跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 18:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃姿瑜
研究生(外文):Tzu-Yu Huang
論文名稱:糠醛轉換為呋喃的程序最適化設計和控制
論文名稱(外文):Optimal Design and Control of a Process to Produce Furan from Furfural
指導教授:吳哲夫吳哲夫引用關係
指導教授(外文):Jeffrey D. Ward
口試委員:陳誠亮錢義隆李豪業
口試委員(外文):Cheng-Liang ChenI-Lung ChienHao-Yeh Lee
口試日期:2015-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:98
中文關鍵詞:糠醛呋喃反應蒸餾程序設計最適化程序控制
外文關鍵詞:FurfuralFuranReactive distillationProcess designOptimizationProcess control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
糠醛是第二代生質能源材料的重要中間產物,而糠醛可以反應成許多不同的化合物,其中一種產物就是呋喃。呋喃是化學合成中重要的反應物,他可生成許多不同化合物。
  在這篇論文中所討論的反應為,糠醛分解成呋喃和一氧化碳。此反應假設發生在攝氏158度,根據反應物和產物沸點,為液相反應。因反應溫度遠高於全部產物的沸點,所以當它們一生成,就馬上氣化,而氣體會進入蒸餾塔。因此在反應器中,只有糠醛,沒有其他物質。那麼此反應速率可以視為只和溫度有關。在熱力學模型上是使用非隨機兩液體(NRTL)來建立氣液相平衡參數,而缺少的參數用基團貢獻法(UNIFAC)來計算。
  程序設計是參考Zeitsch, K. J., (The Chemistry and Technology of Furfural and its Many By-Products; Amsterdam: Elsevier, 2000, 281, 156-158)。用Aspen Plus V8.4軟體模擬其程序後,發現有4個可能可以改良程序的機會,因此每一個都會被仔細分析討論:
(1)吸收塔的操作 (2)反應蒸餾塔的側取餾出物的組成 (3)水要如何從程序中移除 (4)反應蒸餾塔的冷卻氣溫度
  最後,當決定最佳程序設計後,會開始決定程序的控制架構。此篇論文有兩個相似的控制架構。其中一個是進料不含水,此動態模擬結果顯示,當產量增加20% 和減少20% 時,程序被控制非常良好。另一個是進料含水,而此動態模擬結果顯示,當進料中水的組成提升為0.3 mass% 和下降為0.1 mass% 時,程序被控制非常良好。


  Furfural is an important platform for second-generation biomass utilization processes. Furan is one of the major products produced from furfural, and it is an important starting material in chemical synthesis.
  The reaction studied in this work is the decomposition of furfural into carbon monoxide and furan. The reaction is assumed to take place in the liquid phase at 158 °C. This temperature is well above the boiling point of both products, and so they readily vaporize. The vapor stream enters a distillation column. The reactor contains essentially only furfural and no other species. Therefore, we can consider the reaction rate to dependent only on temperature. The Non-Random Two-Liquid (NRTL) activity coefficient is used to model the vapor-liquid equilibrium and missing parameters are estimated with UNIFAC.
  The process design is based on one presented by Zeitsch, K. J., (The Chemistry and Technology of Furfural and its Many By-Products; Amsterdam: Elsevier, 2000, 281, 156-158). After the Zeitsch’s flowsheet was constructed in Aspen Plus V8.4, there are four potential opportunities for process improvement are that investigated in detail: (1) operation of the absorption tower (2) the reactive distillation side stream composition (3) how water should be removed from the process (4) the reactive distillation condenser temperature.
  After determination the best design of process, the control structure is designed. Two similar control structure. One is feed without water and the dynamic simulations show that the process is well-controlled for production rate changes of +/−20%. Another is feed with water and the dynamic simulations show that the process is well-controlled for composition of water in the feed changes of 0.3 mass% and 0.1 mass%.


Acknowledgement i
Abstract ii
摘要 iv
Table of Contents v
Figure Index ix
List of Tables xii
1. Introductions 1
1.1. Preface 1
1.2. Furfural 2
1.3. Furan 2
1.4. Review of reactive distillation 3
1.5. Research motivation 5
1.6. Thesis organization 6
2. Reaction Kinetics and Thermodynamics 7
2.1. Reaction Kinetics 7
2.2. Thermodynamics model 10
2.3. Thermodynamic parameters of furfural and furan 12
2.3.1. Furfural 12
2.3.2. Furan 13
2.4. Boiling points ranking and T-xy diagram 14
3. Steady State Design 16
3.1. Process design 16
3.1.1. Zeitsch’s process design 16
3.1.2. Process Improvement 18
3.2. Analysis the mixing point and the absorption tower 20
3.2.1. Absorption tower case study 20
3.2.2. Results 24
3.3. Analysis the composition of the C-1 side stream 25
3.4. Analysis of location of water removal 26
3.4.1. Optimal the process with water removed by C-1 side stream 30
3.4.2. Optimal results for the process with water removed by C-1 side stream 32
3.4.3. Optimal the process with water removed by a distillation column 38
3.4.4. Optimal results for the process with water removed by a distillation column 41
3.4.5. Results 46
3.5. Analysis of C-1 condenser temperature 47
3.5.1. The case study of equal amount furan and CO 48
3.6. The refrigerant cost calculation 53
3.6.1. The refrigerant cycle 53
3.6.2. The calculation for a refrigerated cooling utility operating at 5 °C 55
3.6.3. Other refrigerant cost 57
3.7. The best choice of C-1 condenser temperature 59
3.7.1. The method to determine the best choice of condenser temperature 59
3.8. Optimal the process with different C-1 condenser temperature 60
3.8.1. The C-1 condenser temperature at −20 °C and −10 °C 60
3.8.2. Optimal results for the C-1 condenser temperature at −20 °C 63
3.8.3. Optimal results for the C-1 condenser temperature at −10 °C 66
3.8.4. The C-1 condenser temperature at 5 °C 69
3.8.5. Optimal results for the C-1 condenser temperature at 5 °C 70
3.9. The results of optimization of condenser temperature 73
4. Control Structures Design 77
4.1. Control structure of feed without water 78
4.1.1. Closed and open loop sensitivity test 80
4.1.2. The controller parameters 82
4.1.3. Dynamics responds 84
4.2. Control structure of feed with water removed by C-1 side stream 86
5. Conclusions 93
References 96
Appendixes 98


[1] Hoydonckx, H.E.; Van Rhijn W.M., Van Rhijn W.; De Vos D.E., Jacobs P.A., Furfural and Derivatives, Ullmann’s Encyclopedia of Industrial Chemistry ; Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012, 285-309
[2] Hans Dieter Jakubke; Hans Jeschkeit., Concise Encyclopedia of Chemistry; Walter de Gruyter, 1994, 1–1201
[3] Zeitsch, K. J., The Chemistry and Technology of Furfural and its Many By-Products; Amsterdam: Elsevier, 2000, 281, 156-158
[4] Barbosa, D ;Doherty, M.F., Choosing the right Control Structure for Industrial Distillation Columns, Chem Eng. Sci., 1988, 43(3), 541
[5] Doherty, M.F., Buzad, G., Reactive Distillation by Design, Chem Eng. Res., 1992, 70(A5), 448
[6] Okasinski, M. J.; Doherty, M.F., Design Method for Kinetically Controlled Staged Reactive Distillation Column, Ing. Eng. Res., 1988, 37(7), 2821
[7] Doherty, M.F. and Malone, M.F., Conceptual design of distillation systems, McGraw-Hill, New York, USA, 2001
[8] Yu, C.C. and W. L. Luyben, Reactive Distillation Design and Control, Wiley, New Jersey, USA, 2008
[9] Zhang W; Zhu Y; Niu S; Li Y,; A study of furfural decarbonylation on K-doped Pd/Al2O3 catalysts, Journal of Molecular Catalysis A: Chemical, 2011, 335, 1-2, 71-81
[10] Srivastava R.D., Guha A.K., Kinetics and mechanism of deactivation of Pd—Al2O3 catalyst in the gaseous phase decarbonylation of furfural, Journal of Catalysis, 1985, 91, 2, 254-262
[11] Jung K. J., Gaset A. & Molinier J., Furfural Decarbonylation Catalyzed by Charcoal Supported Palladium: Part I – Kinetics, Biomass , 1988, 1, 16, 63-76
[12] Jung K. J., Gaset A. & Molinier J., Furfural Decarbonylation Catalyzed by Charcoal Supported Palladium: PartⅡ– A Continuous Process, Biomass , 1988, 1, 16, 89-96
[13] Philippe Lejemble, Antoine Gaset, Philippe Kalck, From Biomass to Furan Through Decarbonylation of Furfural under Mild Conditions, Biomass, 1984, 4, 4, 263-274
[14] Charles D. Hurd, A. R. Goldsby, E. N. Osborne, Furan Reactions. Ⅱ. Furan from Furfural, J. Am. Chem. Soc., 1932, 54, 6, 2532-2536
[15] Seider, W. D.; Seader, J. D.; Lewin, D. R.; Widagdo, S.; Product and Process Design Principles, 3rd ed.; Wiley: Hoboken, NJ, 2009.
[16] D. J. Hayes, An examination of biorefining processes, catalysts and challenges, Catal. Today, 2009, 145, 138–151
[17] Douglas, J.M., Conceptual Design of Chemical Processes, McGraw-Hill: New York, 1988
[18] William L. Luyben., Comparison of extractive distillation and pressure-swing distillation for acetone/chloroform separation; Comput. Chem. Engng., 50; 1-7, 2013
[19] Turton, R., R. C. Bailie, W. B. Whiting, and J. A. Shaeiwitz and D. Bhattacharyya, Analysis, Synthesis, and Design of Chemical Processes 2nd ed., Prentice Hall, New Jersey, U.S.A. ,2003
[20] Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp, Francis J. Doyle , Process Dynamics and Control 3rd , Wiley, 2012


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top