跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/25 23:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳軍毅
研究生(外文):Jyun-Yi Wu
論文名稱:利用分子模擬探討添加劑四氫呋喃對甲烷水合物長晶與成核機制的影響
論文名稱(外文):Influence of the Additive Tetrahydrofuran on the Growth and Nucleation of Methane Hydrate via Molecular Dynamics Simulations
指導教授:林祥泰
指導教授(外文):Shiang-Tai Lin
口試委員:江志強廖文彬諶玉真董彥佃陳立仁陳彥龍
口試日期:2015-07-30
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:126
中文關鍵詞:甲烷+四氫呋喃水合物分子動力學模擬成核機制長晶機制添加劑成核誘導時間
外文關鍵詞:CH4+THF hydratemolecular dynamic simulationnucleation mechanismgrowth mechanismadditiveinduction time
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
四氫呋喃是一種已知的甲烷水合物強力熱力學促進劑。於本研究中我們利用分子動力學模擬首先再現了四氫呋喃水合物與甲烷+四氫呋喃水合物的熔點以及四氫呋喃於水中的溶解度後,進行了四氫呋喃水合物與甲烷+四氫呋喃水合物的長晶與成核機制分析並從中討論甲烷與四氫呋喃分別在長晶及成核機制中扮演的角色。首先於四氫呋喃水合物的長晶分析中,我們發現在液態四氫呋喃濃度約0.3~0.8倍(取決於系統溫度)於水合物相時有最大長晶速度。這說明了四氫呋喃的長晶取決於兩樣競爭的因素:低四氫呋喃濃度時為四氫呋喃分子吸附到生長介面之速率所控制;高四氫呋喃濃度時為四氫呋喃分子吸附到生長介面之速率所控制。在甲烷+四氫呋喃水合物的長晶分析中,相較於甲烷水合物而言,四氫呋喃的加入會使得水合物有從結構I轉變到結構II的現象。相較於四氫呋喃水合物而言,甲烷的加入增加了四氫呋喃水合物的熔點,並隨壓力增加而有更強促進效果。甲烷+四氫呋喃水合物的長晶於10 MPa與290 K下有最快速率。其生長速率取決於兩項因素:較適合低溫下進行的甲烷吸附於生長界面速率(與甲烷水合物相同)與較適合高溫下進行的四氫呋喃於生長界面上的重新排列(與四氫呋喃水合物相同)。在高於290 K(約比四氫呋喃水合物溫度高10 K)時,生長界面上需有足夠的甲烷才可使長晶順利進行;低於290 K時,界面上的甲烷則不太對長晶具有影響力。
  我們也對甲烷、四氫呋喃、甲烷+四氫呋喃水合物之成核反應進行分析。本研究中水合物的成核支持並驗證了Blob假說的可行性。比較本研究不同系統之後顯示,水溶液中甲烷分子的存在會提供許多標準水籠子而四氫呋喃分子的存在則因有較高濃度的客體分子而加速Blob的生成(成核誘導時間下降)。


Tetrahydrofuran (THF) is an effective promoter of methane hydrates. In this work, the stability limit (aqueous-hydrate coexisting condition) of THF/CH4+THF hydrates and the THF solubility in water were reproduced using molecular dynamics (MD) simulations. After that, the growth/nucleation mechanism of THF/CH4+THF hydrates were investigated and discussed the roles of CH4 and THF in these reaction. In the research of THF hydrate growth, the rate of growth of THF hydrates is found to exhibits a maximum value when the liquid phase THF concentration is about 0.3 to 0.8 times (depending on temperature) of the THF concentration in the hydrate phase. The maximum growth rate of THF hydrate is a result of two competing effects: the adsorption of THF molecules to the growing interface, which is the limiting step at low THF concentrations, and the desorption/rearrangement of THF molecules at the interface, limiting step at high THF concentrations. The dominating factors for the growth of CH4+THF mixed hydrates are analyzed and the results are compared with the growth of single guest CH4 and THF hydrates. While CH4 hydrate has a type I crystalline structure, the presence of THF in the aqueous phase results in the growth the type II structure hydrate. Compared to THF hydrates, the presence of CH4 in the system enhances the dissociation temperature (increasing with the pressure). The growth rate of CH4+THF mixed exhibits a maximum value at about 290 K at 10 MPa. The growth rate is found to be determined by two competing factors: the adsorption of CH4 at the solid-liquid interface (such as CH4 hydrate growth), which is enhanced with decreasing temperature, and the migration of THF to the proper site at the interface (such as THF hydrate growth), which is enhance with increasing temperature. Above 290 K, which is about 10 K higher than the dissociation temperature of pure THF hydrate, the growth of cage can proceed only when sufficient amount of CH4 is adsorbed at the interface. Below 290 K, the growth is not much affected by the presence of CH4.
The nucleation of methane, tetrahydrofuran (THF), and methane+tetrahydrofuran hydrates were also investigated in this work. Our simulation results of the nucleation of CH4 hydrates and CH4+THF hydrates supported the blob hypothesis (BH). Comparing with different systems, the CH4 molecules in the aqueous solution were found to supply the regular cages and the THF molecules were found to enhance the formation of blobs (decrease the induction time) by supplying enough guests.


致謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xviii
Chapter 1 Introduction 1
1.1 Clathrate hydrates 1
1.2 Lattice structure of clathrate hydrates 2
1.3 Additive of clathrate hydrates 5
1.4 Tetrahydrofuran 5
1.5 Tetrahydrofuran hydrate 8
1.6 Nucleation hypothesis of clathrate hydrate 10
1.7 Molecular dynamic tools 14
1.8 Motivation 16
Chapter 2 Theory 17
2.1 Molecular Dynamics Simulation 17
2.2 Integration of Equation of Motion 18
2.3 Force Field 19
2.3.1 Non-Bond Terms 20
2.3.2 Valence Terms 22
2.4 Ensemble 24
2.5 Temperature Thermostat 25
2.6 Pressure Barostat 25
Chapter 3 Computational Details 27
3.1 Force Fields 27
3.2 Simulation Models 30
3.3 Molecular Dynamic Simulation 34
3.4 Cage Cluster Identification (from void and ring) 35
3.5 Analysis of dissociation condition 39
3.6 Structure and concentration analysis 43
3.7 The Growth/Melting Rate 44
3.8 Structural analysis 45
Chapter 4 The Equilibrium and Kinetic Properties of Tetrahydrofuran Clathrate Hydrates 48
4.1 Validation of the force field (TIP4P_Ew) 49
4.2 Effect of THF concentration on the stability of THF hydrates 52
4.3 Growth Rate 55
4.4 Growth mechanism 57
4.5 An Example of THF Rearrangement 64
4.6 Conclusion 69
Chapter 5 Growth Mechanism of Methane Plus Tetrahydrofuran Mixed Hydrates 70
5.1 Validation of the force field (TIP4P_Ice) 71
5.2 Growth rate 78
5.3 Growth mechanism 81
5.4 Conclusion 89
Chapter 6 Nucleation of Mixed Guest Hydrate 90
6.1 Nucleation of CH4 Hydrate 90
6.2 Nucleation of THF Hydrate 96
6.3 Nucleation of CH4+THF Hydrate 103
6.4 Structure development observed from order parameters 111
6.5 Conclusion 115
Chapter 7 Conclusions 116
References 120


1.Chatti, I.; Delahaye, A.; Fournaison, L.; Petitet, J. P., Benefits and Drawbacks of Clathrate Hydrates: A Review of Their Areas of Interest. Energy Conversion and Management 2005, 46, 1333-1343.
2.Davies, S. R.; Selim, M. S.; Sloan, E. D.; Bollavaram, P.; Peters, D. J., Hydrate Plug Dissociation. Aiche Journal 2006, 52, 4016-4027.
3.Panter, J. L.; Ballard, A. L.; Sum, A. K.; Sloan, E. D.; Koh, C. A., Hydrate Plug Dissociation Via Nitrogen Purge: Experiments and Modeling. Energy & Fuels 2011, 25, 2572-2578.
4.Dickens, G. R.; Paull, C. K.; Wallace, P., Direct Measurement of in Situ Methane Quantities in a Large Gas-Hydrate Reservoir. Nature 1997, 385, 426-428.
5.Gornitz, V.; Fung, I., Potential Distribution of Methane Hydrates in the Worlds Oceans. Global Biogeochemical Cycles 1994, 8, 335-347.
6.Haq, B. U., Natural Gas Deposits - Methane in the Deep Blue Sea. Science 1999, 285, 543-544.
7.Kvenvolden, K. A., Gas Hydrates - Geological Perspective and Global Change. Reviews of Geophysics 1993, 31, 173-187.
8.Gbaruko, B. C.; Igwe, J. C.; Gbaruko, P. N.; Nwokeoma, R. C., Gas Hydrates and Clathrates: Flow Assurance, Environmental and Economic Perspectives and the Nigerian Liquified Natural Gas Project. Journal of Petroleum Science and Engineering 2007, 56, 192-198.
9.Chapoy, A.; Anderson, R.; Tohidi, B., Low-Pressure Molecular Hydrogen Storage in Semi-Clathrate Hydrates of Quaternary Ammonium Compounds. Journal of the American Chemical Society 2007, 129, 746-747.
10.Kim, D.-Y.; Park, Y.; Lee, H., Tuning Clathrate Hydrates: Application to Hydrogen Storage. Catalysis Today 2007, 120, 257-261.
11.Prasad, P. S. R.; Sowjanya, Y.; Prasad, K. S., Micro-Raman Investigations of Mixed Gas Hydrates. Vibrational Spectroscopy 2009, 50, 319-323.
12.Sugahara, T.; Haag, J. C.; Prasad, P. S. R.; Warntjes, A. A.; Sloan, E. D.; Sum, A. K.; Koh, C. A., Increasing Hydrogen Storage Capacity Using Tetrahydrofuran. Journal of the American Chemical Society 2009, 131, 14616-14617.
13.Ogata, K.; Tsuda, T.; Amano, S.; Hashimoto, S.; Sugahara, T.; Ohgaki, K., Hydrogen Storage in Trimethylamine Hydrate: Thermodynamic Stability and Hydrogen Storage Capacity of Hydrogen Plus Trimethylamine Mixed Semi-Clathrate Hydrate. Chemical Engineering Science 2010, 65, 1616-1620.
14.Nakata, T.; Hirai, K.; Takaoki, T., Study of Natural Gas Hydrate (Ngh) Carriers. In Proceedings of the 6th International conference on Gas Hydrates, Vancouver, British Columbia, Canada., 2008.
15.Nakai, S., Development of Natural Gas Hydrate Supply Chain. In Gastech 2011, Amsterdam, 2011.
16.Ripmeester, J. A.; Tse, J. S.; Ratcliffe, C. I.; Powell, B. M., A New Clathrate Hydrate Structure. Nature 1987, 325, 135-136.
17.A., U. K.; Ratcliffe, C. I.; A., R. J., Single Crystal Diffraction Studies of Structure I, Ii and H Hydrates: Structure, Cage Occupancy and Composition. Journal of Supramolecular Chemistry 2002, 2, 405-408.
18.Walsh, M. R.; Koh, C. A.; Sloan, E. D.; Sum, A. K.; Wu, D. T., Microsecond Simulations of Spontaneous Methane Hydrate Nucleation and Growth. Science 2009, 326, 1095-1098.
19.Sloan, E. D., Clathrate Hydrate of Natural Gases: Revised and Expanded. 1998. (accessed 1998).
20.de Deugd, R. M.; Jager, M. D.; Arons, J. D., Mixed Hydrates of Methane and Water-Soluble Hydrocarbons Modeling of Empirical Results. Aiche Journal 2001, 47, 693-704.
21.Mooijer-van den Heuvel, M. M.; Peters, C. J.; Arons, J. D., Influence of Water-Insoluble Organic Components on the Gas Hydrate Equilibrium Conditions of Methane. Fluid Phase Equilibria 2000, 172, 73-91.
22.Chari, V. D.; Sharma, D. V. S. G. K.; Prasad, P. S. R., Methane Hydrate Phase Stability with Lower Mole Fractions of Tetrahydrofuran (Thf) and Tert-Butylamine (T-Bunh2). Fluid Phase Equilibria 2012, 315, 126-130.
23.Strobel, T. A.; Koh, C. A.; Sloan, E. D., Thermodynamic Predictions of Various Tetrahydrofuran and Hydrogen Clathrate Hydrates. Fluid Phase Equilibria 2009, 280, 61-67.
24.Seo, Y. T.; Lee, H., C-13 Nmr Analysis and Gas Uptake Measurements of Pure and Mixed Gas Hydrates: Development of Natural Gas Transport and Storage Method Using Gas Hydrate. Korean Journal of Chemical Engineering 2003, 20, 1085-1091.
25.Yoon, J.-H., A Theoretical Prediction of Cage Occupancy and Heat of Dissociation of Thf-Ch4 Hydrate. Korean Journal of Chemical Engineering 2012, 29, 1670-1673.
26.Lim, S.-H.; Riffat, S. B.; Park, S.-S.; Oh, S.-J.; Chun, W.; Kim, N.-J., Enhancement of Methane Hydrate Formation Using a Mixture of Tetrahydrofuran and Oxidized Multi-Wall Carbon Nanotubes. International Journal of Energy Research 2014, 38, 374-379.
27.Gough, S. R.; Davidson, D. W., Composition of Tetrahydrofuran Hydrate and the Effect of Pressure on the Decomposition. Canadian Journal of Chemistry 1971, 49, 2691–2699.
28.Zakrzewski, M.; Klug, D. D.; Ripmeester, J. A., On the Pressure-Induced Phase-Transformation in the Structure-Ii Clathrate Hydrate of Tetrahydrofuran. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry 1994, 17, 237-247.
29.Jones, C. Y.; Zhang, J. S.; Lee, J. W., Isotope Effect on Eutectic and Hydrate Melting Temperatures in the Water-Thf System. Journal of Thermodynamics 2010, 2010, 1-6.
30.Davidson, D. W.; Davies, M. M.; Williams, K., Dielectric Absorption + Molecular Motion in Gas Hydrates. Journal of Chemical Physics 1964, 40, 3449-3450.
31.Zhang, Y. F.; Debenedetti, P. G.; Prud''homme, R. K.; Pethica, B. A., Differential Scanning Calorimetry Studies of Clathrate Hydrate Formation. Journal of Physical Chemistry B 2004, 108, 16717-16722.
32.Delahaye, A.; Fournaison, L.; Marinhas, S.; Chatti, I.; Petitet, J. P.; Dalmazzone, D.; Furst, W., Effect of Thf on Equilibrium Pressure and Dissociation Enthalpy of Co2 Hydrates Applied to Secondary Refrigeration. Industrial & Engineering Chemistry Research 2006, 45, 391-397.
33.Anderson, R.; Chapoy, A.; Tohidi, B., Phase Relations and Binary Clathrate Hydrate Formation in the System H-2-Thf-H2o. Langmuir 2007, 23, 3440-3444.
34.Makino, T.; Sugahara, T.; Ohgaki, K., Stability Boundaries of Tetrahydrofuran Plus Water System. Journal of Chemical and Engineering Data 2005, 50, 2058-2060.
35.Li, S.; Wang, Y.; Lang, X.; Fan, S., Effects of Cyclic Structure Inhibitors on the Morphology and Growth of Tetrahydrofuran Hydrate Crystals. Journal of Crystal Growth 2013, 377, 101-106.
36.Sabase, Y.; Nagashima, K., Growth Mode Transition of Tetrahydrofuran Clathrate Hydrates in the Guest/Host Concentration Boundary Layer. Journal of Physical Chemistry B 2009, 113, 15304-15311.
37.Kelland, M. A.; Gausland, F.; Tsunashima, K., Inhibition of Tetrahydrofuran Hydrate Crystal Growth by Tetraalkylphosphonium Salts-Superior Performance to Equivalent Tetraalkylammonium Salts. Chemical Engineering Science 2013, 98, 12-16.
38.Himmelblau, D. M., Partial Molal Heats and Entropies of Solution for Gases Dissolved in Water from the Freezing to near the Critical Point. Journal of Physical Chemistry 1959, 63, 1803-1808.
39.Miller, K. W.; Hildebra.Jh, Solutions of Inert Gases in Water. Journal of the American Chemical Society 1968, 90, 3001-&.
40.Sloan, E. D.; Fleyfel, F., A Molecular Mechanism for Gas Hydrate Nucleation from Ice. Aiche Journal 1991, 37, 1281-1292.
41.Sloan Jr, E. D. Proc. 69th Annual Gas Processors Convention, Phoenix, Phoenix, 1990.
42.Muller-Bongartz, B.; Wildeman, T. R.; Sloan Jr, E. D. Proc. Second International Offshore and Plar Engineering Conference, 1992; p 628.
43.Christiansen, R. L.; Sloan, E. D. Proc. First International Conference Natural Gas Hydrates, Ann. N.Y. Acad. Sci., New Paltz, NY,, Sloan, E. D.; Happel, J.; Hnatow, M. A., Eds. Ann. N.Y. Acad. Sci., New Paltz, NY,, 1994.
44.Radhakrishnan, R.; Trout, B. L., A New Approach for Studying Nucleation Phenomena Using Molecular Simulations: Application to Co2 Hydrate Clathrates. Journal of Chemical Physics 2002, 117, 1786-1796.
45.Jacobson, L. C.; Hujo, W.; Molinero, V., Amorphous Precursors in the Nucleation of Clathrate Hydrates. Journal of the American Chemical Society 2010, 132, 11806-11811.
46.Jacobson, L. C.; Molinero, V., Can Amorphous Nuclei Grow Crystalline Clathrates? The Size and Crystallinity of Critical Clathrate Nuclei. Journal of the American Chemical Society 2011, 133, 6458-6463.
47.Walsh, M. R.; Beckham, G. T.; Koh, C. A.; Sloan, E. D.; Wu, D. T.; Sum, A. K., Methane Hydrate Nucleation Rates from Molecular Dynamics Simulations: Effects of Aqueous Methane Concentration, Interfacial Curvature, and System Size. Journal of Physical Chemistry C 2011, 115, 21241-21248.
48.Jacobson, L. C.; Hujo, W.; Molinero, V., Nucleation Pathways of Clathrate Hydrates: Effect of Guest Size and Solubility. Journal of Physical Chemistry B 2010, 114, 13796-13807.
49.Jacobson, L. C.; Matsumoto, M.; Molinero, V., Order Parameters for the Multistep Crystallization of Clathrate Hydrates. Journal of Chemical Physics 2011, 135.
50.Geng, C.-Y.; Wen, H.; Zhou, H., Molecular Simulation of the Potential of Methane Reoccupation During the Replacement of Methane Hydrate by Co2. Journal of Physical Chemistry A 2009, 113, 5463-5469.
51.Qi, Y.; Ota, M.; Zhang, H., Molecular Dynamics Simulation of Replacement of Ch4 in Hydrate with Co2. Energy Conversion and Management 2011, 52, 2682-2687.
52.Tung, Y.-T.; Chen, L.-J.; Chen, Y.-P.; Lin, S.-T., In Situ Methane Recovery and Carbon Dioxide Sequestration in Methane Hydrates: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B 2011, 115, 15295-15302.
53.Tung, Y.-T.; Chen, L.-J.; Chen, Y.-P.; Lin, S.-T., The Growth of Structure I Methane Hydrate from Molecular Dynamics Simulations. Journal of Physical Chemistry B 2010, 114, 10804-10813.
54.Tung, Y.-T.; Chen, L.-J.; Chen, Y.-P.; Lin, S.-T., Growth of Structure I Carbon Dioxide Hydrate from Molecular Dynamics Simulations. Journal of Physical Chemistry C 2011, 115, 7504-7515.
55.Tung, Y.-T.; Chen, L.-J.; Chen, Y.-P.; Lin, S.-T., Molecular Dynamics Study on the Growth of Structure I Methane Hydrate in Aqueous Solution of Sodium Chloride. Journal of Physical Chemistry B 2012, 116, 14115-14125.
56.Zhang, J.; Hawtin, R. W.; Yang, Y.; Nakagava, E.; Rivero, M.; Choi, S. K.; Rodger, P. M., Molecular Dynamics Study of Methane Hydrate Formation at a Water/Methane Interface. Journal of Physical Chemistry B 2008, 112, 10608-10618.
57.Jacobson, L. C.; Matsumoto, M.; Molinero, V., Order Parameters for the Multistep Crystallization of Clathrate Hydrates. Journal of Chemical Physics 2011, 135, 074501-1-074501-7.
58.Nguyen, A. H.; Jacobson, L. C.; Molinero, V., Structure of the Clathrate/Solution Interface and Mechanism of Cross-Nucleation of Clathrate Hydrates. Journal of Physical Chemistry C 2012, 116, 19828-19838.
59.Nada, H., Anisotropy in Growth Kinetics of Tetrahydrofuran Clathrate Hydrate: A Molecular Dynamics Study. The Journal of Physical Chemistry B 2009, 113, 4790-4798
60.Erfan-Niya, H.; Modarress, H.; Zaminpayma, E., Computational Study on the Structure Ii Clathrate Hydrate of Methane and Large Guest Molecules. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2011, 70, 227-239.
61.Hockney, R. W.; Goel, S. P.; Eastwood, J. W., 10000 Particle Molecular Dynamics Model with Long-Range Forces. Chemical Physics Letters 1973, 21, 589-591.
62.Verlet, L., Computer Experiments on Classical Fluids .I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review 1967, 159, 98-&.
63.Ewald, P. P., The Calculation of Optical and Electrostatic Grid Potential. Ann Phys-Berlin 1921, 64, 253-287.
64.Toukmaji, A. Y.; Board Jr, J. A., Ewald Summation Techniques in Perspective: A Survey. Computer Physics Communications 1996, 95, 73-92.
65.Kittel, C. H. K., Thermal Physics, 2nd W.H. Freeman and Company: San Francisco, 1980, p P 31.
66.Landau, L. D. L., E.M., Statistical Physics. Pergamon Press., 1980.
67.Nose, S., A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods. Journal of Chemical Physics 1984, 81, 511-519.
68.Hoover, W. G., Canonical Dynamics - Equilibrium Phase-Space Distributions. Physical Review A 1985, 31, 1695-1697.
69.Berendsen, H. J. C.; Postma, J. P. M.; Vangunsteren, W. F.; Dinola, A.; Haak, J. R., Molecular-Dynamics with Coupling to an External Bath. Journal of Chemical Physics 1984, 81, 3684-3690.
70.Berendsen, H. J. C., Transport Properties Computed by Linear Response through Weak Coupling to a Bath. In Computer Simulation in Materials Science, Meyer, M.; Pontikis, V., Eds. Springer Netherlands: 1991; Vol. 205, pp 139-155.
71.Parrinello, M.; Rahman, A., Polymorphic Transitions in Single-Crystals - a New Molecular-Dynamics Method. Journal of Applied Physics 1981, 52, 7182-7190.
72.Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L., Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926-935.
73.Horn, H. W.; Swope, W. C.; Pitera, J. W.; Madura, J. D.; Dick, T. J.; Hura, G. L.; Head-Gordon, T., Development of an Improved Four-Site Water Model for Biomolecular Simulations: Tip4p-Ew. J. Chem. Phys. 2004, 120, 9665-9678.
74.Jorgensen, W. L.; Maxwell, D. S.; TiradoRives, J., Development and Testing of the Opls All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225-11236.
75.Girard, S.; Muller-Plathe, F., Molecular Dynamics Simulation of Liquid Tetrahydrofuran: On the Uniqueness of Force Fields. Molecular Physics 2003, 101, 779-787.
76.Cao, Z. T.; Tester, J. W.; Sparks, K. A.; Trout, B. L., Molecular Computations Using Robust Hydrocarbon-Water Potentials for Predicting Gas Hydrate Phase Equilibria. Journal of Physical Chemistry B 2001, 105, 10950-10960.
77.Cao, Z. T.; Tester, J. W.; Trout, B. L., Computation of the Methane-Water Potential Energy Hypersurface Via Ab Initio Methods. Journal of Chemical Physics 2001, 115, 2550-2559.
78.Abascal, J. L. F.; Sanz, E.; Fernandez, R. G.; Vega, C., A Potential Model for the Study of Ices and Amorphous Water: Tip4p/Ice. Journal of Chemical Physics 2005, 122.
79.Carvajal, C.; Tolle, K. J.; Smid, J.; Szwarc, M., Studies of Solvation Phenomena of Ions and Ion Paris in Dimethoxyethane and Tetrahydrofuran. Journal of the American Chemical Society 1965, 87, 5548-&.
80.Hossenlopp, I. A.; Scott, D. W., Vapor Heat-Capacities and Enthalpies of Vaporization of 6 Organic-Compounds. Journal of Chemical Thermodynamics 1981, 13, 405-414.
81.Andzelm, J., Materials Studio. Chemistry World 2007, 4, 72-72.
82.Wu, J.-Y.; Chen, L.-J.; Chen, Y.-P.; Lin, S.-T., Molecular Dynamics Study on the Equilibrium and Kinetic Properties of Tetrahydrofuran Clathrate Hydrates. The Journal of Physical Chemistry C 2014, 119, 1400-1409.
83.Pronk, S., et al., Gromacs 4.5: A High-Throughput and Highly Parallel Open Source Molecular Simulation Toolkit. Bioinformatics 2013, 29, 845-854.
84.Berendsen, H. J. C.; Vanderspoel, D.; Vandrunen, R., Gromacs - a Message-Passing Parallel Molecular-Dynamics Implementation. Computer Physics Communications 1995, 91, 43-56.
85.Van der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C., Gromacs: Fast, Flexible, and Free. Journal of Computational Chemistry 2005, 26, 1701-1718.
86.Hockney, R. W.; Goel, S. P.; Eastwood, J. W., Quiet High-Resolution Computer Models of a Plasma. Journal of Computational Physics 1974, 14, 148-158.
87.Darden, T.; York, D.; Pedersen, L., Particle Mesh Ewald - an N.Log(N) Method for Ewald Sums in Large Systems. Journal of Chemical Physics 1993, 98, 10089-10092.
88.Luzar, A.; Chandler, D., Structure and Hydrogen-Bond Dynamics of Water-Dimethyl Sulfoxide Mixtures by Computer-Simulations. Journal of Chemical Physics 1993, 98, 8160-8173.
89.Tarjan, R. In Depth-First Search and Linear Graph Algorithms, Switching and Automata Theory, 1971., 12th Annual Symposium on, 13-15 Oct. 1971; 1971; pp 114-121.
90.Korf, R. E., Depth-1st Iterative-Deepening - an Optimal Admissible Tree-Search. Artif. Intell. 1985, 27, 97-109.
91.G., F. R.; F., A. J. L.; C., V., The Melting Point of Ice Ih for Common Water Models Calculated from Direct Coexistence of the Solid-Liquid Interface. THE JOURNAL OF CHEMICAL PHYSICS 2006, 124,, 144506.
92.Hawtin, R. W.; Quigley, D.; Rodger, P. M., Gas Hydrate Nucleation and Cage Formation at a Water/Methane Interface. Physical Chemistry Chemical Physics 2008, 10, 4853-4864.
93.English, N. J.; MacElroy, J. M. D., Theoretical Studies of the Kinetics of Methane Hydrate Crystallization in External Electromagnetic Fields. Journal of Chemical Physics 2004, 120, 10247-10256.
94.English, N. J.; Johnson, J. K.; Taylor, C. E., Molecular-Dynamics Simulations of Methane Hydrate Dissociation. Journal of Chemical Physics 2005, 123.
95.Liang, S.; Kusalik, P. G., Nucleation of Gas Hydrates within Constant Energy Systems. Journal of Physical Chemistry B 2013, 117, 1403-1410.
96.Baez, L. A.; Clancy, P., Computer-Simulation of the Crystal-Growth and Dissolution of Natural-Gas Hydrates. In International Conference on Natural Gas Hydrates, Sloan, E. D.; Happel, J.; Hnatow, M. A., Eds. 1994; Vol. 715, pp 177-186.
97.Jones, C. Y.; Zhang, J. S.; Lee, J. W., Isotope Effect on Eutectic and Hydrate Melting Temperatures in the Water-Thf System. Journal of Thermodynamics 2010, 2010, 6.
98.Fernández, R. G.; Abascal, J. L.; Vega, C., The Melting Point of Ice Ih for Common Water Models Calculated from Direct Coexistence of the Solid-Liquid Interface. The Journal of chemical physics 2006, 124, 144506-1-144506-11.
99.Wang, L. K.; Chen, G. J.; Han, G. H.; Guo, X. Q.; Guo, T. M., Experimental Study on the Solubility of Natural Gas Components in Water with or without Hydrate Inhibitor. Fluid Phase Equilibria 2003, 207, 143-154.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top