跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 22:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林聖杰
研究生(外文):Shen-Chieh Lin
論文名稱:脈衝式水溶液電漿性質檢測及孔性金屬有機骨架製程研究
論文名稱(外文):Diagnostic Study of Pulsed Power Solution Plasmas and its Application on the Synthesis of Metal Organic Frameworks
指導教授:徐振哲
指導教授(外文):Cheng-Che(Jerry) Hsu
口試委員:康敦彥許聿翔林致廷
口試委員(外文):Dun-Yen KangYu-Hsiang HsuChih-Ting Lin
口試日期:2015-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:103
中文關鍵詞:水溶液電漿脈衝式電源電漿檢測類沸石咪唑材料
外文關鍵詞:solution plasmapulsed powerplasma diagnosticsmetal-organic frameworksZIF-8
相關次數:
  • 被引用被引用:0
  • 點閱點閱:67
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究對於脈衝式水溶液電漿系統進行檢測,並嘗試以水溶液電漿製備材料。使用脈衝式電源驅動相較於直流或交流的供應能提供水溶液電漿系統具有更穩定且更佳的再現性表現,此性質使其具有被應用於系統檢測或材料製備的潛力,可藉由調控脈衝式電源之操作參數,控制系統在適當的條件下進行反應。實驗內容分為兩個部分,第一部分為診斷水溶液電漿系統之表現對應於驅動電極與溶液直接接觸面積的影響,第二部分為使用水溶液電漿系統製備類沸石咪唑材料。
第一部分以脈衝式電源激發電漿在 0.1 M 氯化鈉(NaCl)水溶液中生成,分別在驅動電極截面積直徑為0.1、0.3、0.5及1釐米系統中,進行同步化電流電壓、電漿放射光、氣泡動態及單位面積功率耗損的分析。氣泡在電極表面的生成速率與透過積分示波器所紀錄之電流電壓得到的單位面積能量耗損成正比,不受工作時間(Ton)的影響,而單位面積能量耗損則與驅動電極直接接觸溶液的面積成反比,造成在固定工作時間內,氣泡及電流波峰的出現頻率在小電極截面積直徑系統中較高,藉由同步相機與示波器觀察得到電流波峰與氣泡形成機制間存在重要關聯,且此現象與文獻中使用直流電源作驅動的電漿表現一致,而電漿放射光的生成機制不因系統不同而改變,皆伴隨氣泡的破裂或收縮出現,藉由上述之檢測試圖解釋水溶液電漿系統之概要性表現。
第二部分嘗試以脈衝式水溶液電漿,在水相中低反應物濃度條件下製備類沸石咪唑材料,透過以微流體方式注入金屬陽離子,在金屬鹽類溶液及有機配位子溶液接觸區域以電漿進行處理,並在純化過程中之離心與蒸乾步驟中採用甲醇作為溶劑,即本製程於前段反應在水相而於後段純化則在有機相中進行,經過XRD、SEM及FTIR的分析,得到實驗的最終產物為高純度之類沸石咪唑材料,提供一在水相環境中,於短時間內即能在低反應物濃度下合成高純度類沸石咪唑材料的製程。


The diagnosis of plasma generated by a pulsed voltage in NaCl electrolytic solution and its potential applications are studied. The pulsed power can offer the solution plasma system a better stability and cycle-to-cycle reproducibility than the performance driven by DC or AC power. The optimum plasma behavior can be represented by regulating the suitable operation parameters, and this advantage gives a potential opportunity of the application for the system diagnosis and material fabrication. The experimental investigations include two parts: Diagnostic study of the effect of the electrode diameter on the behavior of plasmas and Synthesis of metal-organic frameworks by using aqueous solution plasma.
In the first part, the effect of the electrode diameter on the discharge behavior of plasmas in saline solution was studied. The measurement of the plasma performance including current and voltage waveforms, discharge emissions, bubble dynamics and power consumptions were detected in the system. The driving electrode was a platinum wire covered by a glass tube to precisely define the area exposed to the solution. Platinum wires of four different diameters, namely 0.1 mm, 0.3 mm, 0.5 mm, and 1 mm, were used. A positive correlation was found between the generating rate of the bubble on the electrode surface and the power density consumption calculated from the IV waveform recorded by the oscilloscope. The result didn’t depended on the working period (Ton). However, a negative correlation existed between the area of the driving electrode exposed to the solution and the power density consumption. The outcome may explain why a higher appearance frequency of the bubbles and the current peaks in the small diameter driving electrode system. The time-resolved bubble dynamics taken by the high speed video show that the vapor formation process in this experiment is the same as the one driven by a DC power supply. The bubble formation mechanism is strong related to the change of the current waveform. The plasma discharges would not form until the vapor layer collapse or shrink in each system. The observations done in the experiment offer an explanation of the general solution plasma behaviors.
In the second part, we tried to synthesize metal-organic frameworks by using aqueous solution plasma. The object of this experiment was to develop a fabrication which could synthesize high purity metal-organic frameworks in the conditions of low concentration of the reactants and reduced time. An attempt that the zinc salt microfluidics was introduced to the reaction container and a plasma was ignited in the contact zone between the zinc salt solution and the ligand solution was approached. After the reactants were treated in the aqueous phase, they were dissolved in the methanol for centrifugation and drying. The pure products were confirmed by analyzing the XRD, SEM and FTIR patterns. The experiment results supported that we reach the goal.


誌謝 I
中文摘要 III
英文摘要 V
目錄 VII
圖目錄 IX
表目錄 XV
第1章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文總覽 2
第2章 文獻回顧 3
2.1 水溶液電漿簡介 3
2.2 水溶液電漿之檢測 8
2.2.1 水溶液電漿之光學檢測 8
2.2.2 水溶液電漿之氣泡動態 13
2.3 水溶液電漿應用發展近況 17
2.3.1 外科手術中以水溶液電漿做切除 17
2.3.2 環境滅菌藉由水溶液電漿 19
2.4 孔性金屬-有機骨架(Metal Organic frameworks, MOFs)簡介 21
2.4.1 孔性金屬-有機骨架簡介 21
2.4.2 類沸石咪唑骨架材料製程 23
2.4.2.1 粉末型態之類沸石咪唑骨架材料製程 23
2.4.2.2 薄膜型態之類沸石咪唑骨架材料製程 28
2.4.3 類沸石咪唑骨架材料之性質及檢測 31
第3章 實驗設備與架構 35
3.1 水溶液電漿系統 36
3.1.1 水溶液電漿承載系統 36
3.1.2 脈衝式電源供應系統 42
3.2 電漿檢測設備 43
3.3 材料檢測設備 45
3.4 類沸石咪唑骨架材料製備 47
3.5 化學藥品 49
第4章 結果與討論 51
4.1 脈衝式水溶液電漿之檢測 51
4.1.1 脈衝式水溶液電漿之操作區間 51
4.1.2 相同脈衝開啟時間下的光電特徵 54
4.1.3 同步氣泡動態與電流波形 60
4.1.4 不同脈衝開啟時間下的光電特徵 66
4.2 孔性金屬-有機配位聚合物製備與檢測 69
4.2.1 相同體積混溶製備 70
4.2.2 微流體法合成 81
4.2.3 純化製程改進 88
第5章 結論與未來展望 95
第6章 參考文獻 97


1.K. R. Stalder, D. F. McMillen and J. Woloszko, " Electrosurgical plasmas ", Journal of Physics D: Applied Physics, 38 (11), 1728 (2005).
2.Y. Sakiyama, T. Tomai, M. Miyano and D. B. Graves, " Disinfection of E. coli by nonthermal microplasma electrolysis in normal saline solution ", Applied Physics Letters, 94 (16), 161501 (2009).
3.P. Šunka, " Pulse electrical discharges in water and their applications ", Physics of Plasmas (1994-present), 8 (5), 2587-2594 (2001).
4.P. Bruggeman and C. Leys, " Non-thermal plasmas in and in contact with liquids ", Journal of Physics D: Applied Physics, 42 (5), 053001 (2009).
5.P. Bruggeman, D. Schram, M. A. Gonzalez, R. Rego, M. G. Kong and C. Leys, " Characterization of a direct dc-excited discharge in water by optical emission spectroscopy ", Plasma Sources Science and Technology, 18 (2), 025017 (2009).
6.P. Bruggeman, J. Van Slycken, J. Degroote, J. Vierendeels, P. Verleysen and C. Leys, " DC electrical breakdown in a metal pin–water electrode system ", Plasma Science, IEEE Transactions on, 36 (4), 1138-1139 (2008).
7.H.-w. Chang and C.-c. Hsu, " Diagnostic studies of ac-driven plasmas in saline solutions: the effect of frequency on the plasma behavior ", Plasma Sources Science and Technology, 20 (4), 045001 (2011).
8.K. Sato and K. Yasuoka, " Pulsed discharge development in oxygen, argon, and helium bubbles in water ", IEEE transactions on plasma science, 36 (4), 1144-1145 (2008).
9.B. Sun, M. Sato and J. S. Clements, " Optical study of active species produced by a pulsed streamer corona discharge in water ", Journal of Electrostatics, 39 (3), 189-202 (1997).
10.N. Takeuchi, Y. Ishii and K. Yasuoka, " Modelling chemical reactions in dc plasma inside oxygen bubbles in water ", Plasma Sources Science and Technology, 21 (1), 015006 (2012).
11.A. Maximov and A. Khlustova, " Optical emission from plasma discharge in electrochemical systems applied for modification of material surfaces ", Surface and Coatings Technology, 201 (21), 8782-8788 (2007).
12.T. Verreycken, D. Schram, C. Leys and P. Bruggeman, " Spectroscopic study of an atmospheric pressure dc glow discharge with a water electrode in atomic and molecular gases ", Plasma Sources Science and Technology, 19 (4), 045004 (2010).
13.K. Stalder, J. Woloszko, I. Brown and C. Smith, " Repetitive plasma discharges in saline solutions ", Applied Physics Letters, 79 (27), 4503-4505 (2002).
14.L. Schaper, K. R. Stalder and W. G. Graham, " Plasma production in electrically conducting liquids ", Plasma Sources Science & Technology, 20 (3)(2011).
15.H.-w. Chang and C.-c. Hsu, " Plasmas in Saline Solution Sustained Using Bipolar Pulsed Power Source: Tailoring the Discharge Behavior Using the Negative Pulses ", Plasma Chemistry and Plasma Processing, 1-11 (2013).
16.P. Bruggeman, T. Verreycken, M. A. Gonzalez, J. L. Walsh, M. G. Kong, C. Leys and D. C. Schram, " Optical emission spectroscopy as a diagnostic for plasmas in liquids: opportunities and pitfalls ", Journal of Physics D: Applied Physics, 43 (12), 124005 (2010).
17.L. Schaper, W. Graham and K. Stalder, " Vapour layer formation by electrical discharges through electrically conducting liquids—modelling and experiment ", Plasma Sources Science and Technology, 20 (3), 034003 (2011).
18.A.-h. Hsieh, H.-w. Chang and C.-c. Hsu, " The bubble to jetting transition mechanism of plasmas in NaNO3 solutions sustained by pulsed power ", Journal of Physics D: Applied Physics, 45 (41), 415202 (2012).
19.A. Diana, M. Castillo, T. Steinberg and D. Brutin, " Asymmetric interface temperature during vapor bubble growth ", Applied Physics Letters, 103 (3), 031602 (2013).
20.V. Fascio, R. Wüthrich and H. Bleuler, " Spark assisted chemical engraving in the light of electrochemistry ", Electrochimica Acta, 49 (22), 3997-4003 (2004).
21.A. Yerokhin, X. Nie, A. Leyland, A. Matthews and S. Dowey, " Plasma electrolysis for surface engineering ", Surface and Coatings Technology, 122 (2), 73-93 (1999).
22.Y. Toriyabe, S. Watanabe, S. Yatsu, T. Shibayama and T. Mizuno, " Controlled formation of metallic nanoballs during plasma electrolysis ", Applied Physics Letters, 91 (4), 041501-041501-041503 (2007).
23.S.-Y. Yoon, Y. C. Jang, S.-H. Lee, J. W. Hong, Y. ki Hong and G.-H. Kim, " Characteristics of vapor coverage formation on an RF-driven metal electrode to discharge a plasma in saline solution ", Plasma Sources Science and Technology, 21 (5), 055017 (2012).
24.S. Mukasa, T. Maehara, S. Nomura, H. Toyota, A. Kawashima, Y. Hattori, Y. Hashimoto and H. Yamashita, " Growth of bubbles containing plasma in water by high-frequency irradiation ", International Journal of Heat and Mass Transfer, 53 (15), 3067-3074 (2010).
25.P. Bruggeman, J. Degroote, J. Vierendeels and C. Leys, " DC-excited discharges in vapour bubbles in capillaries ", Plasma Sources Science and Technology, 17 (2), 025008 (2008).
26.B. Sommers, J. Foster, N. Y. Babaeva and M. J. Kushner, " Observations of electric discharge streamer propagation and capillary oscillations on the surface of air bubbles in water ", Journal of Physics D: Applied Physics, 44 (8), 082001 (2011).
27.D. Doyen, " Sur la destruction des tumeurs cancereuses accessibles: par la methode de la voltaisation bipolaire et de l’electro-coagulation thermique ", Arch Elec Med, 17, 791-795 (1909).
28.J. Woloszko, K. R. Stalder and I. G. Brown, " Plasma characteristics of repetitively-pulsed electrical discharges in saline solutions used for surgical procedures ", Plasma Science, IEEE Transactions on, 30 (3), 1376-1383 (2002).
29.A. Vankov and D. Palanker, " Nanosecond plasma-mediated electrosurgery with elongated electrodes ", Journal of applied physics, 101 (12), 124701 (2007).
30.C.-W. Chen, H.-M. Lee and M.-B. Chang, " Influence of pH on inactivation of aquatic microorganism with a gas–liquid pulsed electrical discharge ", Journal of electrostatics, 67 (4), 703-708 (2009).
31.C. W. Chen, H. M. Lee, S. H. Chen, H. L. Chen and M. B. Chang, " Ultrasound-assisted plasma: a novel technique for inactivation of aquatic microorganisms ", Environmental science & technology, 43 (12), 4493-4497 (2009).
32.X. C. Huang, Y. Y. Lin, J. P. Zhang and X. M. Chen, " Ligand‐Directed Strategy for Zeolite‐Type Metal–Organic Frameworks: Zinc (II) Imidazolates with Unusual Zeolitic Topologies ", Angewandte Chemie, 118 (10), 1557-1559 (2006).
33.K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe and O. M. Yaghi, " Exceptional chemical and thermal stability of zeolitic imidazolate frameworks ", Proceedings of the National Academy of Sciences, 103 (27), 10186-10191 (2006).
34.Y. Pan, T. Li, G. Lestari and Z. Lai, " Effective separation of propylene/propane binary mixtures by ZIF-8 membranes ", Journal of Membrane Science, 390, 93-98 (2012).
35.G. Lu and J. T. Hupp, " Metal− organic frameworks as sensors: a ZIF-8 based Fabry− Pérot device as a selective sensor for chemical vapors and gases ", Journal of the American Chemical Society, 132 (23), 7832-7833 (2010).
36.C.-Y. Sun, C. Qin, X.-L. Wang, G.-S. Yang, K.-Z. Shao, Y.-Q. Lan, Z.-M. Su, P. Huang, C.-G. Wang and E.-B. Wang, " Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle ", Dalton Transactions, 41 (23), 6906-6909 (2012).
37.C. M. Miralda, E. E. Macias, M. Zhu, P. Ratnasamy and M. A. Carreon, " Zeolitic imidazole framework-8 catalysts in the conversion of CO2 to chloropropene carbonate ", ACS Catalysis, 2 (1), 180-183 (2011).
38.B. R. Pimentel, A. Parulkar, E. k. Zhou, N. A. Brunelli and R. P. Lively, " Zeolitic Imidazolate Frameworks: Next‐Generation Materials for Energy‐Efficient Gas Separations ", ChemSusChem, 7 (12), 3202-3240 (2014).
39.J. Cravillon, R. Nayuk, S. Springer, A. Feldhoff, K. Huber and M. Wiebcke, " Controlling zeolitic imidazolate framework nano-and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering ", Chemistry of Materials, 23 (8), 2130-2141 (2011).
40.J. Cravillon, C. A. Schröder, H. Bux, A. Rothkirch, J. Caro and M. Wiebcke, " Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy ", CrystEngComm, 14 (2), 492-498 (2012).
41.Y. Pan, Y. Liu, G. Zeng, L. Zhao and Z. Lai, " Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system ", Chemical Communications, 47 (7), 2071-2073 (2011).
42.K. Kida, M. Okita, K. Fujita, S. Tanaka and Y. Miyake, " Formation of high crystalline ZIF-8 in an aqueous solution ", CrystEngComm, 15 (9), 1794-1801 (2013).
43.J. Yao, M. He, K. Wang, R. Chen, Z. Zhong and H. Wang, " High-yield synthesis of zeolitic imidazolate frameworks from stoichiometric metal and ligand precursor aqueous solutions at room temperature ", CrystEngComm, 15 (18), 3601-3606 (2013).
44.M. He, J. Yao, Q. Liu, K. Wang, F. Chen and H. Wang, " Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution ", Microporous and Mesoporous Materials, 184, 55-60 (2014).
45.W.-J. Son, J. Kim, J. Kim and W.-S. Ahn, " Sonochemical synthesis of MOF-5 ", Chemical Communications, (47), 6336-6338 (2008).
46.H.-Y. Cho, J. Kim, S.-N. Kim and W.-S. Ahn, " High yield 1-L scale synthesis of ZIF-8 via a sonochemical route ", Microporous and Mesoporous Materials, 169, 180-184 (2013).
47.U. Mueller, H. Puetter, M. Hesse and H. Wessel, " WO 2005/049892, 2005 ", BASF Aktiengesellschaft, (2007).
48.R. Ameloot, L. Stappers, J. Fransaer, L. Alaerts, B. F. Sels and D. E. De Vos, " Patterned growth of metal-organic framework coatings by electrochemical synthesis ", Chemistry of Materials, 21 (13), 2580-2582 (2009).
49.U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt and J. Pastre, " Metal–organic frameworks—prospective industrial applications ", Journal of Materials Chemistry, 16 (7), 626-636 (2006).
50.J. Fernández-Bertrán, M. Hernández, E. Reguera, H. Yee-Madeira, J. Rodriguez, A. Paneque and J. Llopiz, " Characterization of mechanochemically synthesized imidazolates of Ag+ 1, Zn+ 2, Cd+ 2, and Hg+ 2: Solid state reactivity of nd 10 cations ", Journal of Physics and Chemistry of Solids, 67 (8), 1612-1617 (2006).
51.C. J. Adams, M. A. Kurawa and A. G. Orpen, " Coordination chemistry in the solid state: synthesis and interconversion of pyrazolium salts, pyrazole complexes, and pyrazolate MOFs ", Dalton Transactions, 39 (30), 6974-6984 (2010).
52.S. Tanaka, K. Kida, T. Nagaoka, T. Ota and Y. Miyake, " Mechanochemical dry conversion of zinc oxide to zeolitic imidazolate framework ", Chemical Communications, 49 (72), 7884-7886 (2013).
53.H. Bux, F. Liang, Y. Li, J. Cravillon, M. Wiebcke and J. r. Caro, " Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis ", Journal of the American Chemical Society, 131 (44), 16000-16001 (2009).
54.M. Shah, H. T. Kwon, V. Tran, S. Sachdeva and H.-K. Jeong, " One step in situ synthesis of supported zeolitic imidazolate framework ZIF-8 membranes: Role of sodium formate ", Microporous and Mesoporous Materials, 165, 63-69 (2013).
55.J. Yao, D. Dong, D. Li, L. He, G. Xu and H. Wang, " Contra-diffusion synthesis of ZIF-8 films on a polymer substrate ", Chem. Commun., 47 (9), 2559-2561 (2011).
56.A. J. Brown, N. A. Brunelli, K. Eum, F. Rashidi, J. Johnson, W. J. Koros, C. W. Jones and S. Nair, " Interfacial microfluidic processing of metal-organic framework hollow fiber membranes ", Science, 345 (6192), 72-75 (2014).
57.J. Caro and M. Noack, " Zeolite membranes–recent developments and progress ", Microporous and Mesoporous Materials, 115 (3), 215-233 (2008).
58.H. Bux, A. Feldhoff, J. Cravillon, M. Wiebcke, Y.-S. Li and J. Caro, " Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation ", Chemistry of Materials, 23 (8), 2262-2269 (2011).
59.O. Shekhah, R. Swaidan, Y. Belmabkhout, M. du Plessis, T. Jacobs, L. J. Barbour, I. Pinnau and M. Eddaoudi, " The liquid phase epitaxy approach for the successful construction of ultra-thin and defect-free ZIF-8 membranes: pure and mixed gas transport study ", Chemical Communications, 50 (17), 2089-2092 (2014).
60.R. G. Pearson, " Hard and soft acids and bases ", Journal of the American Chemical Society, 85 (22), 3533-3539 (1963).
61.B. Chen, F. Bai, Y. Zhu and Y. Xia, " Hofmeister anion effect on the formation of ZIF-8 with tuneable morphologies and textural properties from stoichiometric precursors in aqueous ammonia solution ", RSC Advances, 4 (88), 47421-47428 (2014).
62.Y. Yue, Z.-A. Qiao, X. Li, A. J. Binder, E. Formo, Z. Pan, C. Tian, Z. Bi and S. Dai, " Nanostructured zeolitic imidazolate frameworks derived from nanosized zinc oxide precursors ", Crystal Growth & Design, 13 (3), 1002-1005 (2013).
63.S. R. Venna, J. B. Jasinski and M. A. Carreon, " Structural evolution of zeolitic imidazolate framework-8 ", Journal of the American Chemical Society, 132 (51), 18030-18033 (2010).
64.Z.-X. Low, J. Yao, Q. Liu, M. He, Z. Wang, A. K. Suresh, J. R. Bellare and H. Wang, " Crystal Transformation in Zeolitic-Imidazolate Framework ", Crystal Growth & Design, 6589-6598 (2014).
65.W. M. Haynes, "CRC handbook of chemistry and physics ", CRC press, (2013).
66.F. De Baerdemaeker, M. Simek, J. Schmidt and C. Leys, " Characteristics of ac capillary discharge produced in electrically conductive water solution ", Plasma Sources Science & Technology, 16 (2), 341-354 (2007).
67.A. Schejn, L. Balan, V. Falk, L. Aranda, G. Medjahdi and R. Schneider, " Controlling ZIF-8 nano-and microcrystal formation and reactivity through zinc salt variations ", CrystEngComm, 16 (21), 4493-4500 (2014).
68.M. He, J. Yao, L. Li, Z. Zhong, F. Chen and H. Wang, " Aqueous solution synthesis of ZIF-8 films on a porous nylon substrate by contra-diffusion method ", Microporous and Mesoporous Materials, 179, 10-16 (2013).
69.R. Chen, J. Yao, Q. Gu, S. Smeets, C. Baerlocher, H. Gu, D. Zhu, W. Morris, O. M. Yaghi and H. Wang, " A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO 2 adsorption ", Chemical Communications, 49 (82), 9500-9502 (2013).
70.E. L. Bustamante, J. L. Fernández and J. M. Zamaro, " Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature ", Journal of colloid and interface science, 424, 37-43 (2014).
71.U. P. Tran, K. K. Le and N. T. Phan, " Expanding applications of metal− organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction ", ACS Catalysis, 1 (2), 120-127 (2011).
72.B. Hachuła, M. Nowak and J. Kusz, " Crystal and molecular structure analysis of 2-methylimidazole ", Journal of Chemical Crystallography, 40 (3), 201-206 (2010).
73.H. T. Kwon and H.-K. Jeong, " In situ synthesis of thin zeolitic–imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation ", Journal of the American Chemical Society, 135 (29), 10763-10768 (2013).
74.H. Zhang, D. Liu, Y. Yao, B. Zhang and Y. Lin, " Stability of ZIF-8 membranes and crystalline powders in water at room temperature ", Journal of Membrane Science, 485, 103-111 (2015).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
無相關點閱論文