跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/06 05:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許毓婷
研究生(外文):Yu-Ting Hsu
論文名稱:層狀複金屬氫氧化物應用於攪拌填充床進行生質柴油之生產及甘油之轉酯化
論文名稱(外文):Biodiesel Synthesis and Glycerol Transesterification by Layered Double Hydroxides in Stirring Packed-Bed Reactor
指導教授:吳紀聖
指導教授(外文):Jeffrey Chi-Sheng Wu
口試委員:萬本儒林錕松
口試委員(外文):Ben-Zu WanKuen-Song Lin
口試日期:2015-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:92
中文關鍵詞:攪拌填充床反應器層狀複金屬氫氧化物轉酯化反應生質柴油甘油碳酸酯
外文關鍵詞:Stirring Packed-Bed ReactorLayered double hydroxides (LDHs)TransesterificationBiodieselGlycerol carbonate
相關次數:
  • 被引用被引用:1
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
石化能源帶給人們方便,卻也讓人類面臨全球暖化等危機,因此許多人投入研究綠色或是永續能源,生質柴油便是其中重要的一角。生質柴油性質與傳統石化柴油相近,又能和石化柴油混合使用,亦具有無毒、生物可分解性、成分中不含硫化物和芳香族類等優點,因此為目前為重要的替代能源之一。
本研究利用層狀複金屬氫氧化物(Layered Double Hydroxides, LDHs)家族中的Mg-Al LDH作為鹼觸媒,以甲醇和大豆油進行轉酯化反應合成生質柴油,並將生質柴油的副產物甘油轉酯化成更具經濟價值的丙三醇1,2-碳酸酯。本研究探討了Mg/Al比例、鍛燒溫度、反應溫度、觸媒使用量以及碳酸二甲酯/甘油之莫耳比值等因素對於反應性之影響,並將LDH合成於α-Al2O3小球上,填充於攪拌填充床連續式反應系統進行反應。
本研究先將Mg-Al LDH進行鍛燒,再利用去碳酸根水─甘油混合液進行層狀結構之重構,並同時於觸媒表面包覆一層甘油防止觸媒因接觸空氣失活。在大豆油之轉酯化反應中,反應溫度60oC、甲醇/大豆油莫耳比為30:1,Mg/Al=5之觸媒使用量為10wt%時,四小時內可達65.72%,升高溫度至100oC,三小時可達87.45%。在甘油轉酯化反應中,在反應溫度95oC下,碳酸二甲酯/甘油莫耳比值為16,並使用二甲基亞碸作為溶劑, Mg/Al=5之顆粒觸媒用量為總反應系統總重之10wt%時,可於7.5小時內達到93.4%的產率。在四角觸媒柱連續式攪拌反應中,當反應溫度為90oC,碳酸二甲酯/甘油為16,使用Mg/Al=5之顆粒觸媒,用量為反應物總重的約10wt%,在滯留時間22.5小時,可於11小時達到穩態,產率80.17%。

Fossil fuel brings mankind lots of convenience and boosts the technology development. However, fossil fuel also brings crisis such as global warming and energy shortage. To deal with the problems, many scientists devote themselves into finding green and sustainable energies, and biodiesel is one of them. Biodiesel can be mixed with petro-diesel at any ratio and used in a diesel engine. Biodiesel contains no sulfur and no aromatic compounds. The surge of interest in biodiesel has also highlighted the reduction of greenhouse gas emission and pollution as well as nontoxic and biodegradable.
In this research, we transesterificated (1) triglycerides to synthesize biodiesel and; (2) its byproduct glycerol to form a more valuable chemical, glycerol 1,2-carbonate, using layered double hydroxides (LDHs), specifically Mg-Al LDH. We studied the different Mg/Al ratios in catalyst preparation, calcination temperatures of LDH, reaction temperatures, catalyst loadings and the molar ratios of dimethyl carbonate/glycerol, etc., which are critical factors in both transesterification reactions. We had Mg-Al LDH coated on the 3mm spherical α-Al2O3 catalyst in the stirring packed-bed reactor.
Mg-Al LDH was first calcined and then rehydrated with decarbonated water-glycerol solution to reconstruct the layer structure and also to protect the catalyst deactivation by air at the same time. In biodiesel synthesis, the yield reached 65.72% in 4 hours under 60oC, 87.45% in 3 hours under 100oC, when the methanol/soybean oil molar ratio was set to be 30, and 10wt% Mg/Al=5 LDH was used in the reaction. The glycerol transesterification was carried out by dimethyl carbonate/glycerol molar ratio 16 with the existence of solvent, dimethyl sulfoxide, using 10wt% Mg/Al=5 LDH on spherical α-Al2O3 at 95oC. The yield of glycerol 1,2-carbonate could reach up to 93.4% within 7.5 hours. When applying 10wt% catalyst of Mg/Al=5 LDH on spherical α-Al2O3 into the stirring packed-bed reactor, the yield of glycerol 1,2-carbonate reached to 80.17% within 11 hours under the residence time 22.5 hours, and dimethyl carbonate/glycerol molar ratio = 16 at 90oC.

致謝 I
摘要 II
目錄 IV
圖目錄 VII
表目錄 X
第 1 章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
第 2 章 文獻回顧 4
2.1 生質柴油簡介 4
2.1.1 生質柴油與石化柴油之比較 4
2.1.2 原料油來源 5
2.1.3 油品品質 10
2.1.4 合成方法 15
2.2 甘油轉酯化合成丙三醇1,2-碳酸酯(Glycerol 1,2-Carbonate) 18
2.2.1 丙三醇1,2-碳酸酯之背景介紹 18
2.2.2 丙三醇1,2-碳酸酯合成方式 20
2.3 層狀複金屬氫氧化物(Layered Double Hydroxides, LDHs) 24
2.3.1 層狀複金屬氫氧化物介紹 24
2.3.2 合成方式 27
2.4 質傳阻力(Mass Transfer Resistance) 28
2.5 反應器(Reactor) 31
2.5.1 批式反應器(Batch Reactor) 31
2.5.2 連續式反應器(Continuous Reactor) 32
第 3 章 實驗方法 34
3.1 實驗藥品與儀器設備 34
3.1.1 實驗藥品 34
3.1.2 儀器設備 35
3.2 觸媒製備 35
3.3 觸媒分析原理 38
3.3.1 X光繞射儀(X-Ray Diffractometer, XRD) 38
3.3.2 比表面積分析儀(Specific Surface Area Analyzer)[41] 39
3.3.3 場發射掃描式電子顯微鏡 (FE-SEM,field emission scanning electron microscope) 41
3.3.4 能量分散光譜儀 (EDS,energy dispersive spectrometer) 42
3.3.5 固體鹼性質測定 43
3.4 固體鹼觸媒轉酯化反應實驗流程 44
3.4.1 批式反應實驗流程 44
3.4.2 四角觸媒柱反應器-連續攪拌槽式反應器 45
3.5 轉酯化產物分析 46
3.5.1 氣相層析儀(Gas Chromatograph) 46
3.5.2 產物檢量線製作 49
3.5.3 產物產率計算 54
第 4 章 觸媒特性分析與討論 56
4.1 X光繞射分析 56
4.2 表面積測定 61
4.3 場發射掃描式電子顯微鏡 61
4.4 能量分散光譜儀測定 66
4.5 固體鹼性質測定 70
第 5 章 固體鹼觸媒轉酯化反應實驗結果與討論 73
5.1 生質柴油合成 73
5.2 甘油轉酯化 77
5.2.1 批式反應 77
5.2.2 反應速率式 79
5.2.3 四角觸媒柱反應器-連續攪拌槽式反應 82
結論與未來展望 85
參考資料 87

1.I. E. Agency, Renewable Energy Technologies.
2.S. P. Singh and D. Singh, Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Reviews, 14 (2010) 200-216.
3.經濟部能源局, 生質柴油本土料源新選擇. 能源報導-再生能源, (2009) 34.
4.農糧署糧食產業組糧食生產科, 建立能源作物產銷體系計畫. (2008)
5.何美玥, 台灣永續能源政策. (2007)
6.J. A. Stewart, B. M. Weckhuysen and P. C. A. Bruijnincx, Reusable Mg–Al hydrotalcites for the catalytic synthesis of diglycerol dicarbonate from diglycerol and dimethyl carbonate. Catalysis Today, (2014 (Article in press))
7.J. Sheehan, V. Camobreco, J. Duffield, H. Shapouri, M. Graboski and K. Tyson, An overview of biodiesel and petroleum diesel life cycles. 2000, National Renewable Energy Lab., Golden, CO (US).
8.D. Y. C. Leung, X. Wu and M. K. H. Leung, A review on biodiesel production using catalyzed transesterification. Applied Energy, 87 (2010) 1083-1095.
9.K. S. Tyson, Biodiesel Handling and Use Guideline. (2009) 2-3.
10.M. R. Monteiro, A. R. P. Ambrozin, L. M. Lião and A. G. Ferreira, Critical review on analytical methods for biodiesel characterization. Talanta, 77 (2008) 593-605.
11.經濟部標準檢驗局, CNS15072. (2007)
12.E. Lotero, Y. J. Liu, D. E. Lopez, K. Suwannakarn, D. A. Bruce and J. G. Goodwin, Synthesis of biodiesel via acid catalysis. Industrial & Engineering Chemistry Research, 44 (2005) 5353-5363.
13.S. Hawash, N. Kamal, F. Zaher, O. Kenawi and G. E. Diwani, Biodiesel fuel from Jatropha oil via non-catalytic supercritical methanol transesterification. Fuel, 88 (2009) 4-4.
14.H. He, T. Wang and S. Zhu, Continuous production of biodiesel fuel from vegetable oil using supercritical methanol process. Fuel, 86 (2007) 442-447.
15.H.-Y. Shin, S.-H. Lee, J.-H. Ryu and S.-Y. Bae, Biodiesel production from waste lard using supercritical methanol. The Journal of Supercritical Fluids, 61 (2012) 134-138.
16.E. Hernández-Martín and C. Otero, Different enzyme requirements for the synthesis of biodiesel: Novozym® 435 and Lipozyme® TL IM. Bioresource Technology, 99 (2008) 277-286.
17.M. Lee, J. Lee, D. Lee, J. Cho, S. Kim and C. Park, Improvement of enzymatic biodiesel production by controlled substrate feeding using silica gel in solvent free system. Enzyme and Microbial Technology, 49 (2011) 402-406.
18.J. Kenthorai Raman, V. Foo Wang Ting and R. Pogaku, Life cycle assessment of biodiesel production using alkali, soluble and immobilized enzyme catalyst processes. Biomass and Bioenergy, 35 (2011) 4221-4229.
19.連益盛, 固體酸觸媒合成生質柴油及其反應動力參數探討, 國立臺灣大學化學工程學硏究所碩士論文, (2007)
20.R. Yang, M. X. Su, J. C. Zhang, F. Q. Jin, C. H. Zha, M. Li and X. M. Hao, Biodiesel production from rubber seed oil using poly (sodium acrylate) supporting NaOH as a water-resistant catalyst. Bioresource Technology, 102 (2011) 2665-2671.
21.N. Shibasaki-Kitakawa, H. Honda, H. Kuribayashi, T. Toda, T. Fukumura and T. Yonemoto, Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst. Bioresource Technology, 98 (2007) 416-421.
22.X. J. Liu, H. Y. He, Y. J. Wang and S. L. Zhu, Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst. Catalysis Communications, 8 (2007) 1107-1111.
23.M. Kouzu, T. Kasuno, M. Tajika, S. Yamanaka and J. Hidaka, Active phase of calcium oxide used as solid base catalyst for transesterification of soybean oil with refluxing methanol. Applied Catalysis a-General, 334 (2008) 357-365.
24.Z.-H. Li, P.-H. Lin, J. C. S. Wu, Y.-T. Huang, K.-S. Lin and K. C. W. Wu, A stirring packed-bed reactor to enhance the esterification–transesterification in biodiesel production by lowering mass-transfer resistance. Chemical Engineering Journal, 234 (2013) 9-15.
25.M. O. Sonnati, S. Amigoni, E. P. Taffin de Givenchy, T. Darmanin, O. Choulet and F. Guittard, Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications. Green Chemistry, 15 (2013) 283-306.
26.顧黎萍 and 樂傳俊, 甘油轉化的主要產品及其市場分析. Technology and Market, 18 (2011) 4.
27.陳松叢, 趙應偉, 劉建華 and 夏春穀, 甘油碳酸酯合成方法概述. 分子催化, 26 (2012) 10.
28.J. R. Ochoa-Gómez, O. Gómez-Jiménez-Aberasturi, B. Maestro-Madurga, A. Pesquera-Rodríguez, C. Ramírez-López, L. Lorenzo-Ibarreta, J. Torrecilla-Soria and M. C. Villarán-Velasco, Synthesis of glycerol carbonate from glycerol and dimethyl carbonate by transesterification: Catalyst screening and reaction optimization. Applied Catalysis A: General, 366 (2009) 315-324.
29.X. Duan and D. G. Evans, Layered Double Hydroxides. Springer Berlin Heidelberg, 2006, p. 90-115.
30.H. Noureddini and D. Zhu, Kinetics of transesterification of soybean oil. Journal of the American Oil Chemists'' Society, 74 (1997) 1457-1463.
31.E. Santacesaria, M. Di Serio, R. Tesser, R. Turco, M. Tortorelli and V. Russo, Biodiesel process intensification in a very simple microchannel device. Chemical Engineering and Processing: Process Intensification, 52 (2012) 47-54.
32.D. B. Boocock, S. Konar, V. Mao, C. Lee and S. Buligan, Fast formation of high-purity methyl esters from vegetable oils. Journal of the American Oil Chemists'' Society, 75 (1998) 1167-1172.
33.M. G. Álvarez, M. Plíšková, A. M. Segarra, F. Medina and F. Figueras, Synthesis of glycerol carbonates by transesterification of glycerol in a continuous system using supported hydrotalcites as catalysts. Applied Catalysis B: Environmental, 113–114 (2012) 212-220.
34.X. Yu, Z. Wen, Y. Lin, S.-T. Tu, Z. Wang and J. Yan, Intensification of biodiesel synthesis using metal foam reactors. Fuel, 89 (2010) 3450-3456.
35.Z. Qiu, L. Zhao and L. Weatherley, Process intensification technologies in continuous biodiesel production. Chemical Engineering and Processing: Process Intensification, 49 (2010) 323-330.
36.E. Santacesaria, M. D. Serio, R. Tesser, L. Casale, D. Verde, R. Turco and A. Bertola, Use of a Corrugated Plates Heat Exchanger Reactor for Obtaining Biodiesel with Very High Productivity. Energy Fuels, 23 (2009) 5206-5212.
37.H. S. Fogler, Elements of Chemical Reaction Engineering Prentice Hall PTR, 2006, p. 656.
38.W. J. T. J. M. Thomas, Principles and Practice of Heterogeneous Catalysis. VCH, New York; 1997, p. 66.
39.D. Darnoko and M. Cheryan, Continuous production of palm methyl esters. Journal of the American Oil Chemists'' Society, 77 (2000) 1269-1272.
40.J. William D. Callister, Materials science and engineering:an introduction,7ed. Wiley, New York; 1985, p. 68.
41.呂維明 and 戴怡德, 粉粒體粒徑量測技術. 高立圖書有限公司, 台北; 1998, p. 28-37.
42.K. Tanabe, Solid acids and bases : their catalytic properties. Academic Press, New York; 1970, p. 51.
43.S. H. University, Gas chromatography.
44.N. Kondamudi, S. K. Mohapatra and M. Misra, Quintinite as a bifunctional heterogeneous catalyst for biodiesel synthesis. Applied Catalysis A: General, 393 (2011) 36-43.
45.Y. Xi and R. J. Davis, Influence of textural properties and trace water on the reactivity and deactivation of reconstructed layered hydroxide catalysts for transesterification of tributyrin with methanol. Journal of Catalysis, 268 (2009) 307-317.
46.Z. Yuan, L. Wang, J. Wang, S. Xia, P. Chen, Z. Hou and X. Zheng, Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts. Applied Catalysis B: Environmental, 101 (2011) 431-440.
47.C. R. Venkat Reddy, R. Oshel and J. G. Verkade, Room-Temperature Conversion of Soybean Oil and Poultry Fat to Biodiesel Catalyzed by Nanocrystalline Calcium Oxides. Energy & Fuels, 20 (2006) 1310-1314.
48.S. Gryglewicz, Rapeseed oil methyl esters preparation using heterogeneous catalysts. Bioresource Technology, 70 (1999) 249-253.
49.S. Abelló, D. Vijaya-Shankar and J. Pérez-Ramírez, Stability, reutilization, and scalability of activated hydrotalcites in aldol condensation. Applied Catalysis A: General, 342 (2008) 119-125.
50.F. Winter, X. Xia, B. P. C. Hereijgers, J. H. Bitter, A. J. van Dillen, M. Muhler and K. P. de Jong, On the Nature and Accessibility of the Brnsted-Base Sites in Activated Hydrotalcite Catalysts. The Journal of Physical Chemistry B, 110 (2006) 9211-9218.
51.A. Takagaki, K. Iwatani, S. Nishimura and K. Ebitani, Synthesis of glycerol carbonate from glycerol and dialkyl carbonates using hydrotalcite as a reusable heterogeneous base catalyst. Green Chemistry, 12 (2010) 578-581.
52.G. D. Yadav and P. A. Chandan, A green process for glycerol valorization to glycerol carbonate over heterogeneous hydrotalcite catalyst. Catalysis Today, 237 (2014) 47-53.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top