.2. 聚氨酯膠與水凝膠 12
2.3. 膠的簡介[57] 15
2.4. 黏著理論 17
2.4.1. 濕潤作用[64] 17
2.4.2. 黏著機制 19
2.5. 聚氨酯膠物性[68,69] 23
2.6. 皮膚構造簡介 25
2.7. 傷口癒合機制簡介[77] 29
第三章 實驗方法 33
3.1. 實驗藥品 33
3.2. 實驗儀器 35
3.3. 實驗步驟 38
3.3.1. 聚氨酯薄膜的合成 38
3.3.2. 聚氨酯水凝膠合成 41
3.4. 材料性質測試 44
第四章 結果與討論 49
4.1. 傅立葉轉換紅外線光譜分析( Fourier-Transformed Infrared Spectra, FT-IR ) 49
4.2. 熱重分析( Thermal Gravimetric Analysis , TGA ) 51
4.3. 微差掃描卡計儀分析(Differential Scanning Calorimetry, DSC) 54
4.4. 拉伸測試分析( Tensile Strength Test ) 59
4.5. 剝離強度測試分析 61
4.6. 初期力測試分析(Tack Rolling Ball) 62
4.7. 水氣透過率測試分析(Water Vapor Transmission Rate) 63
4.8. 細胞相容性分析 65
第五章 結論 68
參考文獻 70


1.Bayer, O., The Diisocyanate Polyaddition Process (Polyurethanes) Description of a New Principle for Building up High-Molecular Compounds. Angewandte Chemin, 1947. 59: p. 257-72.
2.Saunders, J. H. and Frisch, K. C., Polyurethanes: Chemistry and Technology, Part I. Chemistry; Interscience Publishers: New York, 1962. P. 327-345.
3.Saunders, J. H. and Frisch, K. C., Polyurethane: Chemistry and Technology, Part I and II. Interscience Publishers: New York, 1964. P. 412.
4.Staley, H. B., and David, D. J., Analytical chemistry of the polyurethanes partIII. 1979. P.350-352.
5.Sharmin, E., and Zafar, F., Polyurethane: An Introduction. INTECH Open Access Publisher. 2012. P. 3-9.
6.Ramesh, S., Tharanikkarasu, K., Mahesh, G. N., and Radhakrishnan, G., Synthesis, physicochemical characterization, and applications of polyurethane ionomers: a review. 1998. 38: p. 481-509.
7.Klempner, D. and Frisch, K. C., Polymer Alloy: Blend, Block Graft and Interpenetrating Networks. Plenum Press, New York, 1977. P. 231-243.
8.Chang, A. L. and Thomas, E. L., Morphological Studies of PCP/MDI/BDO-Based Segmented Polyurethanes. Advance in Chemistry Series, 1979. 176: p. 31-52.
9.Chen, K. S., Yu, T. L., Chen, Y. S., Lin, T. L. and Liu, W. J., Soft-and Hard-segment Phase Segregation of Polyester-Based Polyurethane. Journal of Polymer Research, 2001. 8: p.99-109.
10.Egboh, S. H. O., Grafting Vinyl Monomers onto Unsaturated Segmented Polyurethanes. 1. Graft Copolymerization of Acrylamide, Methacrylonitrile, and Methyl Methacrylate. Journal of Macromolecular Science—Chemistry, 1983. 7: p. 1041-1048.
11.Senich, G. A., and MacKnight, W. J., Fourier transform infrared thermal analysis of a segmented polyurethane. Macromolecules, 1980. 1: p. 106-110.
12.Oertel, G., Polyurethane Handbook. Hanser: Munich, 1985. P.629.
13.Tanzi, M. C., Verderio, P., Lampugnani, M. G., Resnati, M., Dejana, E., and Sturani, E., Cytotoxicity of some catalysts commonly used in the synthesis of copolymers for biomedical use. Journal of Materials Science: Materials in Medicine, 1994. 6-7: p. 393-396.
14.Carson, P. A., Hazardous chemicals handbook. Butterworth-Heinemann. 2002. p. 67-80.
15.Hayes, W. J., and Laws, E. R., The handbook of pesticide toxicology, Vol. 2. Academic Press, San Diego, 1980. p. 537.
16.Petrović, Z. S., Javni, I., and Jelčić, Ž., The effect of segment length and concentration on dielectric properties of polypropyleneoxide-based polyurethanes. Colloid and Polymer Science, 1989. 12: p. 1077-1086.
17.黃忠兵, 李柏剛, 胡英等, 新型親水性聚氨酯敷料表面介面性能的研究. 航天醫學與醫學工程, 2001 , 5: p. 355-359.
18.Williams, D., Polyurethane paranoia flexible friend or deadly foe?. Medical device technology, 1995. 3: p. 7-10.
19.Batich, C., Williams, J., and King, R., Toxic hydrolysis product from a biodegradable foam implant. Journal of biomedical materials research, 1989. S14: p. 311-319.
20.Szycher, M., Biostability of polyurethane elastomers: a critical review. Journal of biomaterials applications, 1988. 2: p. 297-402.
21.Spaans, C. J., Biomedical polyurethanes based on 1, 4-buanediisocyanate: an exploratory study. University of Groningen. 2000.
22.Lee, J. H., Park, J. W., and Lee, H. B., Cell adhesion and growth on polymer surfaces with hydroxyl groups prepared by water vapour plasma treatment. Biomaterials, 1991. 5: p. 443-448.
23.Curtis, A. S. G., Forrester, J. V., and Clark, P., Substrate hydroxylation and cell adhesion. Journal of Cell Science, 1986. 1: p. 9-24.
24.Ramsey, W. S., Hertl, W., Nowlan, E. D., and Binkowski, N. J., Surface treatments and cell attachment. In vitro, 1984. 10: p. 802-808.
25.McAuslan, B. R., and Johnson, G., Cell responses to biomaterials I: adhesion and growth of vascular endothelial cells on poly (hydroxyethyl methacrylate) following surface modification by hydrolytic etching. Journal of biomedical materials research, 1987. 7: p. 921-935.
26.Kramar, L., Recent and future trends for high performance fabrics providing breathability and waterproofness. Journal of Industrial Textiles, 1998. 2: p. 106-115.
27.Krishnan, S., Technology of breathable coatings. Journal of Coated Fabrics, 1992. 22: p. 71-71.
28.Jeong, H. M., Ahn, B. K., and Kim, B. K., Temperature sensitive water vapour permeability and shape memory effect of polyurethane with crystalline reversible phase and hydrophilic segments. Polymer international, 2000. 12: p. 1714-1721.
29.Jhon, Y. K., Cheong, I. W., and Kim, J. H., Chain extension study of aqueous polyurethane dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001. 1: p. 71-78.
30.Dormish, J., Polyisocyanate crosslinkers for aqueous polyurethane dispersions. Adhesives age, 1996. 2: p. 16-21.
31.Julia, J., Salvatella, D., and Lope, J., Aqueous polyurethane dispersions for adhesive applications. Adhesives Age, 1994. 5: p. 26-31.
32.Tirpak, R. E., and Cline, R. L., U.S. Patent No. 5,124,400. Washington, DC: U.S. Patent and Trademark Office. 1992.
33.Zhang, T., U.S. Patent No. 5,692,937. Washington, DC: U.S. Patent and Trademark Office. 1997.
34.Jhon, M. S., and Andrade, J. D., Water and hydrogels. Journal of biomedical materials research, 1973. 6: p. 509-522.
35.Jen, A. C., Wake, M. C., and Mikos, A. G., Review: Hydrogels for cell immobilization. Biotechnology and bioengineering, 1996. 4: p. 357-364.
36.Babensee, J. E., Anderson, J. M., McIntire, L. V., and Mikos, A. G., Host response to tissue engineered devices. Advanced drug delivery reviews, 1998. 1: p. 111-139.
37.Řı́hová, B., Immunocompatibility and biocompatibility of cell delivery systems. Advanced drug delivery reviews, 2000. 1: p. 65-80.
38.Mandal, B. B., and Kundu, S. C., Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials, 2009. 15: p. 2956-2965.
39.Lien, S. M., Ko, L. Y., and Huang, T. J., Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomaterialia, 2009. 2: p. 670-679.
40.Buchholz, F. L., and Peppas, N. A., Superabsorbent polymers: science and technology. American Chemical Society. 1994. 573: p. 112.
41.Pourjavadi, A., Barzegar, S., and Mahdavinia, G. R., MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels. Carbohydrate polymers, 2006. 3: p. 386-395.
42.Yoshimura, T., Matsuo, K., and Fujioka, R., Novel biodegradable superabsorbent hydrogels derived from cotton cellulose and succinic anhydride: Synthesis and characterization. Journal of Applied Polymer Science, 2006. 6: p. 3251-3256.
43.Wakitani, S., Kimura, T., Hirooka, A., Ochi, T., Yoneda, M., Yasui, N., ... and Ono, K. E. I. R. O., Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. Journal of Bone & Joint Surgery, 1989. 1: p. 74-80.
44.Kang, R., Marui, T., Ghivizzani, S. C., Nita, I. M., Georgescu, H. I., Suh, J. K., ... and Evans, C. H., Ex vivo gene transfer to chondrocytes in full-thickness articular cartilage defects: a feasibility study. Osteoarthritis and Cartilage, 1997. 2: p. 139-143.
45.Qi, W. N., and Scully, S. P., Extracellular collagen modulates the regulation of chondrocytes by transforming growth factor‐β1. Journal of orthopaedic research, 1997. 4: p. 483-490.
46.Wise, D. L., Encyclopedic Handbook of Biomaterials and Bioengineering: v. 1-2. Applications. CRC Press. 1995.
47.Hanff, G., Sollerman, C., Abrahamsson, S. O., and Lundborg, G., Repair of Osteochondral Defects in the Rabbit Knee with Goretex™(Expanded Polytetrafluoroethylene). Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 1990. 3: p. 217-223.
48.Barry, J. J. A., Gidda, H. S., Scotchford, C. A., and Howdle, S. M., Porous methacrylate scaffolds: supercritical fluid fabrication and in vitro chondrocyte responses. Biomaterials, 2004. 17: p. 3559-3568.
49.Messner, K., and Gillquist, J., Synthetic implants for the repair of osteochondral defects of the medial femoral condyle: a biomechanical and histological evaluation in the rabbit knee. Biomaterials, 1993. 7: p. 513-521.
50.Lee, K. Y., and Mooney, D. J., Hydrogels for tissue engineering. Chemical reviews, 2001. 7: p. 1869-1880.
51.Campoccia, D., Doherty, P., Radice, M., Brun, P., Abatangelo, G., and Williams, D. F., Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials, 1998. 23: p. 2101-2127.
52.Prestwich, G. D., Marecak, D. M., Marecek, J. F., Vercruysse, K. P., and Ziebell, M. R., Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives. Journal of Controlled Release, 1998. 1: p. 93-103.
53.Lake, G. J., Fatigue and fracture of elastomers. Rubber Chemistry and Technology, 1995. 3: p. 435-460.
54.Gong, J. P., Katsuyama, Y., Kurokawa, T., and Osada, Y., Double‐Network Hydrogels with Extremely High Mechanical Strength. Advanced Materials, 2003. 14: p. 1155-1158.
55.Haraguchi, K., and Takehisa, T., Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Advanced Materials, 2002. 16: p. 1120.
56.Sun, J. Y., Zhao, X., Illeperuma, W. R., Chaudhuri, O., Oh, K. H., Mooney, D. J., ... and Suo, Z., Highly stretchable and tough hydrogels. Nature, 2012. 7414: p. 133-136.
57.吳文政, 膠的原理. 生活中的科學. P. 47-51.
58.Definition of adhesive in American Society for Testing and Material. Available from: http://www.astm.org/Standards/adhesive-standards.html.
59.Definition of adhesive in Chinese National Standards. Available from: http://www.cnsonline.com.tw/?node=detail&generalno=5345&locale=zh_TW.
60.Brewis, D. M., Surface analysis and pretreatment of plastics and metals. Applied Science Publishers. 1982. P. 121.
61.Wu, S., Polymer interface and adhesion. Marcel Dekker. 1982. P. 420.
62.Eley, D. E., Adhesion, Oxford University Press. 1961. P. 1-18.
63.Houwink, R., and Salomon, G., Adhesion and adhesives, Vol. 1. 1965.
64.Bikerman, J. J., Surface chemistry: theory and applications. Academic Press. 2013.
65.Wake, W. C., Adhesion and the Formulation of Adhesives, Applied Science Publishers, 1976. P. 65
66.張開, 高分子界面科學. 中國石化出版社, 1997. P. 130-155.
67.Houwink, R., Bruyne, N. A. D., and Salomon, G., Adhesion and adhesives. 1965.
68.賴耿陽, 接著技術與接著應用. 復文出版社, 1985.
69.黃長澤, 高分子工業, 第80 期, p. 88-93.
70.趙壯飛, 劉江川, 劉鴻文, 呂美華, 醫用組織學彩色圖譜. 2001.
71.Michael, H., Ross, L. J. R., Gordon I. K., Histology: A Text and Atlas. 1998
72.范如霖, 范文峰, 曹光磊, 皮膚組織病理學. 1972.
73.Telles, D. d. S., A complete diagram of the human skin. Available from: http://en.wikipedia.org/wiki/Skin.
74.Kilbad. This is a hematoxylin and eosin stained slide at 10x of normal skin. Available from: http://en.wikipedia.org/wiki/File:Epidermis-delimited.JPG.
75.Mikael Häggström, b.o.w.b.W. Layers of the epidermis. Available from: http://en.wikipedia.org/wiki/File:Epidermal_layers.png.
76.This is a hematoxylin and eosin stained slide of normal epidermis. Available from: http://neuromedia.neurobio.ucla.edu.
77.Tsuboi, R., and Rifkin, D. B., Recombinant basic fibroblast growth factor stimulates wound healing in healing-impaired db/db mice. The Journal of Experimental Medicine, 1990. 1: p. 245-251.
78.Harari, J., Surgical Complications and Wound Healing in the Small Animal Practice, 1993. P.33-62.
79.The phases of cutaneous wound healing. Available from: http://www.pilonidal.org/aftercare/wound_healing_indepth.php.
80.Schäfer, M., & Werner, S., Cancer as an overhealing wound: an old hypothesis revisited. Nature reviews Molecular cell biology, 2008. 8: p. 628-638.
81.李紹雄, 劉益軍, 聚氨酯膠黏劑. 化學工程出版社, 1997.
82.Shields, J., Adhesives handbook. Elsevier, 2013.
83.Tsao, C. T., Chang, C. H., Lin, Y. Y., Wu, M. F., Wang, J. L., Young, T. H., and Hsieh, K. H., Evaluation of chitosan/γ-poly (glutamic acid) polyelectrolyte complex for wound dressing materials. Carbohydrate Polymers, 2011. 2: p. 812-819.
84.O''Brien, J., Wilson, I., Orton, T., and Pognan, F., Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. European Journal of Biochemistry, 17: p. 5421-5426.
85.Twentyman, P. R., and Luscombe, M., A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. British journal of cancer, 1987. 3: p. 279.
86.Yen, M. S., and Kuo, S. C., PCL–PEG–PCL triblock ester–ether copolydiol‐based waterborne polyurethane. II. Effect of NCO/OH mole ratio and DMPA content on the physical properties. Journal of applied polymer science, 1998. 7: p. 1301-1311.
87.Shibaya, M., Suzuki, Y., Doro, M., Ishihara, H., Yoshihara, N., and Enomoto, M., Effect of soft segment component on moisture‐permeable polyurethane films. Journal of Polymer Science Part B: Polymer Physics, 2006. 3: p. 573-583.
88.Mondal, S., Hu, J. L., and Yong, Z., Free volume and water vapor permeability of dense segmented polyurethane membrane. Journal of Membrane Science, 2006. 1: p. 427-432.
89.Roberts, M.J., M.D. Bentley, and J.M. Harris, Chemistry for peptide and protein PEGylation. Advanced Drug Delivery Reviews, 2002. 4: p. 459-476.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文