跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/07/28 03:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡崇安
研究生(外文):Chung-An Tsai
論文名稱:銅/釕化學機械研磨之研磨墊與研磨液的電化學研究
論文名稱(外文):The Electrochemical Study of Polish Pad and Slurry on Cu/Ru Chemical Mechanical Polishing
指導教授:顏溪成顏溪成引用關係
口試委員:周偉龍吳永富蔡子萱
口試日期:2015-06-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:81
中文關鍵詞:化學機械研磨
外文關鍵詞:rutheniumchemical mechanical polishing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討銅及釕化學機械研磨在雙氧水系統以及過硫酸銨系統下比較以及使用不同研磨墊的研磨情況。首先利用電化學還原釕在白金旋轉電極上,釕的厚度大約為600 nm,接著在不同環境下進行銅/釕化學機械研磨方面,除了利用直流極化技術外,也使用重量分析法計算研磨速率,更透過原子力學顯微鏡(AFM)了解研磨後的表面平坦度。實驗結果顯示,在過硫酸銨的系統下,利用菜瓜布或研磨墊(No. 40-7218,Buehler),研磨液為pH 6的情況皆為最佳,在使用菜瓜布情況下,金屬銅與釕的研磨速率,分別為365.3 nm/min及92.37 nm/min,研磨選擇率為3.95,而且研磨後,銅的表面粗糙度下降至21.25 nm;釕的表面粗糙度下降至43.53 nm;在使用研磨墊(No. 40-7218,Buehler)情況下,金屬銅與釕的研磨速率,分別為355.4 nm/min及63.95 nm/min,研磨選擇率為5.55,銅的表面粗糙度下降至14.34 nm;釕的表面粗糙度下降至19.03 nm。
由於過硫酸銨溶液含有胺離子容易與金屬銅錯合物螯合而加速溶解速率,無法得到良好的銅釕移除選擇率,因此選擇使用雙氧水溶液做為研磨液,在雙氧水系統下,利用dish scrubber研磨,研磨液為濃度5 wt%的情況為最佳,金屬銅與釕的研磨速率,分別為207.3 nm/min及85.26 nm/min,研磨選擇率為2.43,至於表面粗糙度方面,銅的表面粗糙度下降至16.85 nm;釕的表面粗糙度下降至32.06 nm。


In this study the chemical mechanical polishing of copper and ruthenium in hydrogen peroxide and ammonium persulfate system has been investigated. Hydrogen peroxide or ammonium persulfate was employed as an oxidant in slurries. Either dish scrubber or regular polishing pad was used as polish pad. First, ruthenium was plated on a rotating disk electrode in a three electrode-system containing ruthenium chloride, and it would be used for chemical mechanical polishing. From the chemical mechanical polishing experiments, the experimental results showed that ammonium persulfate-based slurries at pH 6 had the best performance. Removal rate for copper and ruthenium with abrasion by dish scrubber was 365 nm/min and 92.4 nm/min and the removal selectivity was 3.95. Besides, the copper surface roughness reduced to 21.2 nm; the ruthenium surface roughness reduced to 43.5 nm. The removal rate for copper and ruthenium with abrasion by polishing pad (No. 40-7218, Buehler) was 355.4 nm/min and 63.95 nm/min and the removal selectivity was 5.55. The copper surface roughness was reduced to 14.3 nm and the ruthenium surface roughness was reduced to 19.03 nm. Due to the presence of ammonium ion in the ammonium persulfate solution, it could chelate and form copper complexes, and then accelerated the rate of dissolution. In the case that hydrogen peroxide solution was employed as an oxidant in slurries. 5 wt% of hydrogen peroxide in the slurries had the best performance. Its removal rate for copper and ruthenium was 207 nm/min and 85.26 nm/min, respectively, and its removal selectivity was 2.43. After chemical mechanical polishing, the copper surface roughness was reduced to16.8 nm and the ruthenium surface roughness was reduced to 32.1 nm.

第一章 緒論 1
1-1前言 1
1-2研究動機 2
1-3研究目的 4
第二章 文獻回顧 6
2-1化學機械研磨介紹 6
2-2銅化學機械研磨之文獻回顧 10
2-3銅導線製程的發展與阻礙 14
2-4釕於銅導線阻障層之發展潛力 19
第三章 電化學基本原理 21
3-1極化曲線理論與腐蝕電化學理論 21
3-2三電極電化學系統 28
3-3過電位測定裝置與極化曲線 29
3-4旋轉盤電極 31
3-5電位-pH關係圖(Pourbaix diagram) 32
第四章 研究方法 36
4-1 設備、儀器、藥品及耗材 36
4-2 實驗方法與材料製作 38
4-2-1 銅片前處理 38
4-2-2 銅基材旋轉電極製備 38
4-2-3 電鍍釕沉積 39
4-2-4 釕電沉積厚度測量 40
4-2-5 CMP之實驗裝置與方法 41
4-2-6 極化曲線的量測 42
4-2-7 移除速率的估算 42
4-2-8 AFM分析 42
第五章 結果與討論 44
5-1 薄膜厚度測量 44
5-2過硫酸銨研磨液對銅/釕化學機械研磨之實驗結果討論 45
5-2-1 pH值對極化曲線分析 45
5-2-2研磨墊對銅釕化學機械研磨影響 47
5-2-3研磨墊對表面型態影響 48
5-3雙氧水研磨液對銅/釕化學機械研磨之實驗結果討論 63
5-3-1 研磨液組成對銅/釕CMP影響 63
5-3-2腐蝕效果與移除速率 64
5-3-3表面型態 64
第六章 結論 76
參考文獻 78


1.Steigerwald, J. M., S. P. Murarka & R. J. Gutmann. Chemical Mechanical Planarization of Microelectronic Materials. New York: John Wiley & Sons (1997).
2.Robert, B. CMP Consumables 2014 Market Update (2014). Retrieved July 17,
2015, from http:/www.avsuergroups.org/cmpug_pdfs/CMP2014_Techcet_Rob erts.pdf
3.工研院經資中心.半導體產業對台灣經濟的重要性分析 (2014), 上網日期
2015年7月17日,檢自 ttp://saturn.sipa.gov.tw/InnovationWeb/eventDetailA ction.do?serno=201410020002
4.Min, K. H., K. C. Chun & K. B. Kim, “Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization.,” Journal of Vacuum Science & Technology B, 14, 3263-3269 (1996).
5.Stavreva, Z., D. Zeidler, M. Plotner & K. Drescher, “Influence of process parameters on chemical-mechanical polishing of copper.,” Microelectronic Engineering, 37-8, 143-149 (1997).
6.Chyan, O., T. N. Arunagiri & T. Ponnuswamy, “Electrodeposition of copper thin film on ruthenium - A potential diffusion barrier for Cu interconnects.,” Journal of the Electrochemical Society, 150, C347-C350 (2003).
7.土肥俊郎(Toshio Kasai )。半導體平坦化CMP技術(Chemical Mechanical Polishing,王建榮、林必窕、林慶福譯)。台北市:全華科技圖書股份有限公司(1998)。
8.林明獻。矽晶圓半導體材料技術。台北市:全華科技圖書股份有限公司 (1999)。
9.陳怡秀。化學機械研磨阻障層鉭與其電化學特性的研究。博士論文,國立臺灣大學化學工程學研究所,臺北市,臺灣 (2010)。
10.Kaufman, F. B., D. B. Thompson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Pearson & M. B. Small, “Chemical-Mechanical Polishing For Fabricating Patterned W Metal Features As Chip Interconnects.,” Journal of the Electrochemical Society, 138, 3460-3465 (1991).
11.Cheung, R, Copper Interconnect Technology. New York: Springer Science+Business Media (2000).
12.Stavreva, Z., D. Zeidler, M. Plotner & K. Drescher, “Characteristics in chemical-mechanical polishing of copper: Comparison of polishing pads.,” Applied Surface Science, 108, 39-44 (1997).
13.Tsai, T. H., Y. F. Wu & S. C. Yen, “A study of copper chemical mechanical polishing in urea-hydrogen peroxide slurry by electrochemical impedance spectroscopy.,” Applied Surface Science, 214, 120-135 (2003).
14.Tsai, T. H. & S. C. Yen, “Localized corrosion effects and modifications of acidic and alkaline slurries on copper chemical mechanical polishing.,” Applied Surface Science, 210, 190-205 (2003).
15.Tsai, T. H., Y. F. Wu & S. C. Yen, “Glycolic acid in hydrogen peroxide-based slurry for enhancing copper chemical mechanical polishing.,” Microelectronic Engineering, 77, 193-203 (2005).
16.Song, M. G., J. H. Lee, Y. G. Lee & J. H. Koo, “Stabilization of gamma alumina slurry for chemical-mechanical polishing of copper.,”Journal of Colloid and Interface Science, 300, 603-611 (2006).
17.Ahn, Y., J. H. Yoon, C. W. Baek & Y. K. Kim, “Chemical mechanical polishing by colloidal silica-based slurry for micro-scratch reduction.,” Wear, 257, 785-789 (2004).
18.Armini, S., C. M. Whelan & K. Maex, “Engineering polymer core-silica shell size in the composite abrasives for CMP applications.,” Electrochemical and Solid State Letters, 11, H280-H284 (2008).
19.Pandija, S., D. Roy & S. V. Babu, “Chemical mechanical planarization of copper using abrasive-free solutions of oxalic acid and hydrogen peroxide.,” Materials Chemistry and Physics, 102, 144-151 (2007).
20.蔡子萱。 化學機械硏磨銅之硏磨液與硏磨模式硏究。博士論文,國立臺灣大學化學工程學研究所,臺北市,臺灣 (2003)。
21.Deshpande, S., S. C. Kuiry, M. Klimov, Y. Obeng & S. Seal, “Chemical mechanical planarization of copper: Role of oxidants and inhibitors.,” Journal of the Electrochemical Society, 151, G788-G794 (2004).
22.Hong, Y., V. K. Devarapalli, D. Roy & S. V. Babu, “Synergistic roles of dodecyl sulfate and benzotriazole in enhancing the efficiency of CMP of copper.,” Journal of the Electrochemical Society, 154, H444-H453 (2007).
23.Gasparac, R., C. R. Martin & E. Stupnisek-Lisac, “In situ studies of imidazole and its derivatives as copper corrosion inhibitors - I. Activation energies and thermodynamics of adsorption.,” Journal of the Electrochemical Society, 147, 548-551 (2000).
24.Cotton, F. A., Advanced inorganic chemistry. New York: Wiley (1999).
25.楊正杰、張鼎張 & 鄭晃忠。 銅金屬與低介電常數材料與製程。工業材料,7,40-46 (2000)。
26.Bohr, M. T, “Interconnect scaling - The real limiter to high performance ULSI.,” Solid State Technology, 39, 105-& (1996).
27.Gileadi, E., E. Kirowa-Eisner, & J. Penciner. Interfacial electrochemistry: an experimental approach. Boston: Addison-Wesley (1975).
28.West, J.M, Basic corrosion and oxidation. New York : Halsted Press (1980).
29.Pourbaix, M., Atlas of Electochemical Equilibria in Aqueous Solutions. Houston:TX (1974).
30.Hu, C. C. & Y. H. Huang, “Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors.,” Journal of the Electrochemical Society, 146, 2465-2471 (1999).
31.周宜欣。釕的電沉積研究及過硫酸銨組成的研磨液對釕化學機械研磨之效應。碩士論文,國立臺灣大學化學工程學研究所,臺北市,臺灣 (2013)。
32.Hoar, T. and G. Rothwell, “The potential/pH diagram for a copper-water-ammonia system: its significance in the stress-corrosion cracking of brass in ammoniacal solutions.,” Electrochimica Acta, 15(6) , 1037-1045 (1970).
33.Seddon, E. A. & K. R. Seddon. The Chemistry of Ruthenium. New York: Elsevier Science (1984).
34.Kim, I. K., B. G. Cho, J. G. Park, J. Y. Park & H. S. Park, “Effect of pH in Ru Slurry with Sodium Periodate on Ru CMP,” Journal of the Electrochemical Society, 156, H188-H192 (2009).
35.Cui, H., J. H. Park & J. G. Park, “Study of Ruthenium Oxides Species on Ruthenium Chemical Mechanical Planarization Using Periodate-Based Slurry.,” Journal of the Electrochemical Society, 159, H335-H341 (2012).
36.吳怡葶。銅的腐蝕研究與過硫酸銨研磨液對銅/釕化學機械研磨之效應。碩士論文,國立臺灣大學化學工程學研究所,臺北市,臺灣 (2014)。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top