跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/26 14:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫如妍
研究生(外文):Ju-Yen Sun
論文名稱:液體黏彈特性對凹板印刷品質之影響
論文名稱(外文):Effect of Viscoelasticity on Printing Quality of Gravure Printing Process
指導教授:廖英志
指導教授(外文):Ying-Chih Liao
口試委員:王安邦陳立仁
口試委員(外文):An-Bang WangLi-Jen Chen
口試日期:2015-06-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:82
中文關鍵詞:黏彈特性轉印量多液橋斷裂模口膨脹效應
外文關鍵詞:viscoelasticitymulti-liquid bridgestransferred weightbreakupdie swell
相關次數:
  • 被引用被引用:1
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
凹版轉印技術(gravure offset printing)以其高輸出速率與不錯的解析度而聞名,現今此一技術更將拓展到印刷電子上。然而轉印過程中,印刷成品可能會出現像是斷線、邊界不平整、汙點之類的缺陷,可能造成短路或是斷路等狀況,降低產品的良率。為了解決此一問題,許多科學家開始研究不同的物理參數對轉印品質的影響。本研究將焦點放在液體的黏彈特性上,觀察上下板分離時,墨水從下板的凹槽轉印至上板的平板的過程中,液橋斷裂情形對轉印量和印刷品質的影響。過程中使用的液體為具有黏彈特性之聚乙二醇(PEO)水溶液,並使用高長寬比之直線型凹槽。
實驗結果指出,具有黏彈特性之墨水在拉伸過程中,液體並不會形成一整片液膜(liquid sheet)後,再內縮成單一液橋,而是會斷裂成多根液橋,我們將此現象稱之為多液橋。此多液橋情形會導致墨水之轉印量下降,與墨水的物理特性、拉伸速度、凹槽之幾何形狀等有很大的關係。除此之外,在拉伸過程中,墨水會因為模口膨脹效應使液固邊界移動,導致保真度下降。吾人定義無因次之Quality indicator以量化保真度。
多液橋以及膜口膨脹效應兩者均會導致印刷品質低落,因此吾人研究出Wi之臨界值(Wi**)以及臨界無因次群〖(λτw/η)〗^*,只要將操作之Wi以及λτw/η保持小於臨界值,便可有效控制多液橋情形以及膜口膨脹效應。在印得快速又可保持良好印刷品質之前提下,降低墨水之鬆弛時間為最有效之方法。


In recent years, gravure offset printing has received great attention for its high throughput rate and fine quality for printed electronics. However, incomplete liquid transfer leads to defects, such as satellite dots or broken lines, which deteriorates the printing quality. To solve this problem, many researches focus on the effects of different physical properties on the printing quality of gravure printing process. In this thesis, we looked in to how viscoelasticity affects the liquid bridge formation and breakup process, which is crucial for the printing quality. To study the fundamental physics of liquid transfer phenomena in the printing process, viscoelastic fluid, PEO water solution, was transferred from both axisymmetric and non-axisymmetric cells to a flat PET plate.
From the experiment results, we observe that viscoelastic fluid cannot form a complete liquid sheet during the stretching process for non-axisymmetric line cell; instead, breaking in to multi-liquid bridges, which results in reducing the weight of liquid transferred. This phenomena is so called multi-liquid bridges, and is affected by the properties of the fluid, stretching velocity, cell geometry and so on. Besides, unpinned contact lines caused by die swell also results in the decrease of fidelity, which is quantified by a dimensionless parameter, quality indicator.
Both multi-liquid bridges and die swell effect decrease the printing quality, which is defined by the weight of liquid transferred and quality indicator in this thesis. Critical Wi (Wi**) and dimensionless group 〖(λτw/η)〗^* were found. Therefore, multi-liquid bridges and die swell effect can be avoid, on the other words, good printing quality is able to be achieved, as long as the operating Wi and 〖(λτw/η)〗^* are smaller than the critical values. To conclude, to reach good printing quality under high printing velocity, it is believed that reducing the relaxation time is the most effective way.


謝致 i
中文摘要 ii
ABSTRACT iii
目錄 v
圖目錄 viii
表目錄 xii
符號表 xiii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 論文架構 4
第二章 文獻回顧 5
2.1 黏彈特性(viscoelasticity)17, 18 5
2.1.1 黏彈特性簡介 5
2.1.2 馬克斯威爾模型(The Generalized Maxwell Model) 7
2.1.3 流變儀之分析結果 9
2.2 液態薄膜之界面現象 11
2.3 兩板間的液體轉移 12
2.4 兩板間的液體轉移 20
2.4.1 無因次群 20
2.4.2 時間尺度 20
第三章 實驗系統程序 21
3.1 實驗藥品與儀器介紹 21
3.1.1 實驗藥品與材料 21
3.1.2 實驗儀器 22
3.1.3 儀器裝置與工作原理 23
3.2 實驗流程 25
3.2.1 前置作業 25
3.2.2 填入液體至凹槽及刮除多餘液體 27
3.2.3 觀察液橋之拉伸過程 27
第四章 液體於圓形凹槽及平板間之轉移過程 28
4.1 不同濃度之PEO水溶液以定速拉伸之轉移過程 28
4.2 3wt%之PE水溶液以不同速度拉伸之轉移過程 32
第五章 液體於直線凹槽及平板間之拉伸過程 36
5.1 統御方程式 36
5.2 牛頓流體與非牛頓流體在拉伸過程中的差異 40
5.3 凹槽寬度對轉印品質之影響 44
5.3.1 轉印結果 44
5.3.2 模口膨脹效應(Die Swell)51-53 47
5.3.3 凹槽寬度對液體轉移之影響 49
5.3.4 多液橋與轉移率之關係 53
5.4 凹槽長度對轉印品質之影響 57
5.4.1 轉印結果 57
5.4.2 凹槽寬度與長度對液體轉移之比較 59
5.5 凹槽深度對轉印品質之影響 62
5.5.1 轉印結果 62
5.5.2 液橋間的凹陷處與拉伸速度與轉印量之關係 67
5.6 凹槽尺寸與多液橋的關係及其發生時機 70
5.7 轉印量與多液橋之關係 73
5.8 模口膨脹效應與轉印品質指標 74
5.9 總結 74
第六章 結論 75
第七章 未來展望 76
參考資料 77
附錄 81
1.1 坦聯移動平台使用說明 81
1.2 高速攝影機 82



1.Kitsomboonloha, R., et al., Femtoliter-scale patterning by high-speed, highly scaled inverse gravure printing. Langmuir, 2012. 28(48): p. 16711-23.
2.Hrehorova, E., et al., Gravure Printing of Conductive Inks on Glass Substrates for Applications in Printed Electronics. Display Technology, Journal of, 2011. 7(6): p. 318-324.
3.PUDAS, M., GRAVURE-OFFSET PRINTING IN THE MANUFACTURE OF ULTRA-FINE-LINE THICK-FILMS FOR ELECTRONICS. 2004.
4.Perelaer, J., et al., Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. Journal of Materials Chemistry, 2010. 20(39): p. 8446.
5.Pudas, M., J. Hagberg, and S. Leppävuori, Printing parameters and ink components affecting ultra-fine-line gravure-offset printing for electronics applications. Journal of the European Ceramic Society, 2004. 24(10-11): p. 2943-2950.
6.Sung, D., A. de la Fuente Vornbrock, and V. Subramanian, Scaling and Optimization of Gravure-Printed Silver Nanoparticle Lines for Printed Electronics. Components and Packaging Technologies, IEEE Transactions on, 2010. 33(1): p. 105-114.
7.Pudas, M., J. Hagberg, and S. Leppavuori, The absorption ink transfer mechanism of gravure offset printing for electronic circuitry. Electronics Packaging Manufacturing, IEEE Transactions on, 2002. 25(4): p. 335-343.
8.Pudas, M., J. Hagberg, and S. Leppävuori, Gravure offset printing of polymer inks for conductors. Progress in Organic Coatings, 2004. 49(4): p. 324-335.
9.Krebs, F.C., Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Solar Energy Materials and Solar Cells, 2009. 93(4): p. 394-412.
10.Kang, H.W., et al., Liquid transfer between two separating plates for micro-gravure-offset printing. Journal of Micromechanics and Microengineering, 2009. 19(1): p. 015025.
11.Ghadiri, F., et al., Non-Newtonian ink transfer in gravure–offset printing. International Journal of Heat and Fluid Flow, 2011. 32(1): p. 308-317.
12.Huang, W.-X., et al., Simulation of liquid transfer between separating walls for modeling micro-gravure-offset printing. International Journal of Heat and Fluid Flow, 2008. 29(5): p. 1436-1446.
13.Ahmed, D.H., H.J. Sung, and D.-S. Kim, Simulation of non-Newtonian ink transfer between two separating plates for gravure-offset printing. International Journal of Heat and Fluid Flow, 2011. 32(1): p. 298-307.
14.Chaitanya Gupta, G.A.M.M.A.S.a.P.J.A.K., Double Transfer Printing of Small Volumes of Liquids. 2007. 23: p. 2906-2914.
15.Park, S.-S., et al., The FEM based liquid transfer model in gravure offset printing using phase field method. Microsystem Technologies, 2012. 18(12): p. 2027-2034.
16.Dodds, S., M.d.S. Carvalho, and S. Kumar, Stretching and slipping of liquid bridges near plates and cavities. Physics of Fluids, 2009. 21(9): p. 092103.
17.Denn, M.M., Issues in Viscoelastic Fluid Mechanics. Annual Review of Fluid Mechanics, 1990. 22(1): p. 13-32.
18.Ferry, J.D., Viscoelastic properties of polymers. 1980: John Wiley & Sons.
19.Bonn, D., et al., Wetting and spreading. Reviews of Modern Physics, 2009. 81(2): p. 739-805.
20.Adamson, A.W. and A.P. Gast, Physical chemistry of surfaces. 1967.
21.Elsayad, S., et al., Some factors affecting ink transfer in gravure printing. Pigment & Resin Technology, 2002. 31(4): p. 234-240.
22.Chen, H., A. Amirfazli, and T. Tang, Modeling liquid bridge between surfaces with contact angle hysteresis. Langmuir, 2013. 29(10): p. 3310-9.
23.Chen, H., T. Tang, and A. Amirfazli, Liquid transfer mechanism between two surfaces and the role of contact angles. Soft Matter, 2014. 10(15): p. 2503-7.
24.Vega, E.J., et al., Dynamics of an axisymmetric liquid bridge close to the minimum-volume stability limit. Physical Review E, 2014. 90(1).
25.Kumar, S., Liquid Transfer in Printing Processes: Liquid Bridges with Moving Contact Lines. Annual Review of Fluid Mechanics, 2015. 47(1): p. 67-94.
26.Dodds, S., M. Carvalho, and S. Kumar, Stretching liquid bridges with moving contact lines: The role of inertia. Physics of Fluids, 2011. 23(9): p. 092101.
27.Hotta, K., K. Takeda, and K. Iinoya, The capillary binding force of a liquid bridge. Powder Technology, 1974. 10(4–5): p. 231-242.
28.Kim, I., et al., Effect of ink cohesive force on gravure offset printing. Microelectronic Engineering, 2012. 98: p. 587-589.
29.Lee, S. and Y. Na, Analysis on the ink transfer mechanism in R2R application. Journal of Mechanical Science and Technology, 2010. 24(1): p. 293-296.
30.Lee, S. and Y. Na, Effect of roll patterns on the Ink transfer in R2R printing process. International Journal of Precision Engineering and Manufacturing, 2009. 10(5): p. 123-130.
31.Lee, T.-M., et al., The effect of shear force on ink transfer in gravure offset printing. Journal of Micromechanics and Microengineering, 2010. 20(12): p. 125026.
32.Yin, X. and S. Kumar, Flow visualization of the liquid emptying process in scaled-up gravure grooves and cells. Chemical Engineering Science, 2006. 61(4): p. 1146-1156.
33.Broesch, D.J. and J. Frechette, From concave to convex: capillary bridges in slit pore geometry. Langmuir, 2012. 28(44): p. 15548-54.
34.Sankaran, A.K. and J.P. Rothstein, Effect of viscoelasticity on liquid transfer during gravure printing. Journal of Non-Newtonian Fluid Mechanics, 2012. 175-176: p. 64-75.
35.Yildirim, O.E. and O.A. Basaran, Deformation and breakup of stretching bridges of Newtonian and shear-thinning liquids: comparison of one- and two-dimensional models. Chemical Engineering Science, 2001. 56(1): p. 211-233.
36.Lee, J.A., J.P. Rothstein, and M. Pasquali, Computational study of viscoelastic effects on liquid transfer during gravure printing. Journal of Non-Newtonian Fluid Mechanics, 2013. 199: p. 1-11.
37.Kumar, K.A., Analysis and suppression of instabilities in viscoelastic flows. 2001. xviii, 246 p.
38.Larson, R.G., Instabilities in viscoelastic flows. Rheologica Acta, 1992. 31(3): p. 213-263.
39.Dopazo, C., A. García-Olivares, and A. Lozano Fantoba, The instability growth leading to a liquid sheet breakup. Physics of Fluids, 1998. 2197: p. 2188-2197.
40.Dandapat, B.S. and A.S. Gupta, Flow and heat transfer in a viscoelastic fluid over a stretching sheet. International Journal of Non-Linear Mechanics, 1989. 24(3): p. 215-219.
41.Rajagopal, K.R., T.Y. Na, and A.S. Gupta, Flow of a viscoelastic fluid over a stretching sheet. Rheologica Acta, 1984. 23(2): p. 213-215.
42.Tomar, G., et al., Instability and dynamics of thin viscoelastic liquid films. Eur Phys J E Soft Matter, 2006. 20(2): p. 185-200.
43.Yang, L.-J., et al., Linear Stability Analysis of a Non-Newtonian Liquid Sheet. Journal of Propulsion and Power, 2010. 26(6): p. 1212-1225.
44.Sarkar, J. and A. Sharma, A Unified Theory of Instabilities in Viscoelastic Thin Films: From Wetting to Confined Films, From Viscous to Elastic Films, and From Short to Long Waves. Langmuir, 2010. 26(11): p. 8464-8473.
45.Schümmer, P. and H.G. Thelen, Break-up of a viscoelastic liquid jet. Rheologica Acta, 1988. 27(1): p. 39-43.
46.Bhardwaj, A., E. Miller, and J.P. Rothstein, Filament stretching and capillary breakup extensional rheometry measurements of viscoelastic wormlike micelle solutions. Journal of Rheology, 2007. 51(4).
47.Viriyayuthakorn, M. and B. Caswell, Finite element simulation of viscoelastic flow. Journal of Non-Newtonian Fluid Mechanics, 1980. 6(3–4): p. 245-267.
48.Anna, S.L. and G.H. McKinley, Elasto-capillary thinning and breakup of model elastic liquids. Journal of Rheology, 2001. 45(1): p. 115.
49.McKinley, G.H., Visco-Elasto-Capillary Thinning and Break-Up of Complex Fluids.pdf. HML report, 2005.
50.Kitsomboonloha, R. and V. Subramanian, Lubrication-related residue as a fundamental process scaling limit to gravure printed electronics. Langmuir, 2014. 30(12): p. 3612-24.
51.Anand, J.S. and I.S. Bhardwaj, Die swell behaviour of polypropylene — An experimental investigation. Rheologica Acta, 1980. 19(5): p. 614-622.
52.Gleissle, S., et al., The Normal-Stress-Behaviour of Suspensions With Viscoelastic Matrix Fluids, in Progress and Trends in Rheology V, I. Emri, Editor. 1998, Steinkopff. p. 554-555.
53.Tanner, R.I., A theory of die-swell. Journal of Polymer Science Part A-2: Polymer Physics, 1970. 8(12): p. 2067-2078.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top