跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 04:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝得賢
研究生(外文):Te-Hsien Hsieh
論文名稱:芯鞘型環境敏感性聚(氮-異丙基丙烯醯胺)/幾丁聚醣之電紡纖維製備及其於重金屬離子吸附應用
論文名稱(外文):Preparation of Enviromentally Sensitive Poly(N- isopropylacrylamide)/Chitosan Fibers via Electrospinning with Core-Sheath Structure and Their Applications on Metal Ion Adsorption
指導教授:邱文英邱文英引用關係
指導教授(外文):Wen-Yen Chiu
口試委員:謝學真董崇民蔡敏郎
口試日期:2015-07-09
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:84
中文關鍵詞:同軸靜電紡絲幾丁聚醣N-異丙基丙烯醯胺溫度敏感性pH 敏感性金屬離子吸附吸收劑
外文關鍵詞:co-axial electrospinningchitosanN-isopropylacrylamidethermosensitivepH-sensitivemetal-ion adsorptionadsorbent
相關次數:
  • 被引用被引用:0
  • 點閱點閱:97
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用同軸靜電紡絲技術製備具有溫感性/酸鹼性芯鞘複合纖維,內層使用高子為具有溫感性之高分子 Poly(NIPAAm-co-NMA) (PNN) ;外層則有兩種配方:一是幾丁聚醣,另一為幾丁聚醣與 PNN 混摻物。
在本實驗同軸靜電紡絲製程中,內層與外層高分子溶劑均使用重量比為
73/27 之三氟醋酸/二氯甲烷共溶劑。製備出的芯鞘型複合纖維可利用掃描式電子顯微鏡(SEM) 與穿透式電子顯微鏡(TEM) 觀察電紡纖維形態,本研究也以無因次群分析同軸靜電紡絲過程中內外層溶液參數 , 經過分析後可得內層與外層無因次群以及找出可成功紡出雙層纖維區間。
除了探討同軸靜電紡絲參數對於成功與失敗影響外, 後續實驗部分挑選了三種電紡纖維膜經過熱交聯與戊二醛交聯後測試其膨潤率與對於重金屬離子 Cu(II)與 Ag(I)吸附與脫附特性測試。吸附的部分,由於幾丁聚醣在高 pH 下吸附量較大因此環境酸鹼值選擇為 pH4;而環境溫則選擇在 25°C,讓 PNN 為吸水狀態藉此提高吸附量。實驗結果發現當外層為 PNN/幾丁聚醣混摻物時,由於外層具有良好吸水性材料 PNN,可提升纖維膜對重金屬吸附速率以及單位幾丁聚醣吸附重金屬重量,每克膜可吸附約 60 mg Cu(II)與 70 mg Ag(I)。脫附的部分,首先利用幾丁聚醣酸鹼敏感性選擇在 pH 2、25°C 的環境下將重金屬離子脫附;再利用PNN 溫感效應,在 pH 2、70°C 下將水擠出。在此低溫高溫操作下纖維膜脫附效率可達 90 %以上,而當外層為 PNN/幾丁聚醣混摻物時,由於 PNN 吸水造成氫離子與重金屬離子之間較好發生置換反應,因此首次脫附效率較高。最後,交聯後的纖維膜有很好的穩定性且可重複使用,吸附銅離子四次後電紡纖維膜仍可維持銅離子吸附量。

In this research, thermo-responsive and pH-responsive fibers with Core-Sheath structure were fabricated by co-axial electrospinning. The thermo-responsive and
thermo-crosslinkable copolymer poly(NIPAAm-co-NMA) (PNN) was fabricated as the core material. Chitosan and PNN/Chitosan blend were chosen as sheath material.
We used trifluoroacetic acid (TFA) / dichloromethane (DCM) = 0.73/0.27 (w/w) as solvent for core and sheath. After fabricating core-sheath fibers, we used scanning
electron microscope (SEM) and transmitting electron microscope (TEM) to observe the morphology. Dimensional analysis was studied to find out suitable electrospinning parameters for coaxial electrospinning.
The NMA provided the function of thermal crosslinking of the nanofibrous mats, and then glutaraldehyde was used as a secondary crosslinking agent to crosslink
chitosan. The swelling ratio and gel fraction of the core/sheath fibrous mats were measured. When sheath was PNN/Chitosan blend, its could improve adsorption rate and adsorption amount per weight of chitosan.
The reversible adsorption of chitosan was in cooperation with poly(NIPAAm-coNMA) which improved the desorption of Cu(II) and Ag(I) from the fibrous mats. The core/sheath fibrous mats maintained the capacity of Cu(II) adsorption for 4-times regeneration.

中文摘要-i
Abstract-ii
目錄-iii
圖目錄-vi
表目錄-viii
第一章 緒論-1
1.1 前言-1
1.2 研究目的-1
第二章 文獻回顧-2
2.1 環境敏感性高分子-2
2.1.1 溫度敏感性高分子:聚(氮-異丙基丙烯醯胺) (Poly(Nisopropylacrylamide))-3
2.1.2 pH 敏感性高分子 幾丁聚醣(Chitosan)-7
2.2 靜電紡絲技術-9
2.2.1 靜電紡絲歷史發展-9
2.2.2 靜電紡絲原理-10
2.2.3 靜電紡絲參數-13
2.2.3.1 高分子溶液性質-16
2.2.3.2 靜電紡絲操作參數-18
2.2.3.3 環境參數-19
2.3 同軸靜電紡絲技術-20
2.3.1 同軸靜電紡絲技術原理-22
2.3.2 同軸靜電紡絲參數-23
2.4 幾丁聚醣靜電紡絲-24
第三章 研究方法-28
3.1 實驗藥品-28
3.2 實驗儀器-31
3.3 實驗步驟-33
3.3.1 實驗流程圖-33
3.3.2 實驗裝置圖-34
3.3.3 合成 Poly(NIPAAm-co-NMA), PNN-36
3.3.4 利用靜電紡絲技術製備具有雙層結構之芯鞘纖維-37
3.4 材料分析-38
3.4.1 分子量測定-38
3.4.2 低臨界溶液溫度(LCST)之測定-39
3.5 複合纖維形態觀察-39
3.6 複合纖維性質分析-40
3.6.1 凝膠分率(Gel fraction)及膨潤率(Swelling ratio)-40
3.6.2 重金屬離子吸附(Metal-ion Adsorption)-41
3.6.3 重金屬離子動力吸附(Metal-ion Dynamic adsorption)-41
3.6.4 重金屬離子脫附(Metal-ion Desorption)與再利用-42
3.7 電紡參數分析-43
第四章 結果與討論-45
4.1 材料分析-45
4.1.1 分子量測定-45
4.1.2 PNN 低臨界溶液溫度(LCST)之測定-45
4.2 影響複合纖維形態之因素-46
4.2.1 PNN 溶劑決定-46
4.2.2 電紡溶液黏度-46
4.2.3 同軸靜電紡絲結果-47
4.2.4 纖維膜型態-49
4.3 凝膠分率(Gel fraction)及膨潤率(Swelling ratio)-50
4.4 重金屬離子吸附-51
4.4.1 重金屬離子動力吸附-51
4.4.2 重金屬離子脫附-54
4.4.3 電紡纖維膜重複使用-55
4.4.4 重金屬離子競爭吸附-55
4.5 以無因次群分析同軸靜電紡絲結果-56
第五章 結論-71
第六章 參考文獻-74

1. Gil ES, Hudson SM: Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 2004, 29(12):1173-1222.
2. Jeong B, Gutowska A: Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol 2002, 20(7):305-311.
3. Kikuchi A, Okano T: Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds. Prog Polym Sci 2002,27(6):1165-1193.
4. Hoffman AS, Stayton PS, Bulmus V, Chen GH, Chen JP, Cheung C, Chilkoti A, Ding ZL, Dong LC, Fong R et al: Really smart bioconjugates of smart polymers and receptor proteins. J Biomed Mater Res 2000, 52(4):577-586.
5. Galaev IY, Mattiasson B: ''Smart'' polymers and what they could do in biotechnology and medicine. Trends Biotechnol 1999, 17(8):335-340.
6. Okano T: Biorelated polymers and gels : controlled release and applications in biomedical engineering. San Diego: Academic Press; 1998.
7. Bajpai AK, Shukla SK, Bhanu S, Kankane S: Responsive polymers in controlled drug delivery. Prog Polym Sci 2008, 33(11):1088-1118.
8. Gupta P, Vermani K, Garg S: Hydrogels: from controlled release to pHresponsive drug delivery. Drug Discov Today 2002, 7(10):569-579.
9. Qiu Y, Park K: Environment-sensitive hydrogels for drug delivery. Adv Drug Deliver Rev 2001, 53(3):321-339.
10. Sharma S, Kaur P, Jain A, Rajeswari MR, Gupta MN: A smart bioconjugate of chymotrypsin. Biomacromolecules 2003, 4(2):330-336.
11. 張芳慈: 芯鞘型溫感性導電複合纖維之製備與其形態性質分析. 臺灣大學化學工程學研究所學位論文 2014:1-78.
12. Dhara D, Chatterji PR: Phase transition in linear and cross-linked poly(Nisopropylacrylamide) in water: Effect of various types of additives . J Macromol Sci R M C 2000, C40(1):51-68.
13. Kaneko Y, Nakamura S, Sakai K, Kikuchi A, Aoyagi T, Sakurai Y, Okano T: Synthesis and swelling-deswelling kinetics of poly(N-isopropylacrylamide) hydrogels grafted with LCST modulated polymers. J Biomat Sci-Polym E
1999, 10(11):1079-1091.
14. Kubota K, Hamano K, Kuwahara N, Fujishige S, Ando I: Characterization of poly(N-Isopropylmethacrylamide) in water. Polym J 1990, 22(12):1051-1057.
15. Schild HG: Poly (N-Isopropylacrylamide)- experiment, theory and application. Prog Polym Sci 1992, 17(2):163-249.
16. Luan CH, Harris RD, Prasad KU, Urry DW: Differential scanning calorimetry studies of the inverse temperature transition of the polypentapeptide of
elastin and its analogs. Biopolymers 1990, 29(14):1699-1706.
17. Murphy KP, Privalov PL, Gill SJ: Common features of protein unfolding and dissolution of hydrophobic compounds. Science 1990, 247(4942):559-561.
18. Otake K, Inomata H, Konno M, Saito S: A new model for the thermally induced volume phase-transition of gels. J Chem Phys 1989, 91(2):1345-1350.
19. Privalov PL: Thermodynamic problems of protein-structure. Annu Rev Biophys Bio 1989, 18:47-69.
20. Privalov PL, Gill SJ: Stability of protein-structure and hydrophobic interaction. Adv Protein Chem 1988, 39:191-234.
21. Winnik FM: Fluorescence studies of aqueous-solutions of poly(NIsopropylacrylamide) below and above their LCST. Macromolecules 1990, 23(1):233-242.
22. Fujishige S, Kubota K, Ando I: Phase-transition of aqueous-solutions of
poly(N-Isopropylacrylamide) and
poly(N-Isopropylmethacrylamide). J Phys Chem-Us 1989, 93(8):3311-3313.
23. Roy D, Brooks WLA, Sumerlin BS: New directions in thermoresponsive polymers. Chem Soc Rev 2013, 42(17):7214-7243.
24. Liu ZL, Hu JW, Sun JP, He GP, Li YH, Zhang GW: Preparation of thermoresponsive polymers bearing amino acid diamide derivatives via RAFT polymerization. J Polym Sci Pol Chem 2010, 48(16):3573-3586.
25. Ito D, Kubota K: Solution properties and thermal behavior of Poly(N-npropylacrylamide) in water. Macromolecules 1997, 30(25):7828-7834.
26. Ito D, Kubota K: Thermal response of
poly(N-n-propylacrylamide). Polym J 1999, 31(3):254-257.
27. Akiyama Y, Shinohara Y, Hasegawa Y, Kikuchi A, Okano T: Preparation of novel acrylamide-based thermoresponsive polymer analogues and their
application as thermoresponsive chromatographic matrices. J Polym Sci Pol Chem 2008, 46(16):5471-5482.
28. Huang XN, Du FS, Cheng J, Dong YQ, Liang DH, Ji SP, Lin SS, Li ZC: Acidsensitive polymeric micelles based on thermoresponsive block copolymers with pendent cyclic orthoester groups. Macromolecules 2009, 42(3):783-790.
29. Plamper FA, Ruppel M, Schmalz A, Borisov O, Ballauff M, Muller AHE: Tuning the thermoresponsive properties of weak polyelectrolytes: Aqueous solutions of star -shaped and linear
Poly(N,N-dimethylaminoethyl methacrylate). Macromolecules 2007, 40(23):8361-8366.
30. Gonzalez N, Elvira C, Roman JS: Novel dual-stimuli-responsive polymers derived from ethylpyrrolidine. Macromolecules 2005, 38(22):9298-9303.
31. Huang XN, Du FS, Zhang B, Zhao IY, Li ZC: Acid-labile, thermoresponsive (meth)acrylamide polymers with pendant cyclic acetal moieties. J Polym Sci Pol Chem 2008, 46(13):4332-4343.
32. Huang XN, Du FS, Ju R, Li ZC: Novel acid-labile, thermoresponsive poly(methacrylamide)s with pendent ortho ester moieties. Macromol Rapid Comm 2007, 28(5):597-603.
33. Zou YQ, Brooks DE, Kizhakkedathu JN: A novel functional polymer with tunable LCST. Macromolecules 2008, 41(14):5393-5405.
34. Han S, Hagiwara M, Ishizone T: Synthesis of thermally sensitive watersoluble polymethacrylates by living anionic polymerizations of oligo(ethylene glycol) methyl ether methacrylates. Macromolecules 2003, 36(22):8312-8319.
35. Maeda Y, Nakamura T, Ikeda I: Hydration and phase behavior of poly(Nvinylcaprolactam) and
poly(N-vinylpyrrolidone) in water. Macromolecules
2002, 35(1):217-222.
36. Liu F, Urban MW: 3D directional temperature responsive (N-(DL)-(1-Hydroxymethyl)
propylmethacrylamide-co-n-butyl acrylate) colloids and
their coalescence. Macromolecules 2008, 41(2):352-360.
37. Aoki T, Muramatsu M, Torii T, Sanui K, Ogata N: Thermosensitive phase transition of an optically active polymer in aqueous milieu. Macromolecules 2001, 34(10):3118-3119.
38. Scarpa JS, Mueller DD, Klotz IM: Slow hydrogen-deuterium exchange in a non-alpha-helical polyamide. J Am Chem Soc 1967, 89(24):6024-&.
39. Kunugi S, Tada T, Yamazaki Y, Yamamoto K, Akashi M: Thermodynamic studies on coil-globule transitions of poly(N-vinylisobutyramide-covinylamine) in aqueous solutions. Langmuir 2000, 16(4):2042-2044.
40. Tager AA, Safronov AP, Berezyuk EA, Galaev IY: Lower critical solution temperature and hydrophobic hydration in aqueous polymer-solutions.
Colloid Polym Sci 1994, 272(10):1234-1239.
41. Lau ACW, Wu C: Thermally sensitive and biocompatible poly(Nvinylcaprolactam): Synthesis and characterization of high molar mass linear chains. Macromolecules 1999, 32(3):581-584.
42. Idziak I, Avoce D, Lessard D, Gravel D, Zhu XX: Thermosensitivity of aqueous solutions of poly(N,N-diethylacrylamide). Macromolecules 1999,
32(4):1260-1263.
43. Maeda Y: IR spectroscopic study on the hydration and the phase transition of poly(vinyl methyl ether) in water. Langmuir 2001, 17(5):1737-1742.
44. Verdonck B, Goethals EJ, Du Prez FE: Block copolymers of methyl vinyl ether and isobutyl vinyl ether with thermo-adjustable amphiphilic
properties. Macromol Chem Physic 2003, 204(17):2090-2098.
45. Diab C, Akiyama Y, Kataoka K, Winnik FM: Microcalorimetric study of the temperature-induced phase separation in aqueous solutions of poly(2-isopropyl-2-oxazolines). Macromolecules 2004, 37(7):2556-2562.
46. Gan LH, Gan YY, Doon GR:
Poly(N-acryloyl-N ''-propylpiperazine): A new
stimuli-responsive polymer. Macromolecules 2000,
33(21):7893-7897.
47. Suwa K, Wada Y, Kikunaga Y, Morishita K, Kishida A, Akashi M: Synthesis and functionalities of
poly(N-vinylalkylamide). J Polym Sci Pol Chem 1997,
35(9):1763-1768.
48. Zhao B, Li DJ, Hua FJ, Green DR: Synthesis of thermosensitive water -soluble polystyrenics with pendant methoxyoligo(ethylene glycol) groups by
nitroxide-mediated radical polymerization. Macromolecules 2005, 38(23):9509-9517.
49. Mertoglu M, Garnier S, Laschewsky A, Skrabania K, Storsberg J: Stimuli responsive amphiphilic block copolymers for aqueous media synthesised via reversible addition fragmentation chain transfer polymerisation
(RAFT). Polymer 2005, 46(18):7726-7740.
50. Deng JJ, Shi Y, Jiang WD, Peng YF, Lu LC, Cai YL: Facile synthesis and thermoresponsive behaviors of a well-defined pyrrolidone based hydrophilic polymer. Macromolecules 2008, 41(9):3007-3014.
51. Maeda Y, Nakamura T, Ikeda I: Changes in the hydration states of poly(Nalkylacrylamide)s during their phase transitions in water observed by
FTIR spectroscopy. Macromolecules 2001, 34(5):1391-1399.
52. Dash M, Chiellini F, Ottenbrite RM, Chiellini E: Chitosan—A versatile semisynthetic polymer in biomedical applications. Prog Polym Sci 2011, 36(8):981-1014.
53. Singla A, Chawla M: Chitosan: Some pharmaceutical and biological aspects‐an update. Journal of Pharmacy and Pharmacology 2001, 53(8):1047-1067.
54. Rinaudo M: Chitin and chitosan: properties and applications. Prog Polym Sci 2006, 31(7):603-632.
55. Illum L, Davis S: Chitosan as a delivery system for the transmucosal administration of drugs. Polysaccharides Structural Diversity and Functional
Versatility 2005:643-660.
56. Thanou M, Junginger H: Pharmaceutical applications of chitosan and derivatives. Polysaccharides Structural diversity and functional versatility 2nd ed New York: Marcel Dekker Publ 2005:661-677.
57. Rayleigh L: XX. On the equilibrium of liquid conducting masses charged with electricity. Philosophical Magazine Series 5 1882, 14(87):184-186.
58. Cooley JF: Apparatus for electrically dispersing fluids. In.: Google Patents;1902.
59. Zeleny J: The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Phys Rev 1914,
3(2):69-91.
60. Kiyohiko H: Process for manufacturing artificial silk and other filaments by applying electric current. US Patent 1929.
61. Anton F: Process and apparatus for preparing artificial threads. US Patent1934.
62. Taylor G: Disintegration of water drops in an electric field, vol. 280; 1964.
63. Moghe AK, Gupta BS: Co‐axial Electrospinning for Nanofiber Structures: Preparation and Applications. Polymer Reviews 2008, 48(2):353-377.
64. Mao X, Ding B, Wang MR, Yin YB: Self-assembly of phthalocyanine and
polyacrylic acid composite multilayers on cellulose nanofibers. Carbohydr
Polym 2010, 80(3):839-844.
65. Mathew G, Hong JP, Rhee JM, Leo DJ, Nah C: Preparation and anisotropic
mechanical behavior of highly-oriented electrospun poly(butylene terephthalate) fibers. J Appl Polym Sci 2006, 101(3):2017-2021.
66. Yang D, Lu B, Zhao Y, Jiang X: Fabrication of aligned fibrous arrays by magnetic electrospinning. Advanced Materials 2007, 19(21):3702-3706.
67. Li D, Wang Y, Xia Y: Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Letters 2003, 3(8):1167-1171.
68. Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S: A review on polymer nanofibers by electrospinning and their applications in nanocomposites.
Composites Science and Technology 2003, 63(15):2223-2253.
69. Jaworek A, Krupa A: Classification of the mode of EHD spraying. Journal of Aerosol Science 1999, 30(7):873-893.
70. Reneker DH, Yarin AL: Electrospinning jets and polymer nanofibers. Polymer 2008, 49(10):2387-2425.
71. Reneker DH, Yarin AL, Zussman E, Xu H: Electrospinning of nanofibers from polymer solutions and melts. In: Advances in Applied Mechanics. Edited
by Hassan A, Erik van der G, vol. Volume 41: Elsevier; 2007: 43-346.
72. Lin J, Ding B, Yu J, Hsieh Y: Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. ACS Applied Materials & Interfaces
2010, 2(2):521-528.
73. Fong H, Chun I, Reneker DH: Beaded nanofibers formed during electrospinning. Polymer 1999,40(16):4585-4592.
74. Baumgarten PK: Electrostatic spinning of acrylic microfibers. Journal of Colloid and Interface Science 1971, 36(1):71-79.
75. Kim C, Ngoc BTN, Yang KS, Kojima M, Kim YA, Kim YJ, Endo M, Yang SC: Self-sustained thin webs consisting of porous carbon nanofibers for supercapacitors via the electrospinning of polyacrylonitrile solutions
containing zinc chloride. Advanced Materials 2007,
19(17):2341-2346.
76. 丁彬, 俞建勇: 静电纺丝与纳米纤维: 中国纺织出版社;2011.
77. Demir MM, Yilgor I, Yilgor E, Erman B: Electrospinning of polyurethane fibers. Polymer 2002, 43(11):3303-3309.
78. Tripatanasuwan S, Zhong Z, Reneker DH: Effect of evaporation and solidification of the charged jet in electrospinning of poly(ethylene oxide) aqueous solution. Polymer 2007, 48(19):5742-5746.
79. De Vrieze S, Van Camp T, Nelvig A, Hagström B, Westbroek P, De Clerck K: The effect of temperature and humidity on electrospinning. J Mater Sci
2009, 44(5):1357-1362.
80. Li F, Zhao Y, Song Y: Core-shell nanofibers: Nano channel and capsule by coaxial electrospinning; 2010.
81. Yan EY, Fan YM, Sun ZY, Gao JW, Hao XY, Pei SC, Wang C, Sun LG, Zhang DQ: Biocompatible core-shell electrospun nanofibers as potential application for chemotherapy against ovary cancer. Mat Sci Eng C-Mater
2014, 41:217-223.
82. Nguyen TTT, Chung OH, Park JS: Coaxial electrospun poly(lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity. Carbohydr Polym 2011, 86(4):1799-1806.
83. Ohkawa K, Cha D, Kim H, Nishida A, Yamamoto H: Electrospinning of chitosan. Macromol Rapid Comm 2004, 25(18):1600-1605.
84. Geng X, Kwon O-H, Jang J: Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 2005, 26(27):5427-5432.
85. Ohkawa K, Minato KI, Kumagai G, Hayashi S, Yamamoto H: Chitosan
nanofiber. Biomacromolecules 2006, 7(11):3291-3294.
86. Sangsanoh P, Supaphol P: Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions. Biomacromolecules 2006, 7(10):2710-2714.
87. De Vrieze S, Westbroek P, Van Camp T, Van Langenhove L: Electrospinning of chitosan nanofibrous structures: feasibility study. J Mater Sci 2007,
42(19):8029-8034.
88. Homayoni H, Ravandi SAH, Valizadeh M: Electrospinning of chitosan nanofibers: Processing optimization. Carbohydr Polym 2009, 77(3):656-661.
89. Sencadas V, Correia D, Areias A, Botelho G, Fonseca A, Neves I, Ribelles JG, Mendez SL: Determination of the parameters affecting electrospun chitosan fiber size distribution and morphology. Carbohydr Polym 2012, 87(2):1295-1301.
90. Kiechel MA, Schauer CL: Non-covalent crosslinkers for electrospun chitosan fibers. Carbohydr Polym 2013, 95(1):123-133.
91. Thien DVH, Hsiao SW, Ho MH, Li CH, Shih JL: Electrospun chitosan/hydroxyapatite nanofibers for bone tissue engineering. J Mater Sci 2013, 48(4):1640-1645.
92. 靳钰, 聂俊, 周应山, 杨冬芝: 核-壳结构壳聚糖/聚乙烯醇-聚碳酸亚丙酯超细纤维的制备. 高分子学报 2008, 1(5):410-415.
93. Ojha SS, Stevens DR, Hoffman TJ, Stano K, Klossner R, Scott MC, Krause W, Clarke LI, Gorga RE: Fabrication and characterization of electrospun
chitosan nanofibers formed via templating with polyethylene oxide. Biomacromolecules 2008, 9(9):2523-2529.
94. Wu L, Li H, Li S, Li X, Yuan X, Li X, Zhang Y: Composite fibrous membranes of PLGA and chitosan prepared by coelectrospinning and coaxial electrospinning. Journal of Biomedical Materials Research Part A 2010, 92(2):563-574.
95. Nguyen TTT, Chung OH, Park JS: Coaxial electrospun poly (lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial
activity. Carbohydr Polym 2011, 86(4):1799-1806.
96. Pakravan M, Heuzey M-C, Ajji A: Core–shell structured PEO-chitosan nanofibers by coaxial electrospinning. Biomacromolecules 2012, 13(2):412-421.
97. Wang B, Zhang P-p, Williams GR, Branford-White C, Quan J, Nie H-l, Zhu Lm: A simple route to form magnetic chitosan nanoparticles from coaxialelectrospun composite nanofibers. J Mater Sci 2013, 48(11):3991-3998.
98. Wang T, Ji X, Jin L, Feng Z, Wu J, Zheng J, Wang H, Xu Z-W, Guo L, He N: Fabrication and characterization of heparin-grafted poly-l-lactic acid–chitosan core–shell nanofibers scaffold for vascular gasket. ACS AMI 2013, 5(9):3757-3763.
99. Chuang W-J, Chiu W -Y, Tai H-J: Thermally crosslinkable poly (Nisopropylacrylamide) copolymers: synthesis and characterization of
temperature-responsive hydrogel. MCP 2012, 134(2):1208-1213.
100. Huang C-H, Hsieh T -H, Chiu W-Y: Evaluation of thermally crosslinkable chitosan-based nanofibrous mats for the removal of metal ions. Carbohydr Polym 2015, 116:249-254.
101. 黃致豪: 環境敏感型高分子奈米材料製備 (PNIPAAm/chitosan) 及其於藥物釋放與金屬離子吸附之應用. 臺灣大學化學工程學研究所博士論文 2014.
102. 蔡睿逸: 以幾丁聚醣為主的多成分複合電紡纖維之製備及其特性探討與骨分化之應用. 臺灣大學化學工程學研究所博士論文 2014.
103. Nieboer E, Richardson DH: The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal
ions. Environ Pollu B 1980, 1(1):3-26.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top