跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 10:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王博玄
研究生(外文):Po-Hsuan Wang
論文名稱:奈米銀線薄膜加熱器之噴印技術與圖樣設計
論文名稱(外文):Pattern Design of Printed Silver Nanowire for Thin Film Heater
指導教授:廖英志
口試委員:盧彥文趙玲蔡德豪
口試日期:2015-06-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:66
中文關鍵詞:噴墨印刷奈米銀線金屬網格薄膜加熱器圖樣化
外文關鍵詞:Inkjet printingSilver nanowiresMetal meshElectrodeThin film heaterPattern.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文提供一個簡易且迅速的噴墨直寫技術來製作圖樣化的奈米銀線薄膜。透過設計銀線成線後形成的網格狀結構,此元件可以應用於微型加熱器並能同時具備高穿透度以及良好的導熱、導電特性。由於銀線能夠藉由交疊產生具縫隙的導電迴路,利用噴墨技術可以控制銀線於基材上的面密度,並直接影響局部電阻值。這一特性使得奈米銀線可以用作設計加熱陣列、圖樣化加熱器或是梯度式加熱器。

首先,為了避免噴墨時銀線的聚集導致噴頭的堵塞,經由沉降測試探討噴墨製程前墨水的穩定性。待尋找出合適的濃度後,再利用壓電式噴墨印表機將墨水噴印於約45度C的玻璃及聚對苯二甲酸乙二酯(PET)上,能夠迅速沉積出奈米銀線導線並且不需額外的高溫燒結,噴印出的奈米銀線導線寬度最細可達100微米。另外,為了找出適當的噴印層數來達到足夠低的電阻值,我們噴印不同層數的導線於玻璃和PET基材上並量測其電阻,發現至少需噴印20層以上方可形成連續導線,由於面密度的提升,隨著層數增加,電阻成反比關係下降。

接著進行圖樣化的設計:分別為1*1平方公分的網格加熱器以及0.25*5平方公分的梯度加熱器。利用紫外-可見光光譜量測銀線網格的穿透度,可發現其於極低的電阻值之下(~20 歐姆)仍有高於75%之穿透度。透過紅外線熱像儀量測加熱元件的溫度展現,發現在輸入電壓為4伏特時網格加熱器可達到100度C左右。梯度加熱器則是依據噴印層數對電阻的關係圖來進行設計:透過不同層數導線(30~70層)的串並聯,在輸入電壓15伏特時於導線的兩端能達到約50度C的溫差,且輸入功率與平衡溫度成正比關係。

由於玻璃基板過大的熱容,使得加熱器容易產生響應時間(response time)過長的問題,因此將基材替換為PET,同時利用紅外線熱像儀偵測縱向溫度分佈,搭配熱傳理論來探討加熱曲線的變化,發現其響應時間縮短至小於5秒並能反覆彎折超過5000次。最後合併熱致變色元件(Thermochromic device)來進行元件的整合與封裝,展現出此製程應用於印刷電子的發展潛力。


In this study, we introduced a convenient and facile direct printing method to fabricate a patterned silver nanowires (AgNWs) thin film. With a mesh structure, it can be served as a micro heater with both good transparency and high thermal/electrical conductivity. Due to the percolative effect of AgNWs, through inkjet process, the number density of AgNWs per unit area can also be effectively controlled, which can affect the local resistance directly. This creates the possibility to design the desired gradient heater, heater array, and patterned heater. Sedimentation test was carried out to ensure the stability of AgNWs ink and to prevent the clogging at inkjet nozzle. For the ink formulation, the as-prepared AgNWs solution was dispersed in deionized water and inkjet printed under 45°C on glass and PET without annealing post treatment. The width of printed silver single line was about 100 um from scanning electron microscope (SEM). By utilizing IR thermography, the maximum temperature for a thin film mesh heater can rise up above 90oC at an input voltage of 4 volt with a uniform heating. For the design of pattern, a gradient heater was fabricated through simple serial and parallel circuits with different printed layers. The temperature difference can reach 50°C at an input voltage of 15V. When the substrate changed to PET, the heating device showed a very short response time (<5 sec) compared to the glass. Bending test proved that the AgNWs heater on PET substrate can endure more than 5000 times of bending cycles. Also we combined the theory of 1-D heat transfer to discuss the influence of changing substrate. Combined with the thermochromic application, this technique demonstrated a great potential for printed electronics.


口試委員審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
目錄 vi
圖目錄 ix
表目錄 xii
第一章  緒論 1
1.1 前言 1
1.2 研究目的 2
1.3 論文架構 2
第二章  理論基礎與文獻回顧 4
2.1 電流的熱效應 4
2.1.1 原理 4
2.2 奈米銀線墨水 6
2.2.1 沿革 6
2.2.2 物理特性 7
2.2.3 透明電極與加熱器應用 8
2.3 噴墨印刷技術 12
2.3.1 噴墨印刷機簡介 12
2.3.2 墨水分類 14
2.4 壓電式噴墨系統工作原理 19
2.4.1 噴墨模組 19
2.4.2 觀測設備和移動平台 20
2.4.3 軟體操作 20
2.5 熱致變色材料 24
2.5.1 原理 24
2.5.2 熱致變色薄膜 25
第三章  奈米銀線墨水調配與噴印 27
3.1 實驗方法 27
3.1.1 奈米銀線墨水的製備 27
3.1.2 以噴墨印表機噴印奈米銀線 28
3.1.3 特性分析 30
3.2 實驗結果與討論 31
3.2.1 墨水穩定性對噴印品質之影響 31
3.2.2 噴印層數對線電阻值之影響 33
第四章  圖樣化奈米銀線薄膜加熱器 36
4.1 實驗方法 36
4.1.1 圖樣設計 36
4.1.2 特性分析 37
4.2 實驗結果與討論 38
4.2.1 網格狀加熱器 38
4.2.2 除霧測試 43
4.2.3 梯度加熱器 44
4.2.4 響應時間 47
4.2.5 彎曲測試 50
4.2.6 縱向溫度分佈 52
第五章  熱致變色元件 56
5.1 實驗方法 56
5.1.1 熱致變色薄膜製備 56
5.1.2 特性分析 59
5.2 實驗結果與討論 60
第六章  結論 61
第七章  未來展望 62
參考資料 63


1.Ohlander, A., et al., Genotyping of single nucleotide polymorphisms by melting curve analysis using thin film semi-transparent heaters integrated in a lab-on-foil system. Lab Chip, 2013. 13(11): p. 2075-82.
2.Yu, I.F., et al., A portable microfluidic device for the rapid diagnosis of cancer metastatic potential which is programmable for temperature and CO2. Lab Chip, 2014. 14(18): p. 3621-8.
3.Miralles, V., et al., A Review of Heating and Temperature Control in Microfluidic Systems: Techniques and Applications. Diagnostics, 2013. 3(1): p. 33-67.
4.Celle, C., et al., Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Research, 2012. 5(6): p. 427-433.
5.Kim, D., et al., Transparent flexible heater based on hybrid of carbon nanotubes and silver nanowires. Carbon, 2013. 63: p. 530-536.
6.Sorel, S., D. Bellet, and J.N. Coleman, Relationship between Material Properties and Transparent Heater Performance for Both Bulk-like and Percolative Nanostructured Networks. ACS Nano, 2014. 8(5): p. 4805-4814.
7.Wang, S., X. Zhang, and W. Zhao, Flexible, Transparent, and Conductive Film Based on Random Networks of Ag Nanowires. Journal of Nanomaterials, 2013. 2013: p. 1-6.
8.Zhang, X., et al., Large-size graphene microsheets as a protective layer for transparent conductive silver nanowire film heaters. Carbon, 2014. 69: p. 437-443.
9.Kim, T., et al., Uniformly Interconnected Silver-Nanowire Networks for Transparent Film Heaters. Advanced Functional Materials, 2013. 23(10): p. 1250-1255.
10.von Meier, A., Electric Power Systems: A Conceptual Introduction. 2006: Wiley.
11.Bae, J.J., et al., Heat Dissipation of Transparent Graphene Defoggers. Advanced Functional Materials, 2012. 22(22): p. 4819-4826.
12.Ji, S., et al., Thermal response of transparent silver nanowire/PEDOT:PSS film heaters. Small, 2014. 10(23): p. 4951-60.
13.洪文進、許登貴、萬明安、郭書瑋、蘇昭瑾, ITO 透明導電薄膜:從發展與應用到製備. Journal of the Chinese Chemical Society, 2005. 63(3): p. 409-418.
14.Minami, T., Transparent conducting oxide semiconductors for transparent electrodes. Semiconductor Science and Technology, 2005. 20(4): p. S35-S44.
15.Hong, W., et al., Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochemistry Communications, 2008. 10(10): p. 1555-1558.
16.Zhang, D., et al., Transparent, Conductive, and Flexible Carbon Nanotube Films and Their Application in Organic Light-Emitting Diodes. Nano Letters, 2006. 6(9): p. 1880-1886.
17.Li, X., et al., Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters, 2009. 9(12): p. 4359-4363.
18.Seong, B., et al., Metal-mesh based transparent electrode on a 3-D curved surface by electrohydrodynamic jet printing. Journal of Micromechanics and Microengineering, 2014. 24(9): p. 097002.
19.Sun, Y., et al., Crystalline Silver Nanowires by Soft Solution Processing. Nano Letters, 2002. 2(2): p. 165-168.
20.Sun, Y., et al., Polyol Synthesis of Uniform Silver Nanowires:  A Plausible Growth Mechanism and the Supporting Evidence. Nano Letters, 2003. 3(7): p. 955-960.
21.Jiu, J., et al., Facile synthesis of very-long silver nanowires for transparent electrodes. Journal of Materials Chemistry A, 2014. 2(18): p. 6326.
22.De, S., et al., Size Effects and the Problem with Percolation in Nanostructured Transparent Conductors. ACS Nano, 2010. 4(12): p. 7064-7072.
23.Ahn, B.Y., et al., Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes. Science, 2009. 323(5921): p. 1590-1593.
24.Bauer, C.A., F. Stellacci, and J.W. Perry, Relationship Between Structure and Solubility of Thiol-Protected Silver Nanoparticles and Assemblies. Topics in Catalysis, 2008. 47(1-2): p. 32-41.
25.Kang, J., et al., High-performance graphene-based transparent flexible heaters. Nano Lett, 2011. 11(12): p. 5154-8.
26.Woo Kim, H., et al., Versatile graphene nanocomposite microheater patterning for various thermoplastic substrates based on capillary filling and transfer molding. Applied Physics Letters, 2013. 102(10): p. 101907.
27.Gupta, R., et al., Spray coating of crack templates for the fabrication of transparent conductors and heaters on flat and curved surfaces. ACS Appl Mater Interfaces, 2014. 6(16): p. 13688-96.
28.Kwon, N., et al., Study on Ag mesh/conductive oxide hybrid transparent electrode for film heaters. Nanotechnology, 2014. 25(26): p. 265702.
29.Rao, K.D. and G.U. Kulkarni, A highly crystalline single Au wire network as a high temperature transparent heater. Nanoscale, 2014. 6(11): p. 5645-51.
30.Zschieschang, U., et al., Flexible Organic Circuits with Printed Gate Electrodes. Advanced Materials, 2003. 15(14): p. 1147-1151.
31.Bao, Z., et al., High-Performance Plastic Transistors Fabricated by Printing Techniques. Chemistry of Materials, 1997. 9(6): p. 1299-1301.
32.Ridley, B.A., B. Nivi, and J.M. Jacobson, All-Inorganic Field Effect Transistors Fabricated by Printing. Science, 1999. 286(5440): p. 746-749.
33.Tekin, E., P.J. Smith, and U.S. Schubert, Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter, 2008. 4(4): p. 703-713.
34.Delaney, J.T., et al., A Practical Approach to the Development of Inkjet Printable Functional Ionogels—Bendable, Foldable, Transparent, and Conductive Electrode Materials. Macromolecular Rapid Communications, 2010. 31(22): p. 1970-1976.
35.Krebs, F.C., et al., A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration. Solar Energy Materials and Solar Cells, 2009. 93(4): p. 422-441.
36.Miller, S.M., S.M. Troian, and S. Wagner, Direct printing of polymer microstructures on flat and spherical surfaces using a letterpress technique. Journal of Vacuum Science & Technology B, 2002. 20(6): p. 2320-2327.
37.Pudas, M., et al., Gravure printing of conductive particulate polymer inks on flexible substrates. Progress in Organic Coatings, 2005. 54(4): p. 310-316.
38.Rayleigh, L., On the capillary phenomena of jets. Proceedings of the Royal Society of London, 1879. 29(196-199): p. 71-97.
39.Rayleigh, L., Further observations upon liquid jets, in continuation of those recorded in the Royal Society''s'' Proceedings'' for March and May, 1879. Proceedings of the Royal Society of London, 1882. 34(220-223): p. 130-145.
40.Grove, M., et al., Color flat panel manufacturing using ink jet technology. Display Works, 1999. 99.
41.Shah, V.G. and D.J. Hayes, Trimming and printing of embedded resistors using demand-mode ink-jet technology and conductive polymer. IPC Printed Circuit Expo, 2002: p. 1-5.
42.Chen, S.P., et al., Inkjet Printed Conductive Tracks for Printed Electronics. ECS Journal of Solid State Science and Technology, 2015. 4(4): p. P3026-P3033.
43.Wu, J.-T., et al., Direct ink-jet printing of silver nitrate–silver nanowire hybrid inks to fabricate silver conductive lines. Journal of Materials Chemistry, 2012. 22(31): p. 15599.
44.Chen, P.-H., W.-C. Chen, and S.H. Chang, Bubble growth and ink ejection process of a thermal ink jet printhead. International Journal of Mechanical Sciences, 1997. 39(6): p. 683-695.
45.Wijshoff, H., The dynamics of the piezo inkjet printhead operation. Physics Reports, 2010. 491(4–5): p. 77-177.
46.Dohnal, J. and F. Štěpanek, Inkjet fabrication and characterization of calcium alginate microcapsules. Powder Technology, 2010. 200(3): p. 254-259.
47.Bamfield, P., Chromic Phenomena : Technological Applications of Colour Chemistry 2ed. 2010: RSCPublishing.
48.Wei, X., et al., Thermo-solvatochromism of chloro-nickel complexes in 1-hydroxyalkyl-3-methyl-imidazolium cation based ionic liquids. Green Chemistry, 2008. 10(3): p. 296.
49.Wei, X., et al., Solar-thermochromism of Pseudocrystalline Nanodroplets of Ionic Liquid-NiIIComplexes Immobilized inside Translucent Microporous PVDF Films. Advanced Materials, 2009. 21(7): p. 776-780.
50.Torimoto, T., et al., New frontiers in materials science opened by ionic liquids. Adv Mater, 2010. 22(11): p. 1196-221.
51.Gu, C.-D. and J.-P. Tu, Thermochromic behavior of chloro-nickel(II) in deep eutectic solvents and their application in thermochromic composite films. RSC Advances, 2011. 1(7): p. 1220.
52.Vigolo, D., et al., A portable device for temperature control along microchannels. Lab Chip, 2010. 10(6): p. 795-8.
53.Selva, B., J. Marchalot, and M.-C. Jullien, An optimized resistor pattern for temperature gradient control in microfluidics. Journal of Micromechanics and Microengineering, 2009. 19(6): p. 065002.
54.Jiao, Z., et al., Thermocapillary actuation of droplet in a planar microchannel. Microfluidics and Nanofluidics, 2007. 5(2): p. 205-214.
55.Liu, B.-T. and S.-X. Huang, Transparent conductive silver nanowire electrodes with high resistance to oxidation and thermal shock. RSC Adv., 2014. 4(103): p. 59226-59232.
56.Grego, S., et al., Development and evaluation of bend-testing techniques for flexible-display applications. Journal of the Society for Information Display, 2005. 13(7): p. 575-581.
57.Li, K.C., et al., Melting analysis on microbeads in rapid temperature-gradient inside microchannels for single nucleotide polymorphisms detection. Biomicrofluidics, 2014. 8(6): p. 064109.
58.Wang, J.-H., et al., A miniaturized quantitative polymerase chain reaction system for DNA amplification and detection. Sensors and Actuators B: Chemical, 2009. 141(1): p. 329-337.
59.Huang, C.C., Z.K. Kao, and Y.C. Liao, Flexible miniaturized nickel oxide thermistor arrays via inkjet printing technology. ACS Appl Mater Interfaces, 2013. 5(24): p. 12954-9.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top