跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 23:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:藍啟曄
研究生(外文):Chi-Yeh Lan
論文名稱:官能化之噻吩並苯并噻二唑衍生物之合成及性質探討並於太陽能電池之應用
論文名稱(外文):Synthesis and Characteristics of Functionalized Thiophene-Benzothiadiazole Derivatives and Application for Organic Solar Cells
指導教授:謝國煌謝國煌引用關係
指導教授(外文):Kuo-Huang Hsieh
口試委員:林江珍陳思賢莊清男
口試委員(外文):Jiang-Jen LinSzu-Hsien ChenChing-Nan Chuang
口試日期:2014-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:80
中文關鍵詞:有機太陽能電池噻吩苯并噻二唑聚3己基噻吩石墨烯
外文關鍵詞:organic solar cellthiophenebenzothiadiazoleP3HTgraphene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:80
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究乃合成官能化之噻吩並苯并噻二唑(Thiophene-Benzothiadiazole)之一系列小分子化合物,透過在小分子化合物末端改質上具有拉電子能力的羧酸(Carboxylic acid, -COOH)及腈(Nitrile, -CN)官能基,使合成之小分子化合物與作為電子施體(Donor)的P3HT產生π-π堆疊(π-π Stacking)現象、同時與作為電子受體(Acceptor)的無機碳材(如PCBM、石墨烯)藉由末端官能基產生相互作用力,進一步扮演P3HT及碳材之間的橋梁,使電子能夠透過合成之小分子化合物順利地由P3HT導向作為電子受體的碳材,藉以提升太陽能電池元件的光電流(Photo-current),並提高光電轉換效率(Power conversion efficiency, PCE)。
本研究利用熱重分析儀(Thermogravimetry analysis, TGA)及示差熱掃描分析儀(Differential scanning calorimetry, DSC)分析所合成之小分子化合物的熱性質,確保其能夠因應太陽能電池元件製作中的各種製程;利用紫外光/可見光分光光譜儀(UV/Visible spectroscopy, UV-vis)測量小分子在紫外光-可見光區的吸光範圍及強度,藉以瞭解小分子化合物之吸光範圍;利用螢光光譜儀(Fluorescence spectrometer, FL)測量P3HT及小分子化合物混摻導電碳材後的螢光放光情形,探討所合成之小分子化合物是否能夠有效地幫助電子-電洞分離、減少螢光放光;利用循環伏安儀(Cyclic voltammetry, CV)測量小分子的氧化電位以及能階,測試其能階是否落在P3HT及導電碳材之間。
太陽能電池元件部分,將P3HT與改質石墨烯混合後,加入不同比例之小分子化合物,探討小分子化合物對於元件效率的影響。當三者之間的重量比為P3HT:小分子化合物:改質石墨烯 = 1:4:4時有最好的元件效率,可達到4.13 %,比未添加小分子化合物的對照組提升了25.5 %。

In this study, a series of functionalized thiophene-benzothiadiazole derivatives are successfully synthesized. By modifying the synthesized small molecules with electron-withdrawing functional groups, carboxylic acid (-COOH), and nitrile (-CN), they are able to form good π-π stacking with the electron donor, P3HT, and at the same time build up combinations with the electron acceptor, like PCBM or graphene. Acting like a bridge, the small molecule can then help electrons be delivered from P3HT to carbon electron acceptors, which can be expected to lead to the increase of photocurrent and the power conversion efficiency of solar cells.
To make sure the synthesized molecules can go through all the manufacturing process of organic solar cells, Thermogravimetry analysis (TGA) and Differential scanning calorimetry (DSC) are used to test the thermal stability of them. UV/Visible spectroscopy (UV-vis) helps us know their light-harvesting ability. Fluorescence spectrometer (FL) is used to measure the light-emitting situation after the mixture of P3HT, synthesized small molecules and electron-conducting materials are excited by photons. Cyclic voltammetry (CV) tells us the oxidation potential and the energy level of these compounds.
For the part of solar cell device, P3HT and modified graphene are blended with different ratios of synthesized small molecules to find out their influence on efficiency. When the weight ratio of the three comes to 1: 4: 4 (P3HT: small molecule compound: modified graphene), the power conversion efficiency reaches the highest of 4.13 %, which is 25.5 % higher than the non-doped control one.

口試委員會審定書 #
謝誌 I
摘要 V
Abstract VI
目錄 VIII
圖目錄 X
表目錄 XII
Chapter 1 緒論 1
1-1 前言 1
1-2 研究動機 2
Chapter 2 文獻回顧 4
2-1 太陽能電池的種類 4
2-2 有機太陽能電池發展簡介 7
2-3 有機太陽能電池簡介──工作原理 8
2-3-1 能量轉移機制 8
2-3-2 運作機制 10
2-4 有機太陽能電池簡介──依結構分類 11
2-5 有機太陽能電池簡介──元件特性參數 14
2-5-1 開路電壓 14
2-5-2 短路電流 15
2-5-3 填充因子 15
2-5-4 能量轉換效率 16
2-6 聚3-己基噻吩之有機太陽能電池回顧 16
2-7 石墨烯簡介 17
Chapter 3 實驗部分 19
3-1 實驗藥品與溶劑 19
3-2 實驗儀器 25
3-3 合成步驟及數據 28
3-3-1 合成流程圖 28
3-3-2 各化合物合成方式 29
Chapter 4 結果與討論 39
4-1 化合物合成方式及結果探討 39
4-1-1 化合物結構設計策略 39
4-1-2 化合物1-7合成步驟與討論 40
4-1-3 化合物Tac、Tcn、Taccn之末端官能基改質合成步驟 42
4-2 熱性質探討 (Thermal Properties) 43
4-3 光物理性質探討 (Photovoltaic Properties) 45
4-3-1 化合物Tac、Tcn、Taccn之紫外光-可見光吸收光譜 45
4-3-2 化合物Tac、Tcn、Taccn之光子激發放光光譜 49
4-4 電化學性質探討 54
4-5 元件物理性質探討 58
4-5-1 太陽能電池元件製作方式 58
4-5-2 化合物Tac之元件性質探討 59
4-5-3 化合物Taccn之元件性質探討 61
Chapter 5 結論 63
Chapter 6 參考文獻 64

1.I. E. Agency, "World Energy Outlook," (2012).
2.I. Intergovernmental Panel on Climate Change, "IPCC Third Assessment Report: Climate Change," (2001).
3.G. S. A. Insitute, "Country Resource Maps,"
4.蔡素蓉, "綠色生質能向窮人開戰 專家示警新糧荒," 苦勞網, (2008).
5.German advisory council on global change, (2003).
6.D. M. Chapin, C. S. Fuller and G. L. Pearson, "A NEW SILICON P-N JUNCTION PHOTOCELL FOR CONVERTING SOLAR RADIATION INTO ELECTRICAL POWER," Journal of Applied Physics, 25 (5), 676-677 (1954).
7.A. G. Martin, E. Keith and Yoshihi, Solar cell efficiency tables (Ver.38), 19, 565-572 (2011).
8.M. Wright and A. Uddin, "Organic—inorganic hybrid solar cells: A comparative review," Solar Energy Materials and Solar Cells, 107 (0), 87-111 (2012).
9.A. Marrocchi, D. Lanari, A. Facchetti and L. Vaccaro, "Poly(3-hexylthiophene): synthetic methodologies and properties in bulk heterojunction solar cells," Energy & Environmental Science, 5 (9), 8457-8474 (2012).
10.G. Zhao, Y. He and Y. Li, "6.5% Efficiency of Polymer Solar Cells Based on poly(3-hexylthiophene) and Indene-C60 Bisadduct by Device Optimization," Advanced Materials, 22 (39), 4355-4358 (2010).
11.M. T. Dang, L. Hirsch and G. Wantz, "P3HT:PCBM, Best Seller in Polymer Photovoltaic Research," Advanced Materials, 23 (31), 3597-3602 (2011).
12.M. Gratzel, "Photoelectrochemical cells," Nature, 414 (6861), 338-344 (2001).
13.A. Hagfeldt and M. Gratzel, "LIGHT-INDUCED REDOX REACTIONS IN NANOCRYSTALLINE SYSTEMS," Chemical Reviews, 95 (1), 49-68 (1995).
14.A. Hagfeldt and M. Gratzel, "Molecular photovoltaics," Accounts of Chemical Research, 33 (5), 269-277 (2000).
15.H. Sakamoto, S. Igarashi, K. Niume and M. Nagai, "Highly efficient all solid state dye-sensitized solar cells by the specific interaction of CuI with NCS groups," Organic Electronics, 12 (7), 1247-1252 (2011).
16.D. Hwang, S. M. Jo, D. Y. Kim, V. Armel, D. R. MacFarlane and S.-Y. Jang, "High-Efficiency, Solid-State, Dye-Sensitized Solar Cells Using Hierarchically Structured TiO2 Nanofibers," Acs Applied Materials & Interfaces, 3 (5), 1521-1527 (2011).
17.J. G. Xue, S. Uchida, B. P. Rand and S. R. Forrest, "Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions," Applied Physics Letters, 85 (23), 5757-5759 (2004).
18.J. G. Xue, B. P. Rand, S. Uchida and S. R. Forrest, "A hybrid planar-mixed molecular heterojunction photovoltaic cell," Adv. Mater., 17 (1), 66-+ (2005).
19.M. Y. Chan, S. L. Lai, M. K. Fung, C. S. Lee and S. T. Lee, ""Doping-induced efficiency enhancement in organic photovoltaic devices" (vol 90, Art. no. 023504, 2007)," Applied Physics Letters, 91 (8)(2007).
20.R. F. Service, "Outlook Brightens for Plastic Solar Cells," Science, 332 (6027), 293-293 (2011).
21.J. Chen and Y. Cao, "Development of Novel Conjugated Donor Polymers for High-Efficiency Bulk-Heterojunction Photovoltaic Devices," Accounts of Chemical Research, 42 (11), 1709-1718 (2009).
22.Y.-J. Cheng, S.-H. Yang and C.-S. Hsu, "Synthesis of Conjugated Polymers for Organic Solar Cell Applications," Chemical Reviews, 109 (11), 5868-5923 (2009).
23.A. Facchetti, "π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications†," Chemistry of Materials, 23 (3), 733-758 (2010).
24.D. Kearns and M. Calvin, "Photovoltaic Effect and Photoconductivity in Laminated Organic Systems," Journal of Chemical Physics, 29 (4), 950 (1958).
25.C. W. Tang, "Two‐layer organic photovoltaic cell," Applied Physics Letters, 48 (2), 183 (1986).
26.N. S. Sariciftci, L. Smilowitz, A. J. Heegel and F. Wudl, "Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene," Science, 258, 1474 (1992).
27.G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science, 270, 1789 (1995).
28.D. A. Skoog , D. M. West and F. J. Holler, "Fundamentals of Analytical Chemistry, ," Saunder College Pub.
, (1988).
29.M. Pope and C. E. Swenberg, "Electronic Processes in Organic Crystals and Polymers," Oxford University Press: Oxford, (1999).
30.J. Cornil, D. A. dos Santos, X. Crispin, R. Silbey and J. L. Brédas, "Influence of Interchain Interactions on the Absorption and Luminescence of Conjugated Oligomers and Polymers:  A Quantum-Chemical Characterization," Journal of the American Chemical Society, 120 (6), 1289-1299 (1998).
31.葉名倉 and 蕭全佑, "有機太陽能電池(Organic Solar Cell)," 國科會高瞻自然科學教學資料平台, (2010).
32.N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, "PHOTOINDUCED ELECTRON-TRANSFER FROM A CONDUCTING POLYMER TO BUCKMINSTERFULLERENE," Science, 258 (5087), 1474-1476 (1992).
33.T. Kietzke, "Recent Advances in Organic Solar Cells," Advances in OptoElectronics, 2007 (2007).
34.B. C. Thompson and J. M. J. Fréchet, "Polymer–Fullerene Composite Solar Cells," Angewandte Chemie International Edition, 47 (1), 58-77 (2008).
35.S. Guenes, H. Neugebauer and N. S. Sariciftci, "Conjugated polymer-based organic solar cells," Chemical Reviews, 107 (4), 1324-1338 (2007).
36.E. Bundgaard and F. C. Krebs, "Low band gap polymers for organic photovoltaics," Sol. Energy Mater. Sol. Cells, 91 (11), 954-985 (2007).
37.M. C. Scharber, D. Wuhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. L. Brabec, "Design rules for donors in bulk-heterojunction solar cells - Towards 10 % energy-conversion efficiency," Adv. Mater., 18 (6), 789-+ (2006).
38.M. D. Perez, C. Borek, S. R. Forrest and M. E. Thompson, "Molecular and Morphological Influences on the Open Circuit Voltages of Organic Photovoltaic Devices," Journal of the American Chemical Society, 131 (26), 9281-9286 (2009).
39.K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganas and J. V. Manca, "On the origin of the open-circuit voltage of polymer-fullerene solar cells," Nature Materials, 8 (11), 904-909 (2009).
40.L. Yang, H. Zhou and W. You, "Quantitatively Analyzing the Influence of Side Chains on Photovoltaic Properties of Polymer-Fullerene Solar Cells," Journal of Physical Chemistry C, 114 (39), 16793-16800 (2010).
41.L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li and Y. Yang, "Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer," Nature Photonics, 6 (3), 180-185 (2012).
42.T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf and C. J. Brabec, "Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells," Advanced Functional Materials, 15 (7), 1193-1196 (2005).
43.N. Espinosa, F. O. Lenzmann, S. Ryley, D. Angmo, M. Hosel, R. R. Sondergaard, D. Huss, S. Dafinger, S. Gritsch, J. M. Kroon, M. Jorgensen and F. C. Krebs, "OPV for mobile applications: an evaluation of roll-to-roll processed indium and silver free polymer solar cells through analysis of life cycle, cost and layer quality using inline optical and functional inspection tools," Journal of Materials Chemistry A, 1 (24), 7037-7049 (2013).
44.G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte and R. Pacios, "Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy," Organic Electronics, 9 (5), 847-851 (2008).
45.M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, "Solar cell efficiency tables (version 42)," Progress in Photovoltaics, 21 (5), 827-837 (2013).
46.P. Schilinsky, C. Waldauf and C. J. Brabec, "Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors," Applied Physics Letters, 81 (20), 3885-3887 (2002).
47.W.-W. S. a. S.-J. M. Heejoo Kim, "Effect of Thermal Annealing on the Performance of P3HT/PCBM Polymer Photovoltaic Cells," Journal of the Korean Physical Society, Vol. 48, 5 (2005).
48.S. H. Lee, J. H. Kim, T. H. Shim and J. G. Park, "Effect of Interface Thickness on Power Conversion Efficiency of Polymer Photovoltaic Cells," Electron. Mater. Lett., 5 (1), 47-50 (2009).
49.S. H. Lee, D. H. Kim, J. H. Kim, G. S. Lee and J. G. Park, "Effect of Metal-Reflection and Surface-Roughness Properties on Power-Conversion Efficiency for Polymer Photovoltaic Cells," J. Phys. Chem. C, 113 (52), 21915-21920 (2009).
50.J. Zhao, A. Swinnen, G. Van Assche, J. Manca, D. Vanderzande and B. V. Mele, "Phase Diagram of P3HT/PCBM Blends and Its Implication for the Stability of Morphology," The Journal of Physical Chemistry B, 113 (6), 1587-1591 (2009).
51.T. Ameri, J. Min, N. Li, F. Machui, D. Baran, M. Forster, K. J. Schottler, D. Dolfen, U. Scherf and C. J. Brabec, "Performance Enhancement of the P3HT/PCBM Solar Cells through NIR Sensitization Using a Small-Bandgap Polymer," Advanced Energy Materials, 2 (10), 1198-1202 (2012).
52.A. Li, X. Miao and X. Deng, "Strong electron acceptor additive for achieving efficient polymer solar cells with P3HT: PCBM films by a quick drying process," Synthetic Metals, 168 (0), 43-47 (2013).
53.J.-S. Lee, B. Kim and N.-G. Park, "Non-thermal phase separation of P3HT and PCBM using polar aprotic solvents for enhancement of photovoltaic performance in bulk heterojunction solar cells," Synthetic Metals, 176 (0), 26-30 (2013).
54.A. K. Geim, "Graphene: Status and Prospects," Science, 324 (5934), 1530-1534 (2009).
55.Y. Q. Sun, Q. O. Wu and G. Q. Shi, "Graphene based new energy materials," Energy & Environmental Science, 4 (4), 1113-1132 (2011).
56.M. Liang and L. Zhi, "Graphene-based electrode materials for rechargeable lithium batteries," Journal of Materials Chemistry, 19 (33), 5871-5878 (2009).
57.Y. Liang, D. Wu, X. Feng and K. Muellen, "Dispersion of Graphene Sheets in Organic Solvent Supported by Ionic Interactions," Advanced Materials, 21 (17), 1679-+ (2009).
58.P. Simon and Y. Gogotsi, "Materials for electrochemical capacitors," Nature Materials, 7 (11), 845-854 (2008).
59.G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth and R. Muelhaupt, "Palladium Nanoparticles on Graphite Oxide and Its Functionalized Graphene Derivatives as Highly Active Catalysts for the Suzuki-Miyaura Coupling Reaction," Journal of the American Chemical Society, 131 (23), 8262-8270 (2009).
60.A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, "Superior thermal conductivity of single-layer graphene," Nano Letters, 8 (3), 902-907 (2008).
61.D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruoff, "The chemistry of graphene oxide," Chemical Society Reviews, 39 (1), 228-240 (2010).
62.D.-W. Wang, F. Li, J. Zhao, W. Ren, Z.-G. Chen, J. Tan, Z.-S. Wu, I. Gentle, G. Q. Lu and H.-M. Cheng, "Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode," Acs Nano, 3 (7), 1745-1752 (2009).
63.Z.-S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li and H.-M. Cheng, "Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance," Acs Nano, 4 (6), 3187-3194 (2010).
64.L.-S. Zhang, X.-Q. Liang, W.-G. Song and Z.-Y. Wu, "Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell," Physical Chemistry Chemical Physics, 12 (38), 12055-12059 (2010).
65.M. Zhang, R. R. Parajuli, D. Mastrogiovanni, B. Dai, P. Lo, W. Cheung, R. Brukh, P. L. Chiu, T. Zhou, Z. Liu, E. Garfunkel and H. He, "Production of Graphene Sheets by Direct Dispersion with Aromatic Healing Agents," Small, 6 (10), 1100-1107 (2010).
66.X.-Y. Zhang, H.-P. Li, X.-L. Cui and Y. Lin, "Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting," Journal of Materials Chemistry, 20 (14), 2801-2806 (2010).
67.R. Dominko, M. Gaberscek, J. Drofenik, M. Bele and J. Jamnik, "Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries," Electrochimica Acta, 48 (24), 3709-3716 (2003).
68.M. D. Hernandez-Alonso, F. Fresno, S. Suarez and J. M. Coronado, "Development of alternative photocatalysts to TiO2: Challenges and opportunities," Energy & Environmental Science, 2 (12), 1231-1257 (2009).
69.S. Chen, J. Zhu, X. Wu, Q. Han and X. Wang, "Graphene Oxide-MnO2 Nanocomposites for Supercapacitors," Acs Nano, 4 (5), 2822-2830 (2010).
70.H. Bai, C. Li and G. Shi, "Functional Composite Materials Based on Chemically Converted Graphene," Advanced Materials, 23 (9), 1089-1115 (2011).
71.A. Abouimrane, O. C. Compton, K. Amine and S. T. Nguyen, "Non-Annealed Graphene Paper as a Binder-Free Anode for Lithium-Ion Batteries," J. Phys. Chem. C, 114 (29), 12800-12804 (2010).
72.C. Li, H. Bai and G. Shi, "Conducting polymer nanomaterials: electrosynthesis and applications," Chemical Society Reviews, 38 (8), 2397-2409 (2009).
73.Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun and Y. Chen, "Organic Photovoltaic Devices Based on a Novel Acceptor Material: Graphene," Advanced Materials, 20 (20), 3924-3930 (2008).
74.Y. Zhu, M. D. Stoller, W. Cai, A. Velamakanni, R. D. Piner, D. Chen and R. S. Ruoff, "Exfoliation of Graphite Oxide in Propylene Carbonate and Thermal Reduction of the Resulting Graphene Oxide Platelets," Acs Nano, 4 (2), 1227-1233 (2010).
75.S. Flock, A. Kristin Holmeide and L. Skattebl, "Syntheses of Some Sulfur‐Containing Polyunsaturated Fatty Acids as Potential Lipoxygenase Inhibitors," Synthetic Communications, 37 (22), 4005-4015 (2007).
76.S. Roquet, A. Cravino, P. Leriche, O. Alévêque, P. Frère and J. Roncali, "Triphenylamine−Thienylenevinylene Hybrid Systems with Internal Charge Transfer as Donor Materials for Heterojunction Solar Cells," Journal of the American Chemical Society, 128 (10), 3459-3466 (2006).
77.M. Velusamy, K. R. Justin Thomas, J. T. Lin, Y.-C. Hsu and K.-C. Ho, "Organic Dyes Incorporating Low-Band-Gap Chromophores for Dye-Sensitized Solar Cells," Organic Letters, 7 (10), 1899-1902 (2005).
78.X. Xu, P. Cai, Y. Lu, N. S. Choon, J. Chen, B. S. Ong and X. Hu, "Synthesis of a Novel Low-Bandgap Polymer Based on a Ladder-Type Heptacyclic Arene Consisting of Outer Thieno[3,2-b]thiophene Units for Efficient Photovoltaic Application," Macromolecular Rapid Communications, 34 (8), 681-688 (2013).
79.H. Zhou, L. Yang and W. You, "Rational Design of High Performance Conjugated Polymers for Organic Solar Cells," Macromolecules, 45 (2), 607-632 (2012).
80.C.-Y. Su, A.-Y. Lu, Y. Xu, F.-R. Chen, A. N. Khlobystov and L.-J. Li, "High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation," Acs Nano, 5 (3), 2332-2339 (2011).
81.J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen and P. Peumans, "Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes," Acs Nano, 4 (1), 43-48 (2009).
82.V. C. Tung, L.-M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner and Y. Yang, "Low-Temperature Solution Processing of Graphene−Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors," Nano Letters, 9 (5), 1949-1955 (2009).
83.J. W. Jung, J. U. Lee and W. H. Jo, "High-Efficiency Polymer Solar Cells with Water-Soluble and Self-Doped Conducting Polyaniline Graft Copolymer as Hole Transport Layer," The Journal of Physical Chemistry C, 114 (1), 633-637 (2009).
84.X. Dong, D. Fu, W. Fang, Y. Shi, P. Chen and L.-J. Li, "Doping Single-Layer Graphene with Aromatic Molecules," Small, 5 (12), 1422-1426 (2009).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top