跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 23:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘正彥
研究生(外文):Cheng-Yen Pan
論文名稱:氟取代電子予體小分子有機太陽能電池材料的設計、合成與鑑定
論文名稱(外文):Design, Synthesis, and Characterization of Small Molecules with Fluorinated Donor Moiety for Organic Solar Cells
指導教授:汪根欉
指導教授(外文):Ken-Tsung Wang
口試委員:洪文誼劉舜維
口試委員(外文):Wen-Yi HungShun-Wei Liu
口試日期:2015-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:130
中文關鍵詞:有機太陽能電池含氟電子予體藍移
外文關鍵詞:Organic solar cellsFluorinated DonorBlue shift
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們合成出一系列由不同氟數量以及位置修飾的 DTDCPB 衍生物作為小分子型太陽能電池。DTDCPB 為具有不對稱的予體-受體-受體 (D-A-A) 結構的化合物,在先前的報導中,其元件可以達到8.2% 高效率。氟為電負度最大的元素且為最小的拉電子基團。將氟引入我們的材料中,氟取代 DTDCPB 衍生物的最高佔有軌域和最低未佔有軌域的能階會降低,而能隙的差距會變大。低的最高佔有軌域有利於使我們能做到蒸鍍型小分子最高的開路電壓 1.02 V。根據氟原子在電子予體端取代的位置 (氟在苯並噻二唑的鄰位或間位),會影響其在光物理性質中的波長和消光係數。我們發現了氟的修飾會對光電壓以及光電流產生比較權衡的影響。藉由精密的調整電子予體和電子受體的濃度和材層的厚度,以 DTDCPB-Fm–C70 為系統的蒸鍍型塊材異質結構太陽能電池,其效率可達到6.12%,開路電壓為 0.93 V,以及短路電流為 10.50 mA/cm−2。
最後的部分,我們藉由改變分子的結構來調整能階,以取得更好的光子接收。因為噻吩基團多電子的特性以及具有較多比例的醌型結構,使先前報導過的 DTDCTB 分子有非常優異的短路電流 14.8 mA/cm2。我們藉由引入含氟的噻吩得到新材料 DTDCTB-DF 在元件的表現中,相較於 DTDCTB 有較好的開路電壓。藉由最佳化混摻的結果DTDCTB-DF-C70,可以獲得5.3% 的高效率,開路電壓為 0.96 V,以及短路電流為 11.5 mA/cm−2。

In this work, a novel family of DTDCPB series with various numberous and positions of fluorine substitution have been synthesized as donor materials for small-molecule organic solar cells. The compound DTDCPB has an unsymmetrical donor−acceptor−acceptor (D-A-A) framework, which gave a remarkable PCE of 8.2%, is reported. Fluorine is the most electronegative element and the smallest electron-withdrawing group. Introduction of fluorine to our materials, the fluorinated DTDCPB derivatives exhibited decreased LUMO and HOMO energy levels, but with large band gap. The low-lying HOMO feature is beneficial to achieve reasonable highest Voc of 1.02 V for vapor-deposited small molecule OSCs. The substituted positions of fluorine on the donor unit (the fluorine ortho- or meta- to the) would affect the absorption wavelength and the extinction coefficient in their optical properties. We found there is a trade-off between the photovoltage and the photocurrent due to the modification of fluorine. By fine-tuning the layer thicknesses and the donor:acceptor blended ratio in the bulk heterojunction layer, vacuum-deposited hybrid bulk heterojunction devices, based on Fm–C70 gave a PCE of 6.12% along with Voc of 0.93 V, Jsc of 10.5 mA/cm2.
Furthermore, we changed different backbone structure to adust molecular energy level for better light harvesting. The compound DTDCTB has a wonderful Jsc of 14.8 mA/cm2, because of the electron-rich and fortified quinoidal characters of thiophene. The new material DTDCTB-DF, with fluorinated thiophene, can improve the device performance as compared to DTDCTB. With an optimized blend ratio of DTDCTB-DF-C70, a high PCE of 5.3% was obtained, with Voc of 0.96 V, Jsc of 11.5 mA/cm2.

目錄
中文摘要 ........................................................................................................................... i
Abstract ............................................................................................................................. ii
目錄 ................................................................................................................................. iii
圖目錄 ............................................................................................................................. vi
表目錄 .............................................................................................................................. x
分子結構 ........................................................................................................................ xii
第一章 緒論 .................................................................................................................. 1
1-1 背景 .................................................................................................................. 1
1-2 有機太陽能電池運作原理 .............................................................................. 3
1-3 小分子有機太陽能電池簡介 .......................................................................... 8
1-3-1 濕製程有機小分子太陽能電池簡介...................................................... 9
1-3-2 蒸鍍型有機小分子太陽能電池簡介.................................................... 12
1-4 設計予體-受體-受體(D-A-A) 結構的太陽能電池材料............................ 17
1-6 含氟有機太陽能電池材料 ............................................................................ 20
1-5 參考文獻 ........................................................................................................ 25
第二章 含氟取代苯環電子予體之小分子有機太陽能電池材料應用 .................... 30
2-1 含氟取代苯環電子予體之設計 .................................................................... 30
2-2 合成 ................................................................................................................ 32
2-3 光物理性質 .................................................................................................... 36
2-4 熱性質 ............................................................................................................ 40
2-5 電化學性質 .................................................................................................... 41
2-6 分子排列與結構的晶體分析 ........................................................................ 45
2-6-1 氟原子對於分子間作用力的影響........................................................ 46
2-6-2 氟原子對於分子結構的影響................................................................ 54
2-7 理論計算 ........................................................................................................ 58
2-7-1 吸收波長及最高佔有軌域的理論計算................................................ 58
2-7-2 能階躍遷對於吸收之貢獻.................................................................... 60
2-7-3 電荷分布圖............................................................................................ 64
2-7-4 基態到激發態偶極矩變化(Δμge) 及躍遷偶極矩(μtr) 之計算........ 66
2-8 光伏打電池 .................................................................................................... 68
2-9 結論 ................................................................................................................ 72
2-10 參考文獻 ........................................................................................................ 73
第三章 氟取代噻吩電子予體應用於小分子有機太陽能電池材料 ........................ 75
3-1 含氟取代噻吩電子予體之設計 .................................................................... 75
3-2 合成 ................................................................................................................ 78
3-3 光物理性質 .................................................................................................... 81
3-4 熱性質 ............................................................................................................ 83
3-5 電化學性質 .................................................................................................... 84
3-6 分子排列與結構的晶體分析 ........................................................................ 87
3-6-1 氟原子對於分子間作用力的影響........................................................ 87
3-6-2 氟原子對於分子結構的影響................................................................ 89
3-7 理論計算 ........................................................................................................ 90
3-7-1 吸收波長及最高佔有軌域的理論計算................................................ 90
3-7-2 能階躍遷對於吸收之貢獻.................................................................... 92
3-7-3 基態到激發態偶極矩變化(Δμge) 及躍遷偶極矩(μtr) 之計算........ 94
3-8 光伏打電池 .................................................................................................... 95
3-9 結論 ................................................................................................................ 98
3-10 參考文獻 ........................................................................................................ 99
第四章 實驗部分 ...................................................................................................... 100
附錄 .............................................................................................................................. 114

1-5參考文獻
1.REN21''s Renewables Global Status Report, (http://www.ren21.net/REN21Activities/GlobalStatusReport.aspx)
2.D. M. Chapin, C. S. Fuller, G. L. Pearson, J. Appl. Phys., 1954, 25, 676.
3.The National Center for Photovoltaics, National Renewable Energy Laboratory (NREL), (http://www.nrel.gov/ncpv/)
4.C. W. Tang, Appl. Phys. Lett., 1986, 48, 183.
5.S. Günes, H. Neugebauer, N. S. Sariciftci, Chem. Rev., 2007, 107, 1324.
6.G .Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science, 1995, 270, 1789.
7.F. C. Krebs, Sol. Energy Mater. Sol. Cells, 2009, 93, 394.
8.M. T. Dang, L. Hirsch, G. Wantz, J. D. Wuest, Chem. Rev., 2013, 113, 3734.
9.D. Ni, B. Zhao, T. Shi, S. Ma, G. Tu, H. Wu, Acs.Macro. Lett., 2013, 2, 621.
10.G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf and C. J. Brabec, Adv. Mater., 2008, 20, 579.
11.M. Gruber, J. Wagner, K. Klein, U. Hörmann, A. Opitz, M. Stutzmann, W. Brütting, Adv. Energy Mater., 2012, 2, 1100.
12.S. B. Darling, F. You, RSC Adv., 2013, 3, 17633.
13.Cheng, Y. J., Yang, S. H., Hsu, C. S., Chem. Rev., 2009, 109, 5868.
14.http://electronics.stackexchange.com/questions/38699/practical-efficiencies-of-available-solar-cells
15.W. Tress, A. Merten, M. Furno, M. Hein, K. Leo and M. Riede, Adv. Energy Mater., 2013, 3, 631.
16.C. Deibel, T. Strobel and V. Dyakonov, Adv. Mater., 2010, 22, 4097.
17.L. J. A. Koster, V. D. Mihailetchi and P. W. M. Blom, Appl. Phys. Lett., 2006, 88, 093511.
18.A. Mishra and P. Bäuerle, Angew. Chem. Int. Ed., 2012, 51, 2020.
19.J. S. Moon, C. J. Takacs, S. Cho, R. C. Coffin, H. Kim, G. C. Bazan, A. J. Heeger, Nano Lett., 2010, 10, 4005.
20.D. H. Wang, J. S. Moon, J. Seifter, J. Jo, J. H. Park, O. O. Park, A. J. Heeger, Nano Lett., 2011, 11, 3163.
21.J. S. Moon, C. J. Takacs, Y. Sun, A. J. Heeger, Nano Lett., 2011, 11, 1036.
22.C. J. Takacs, N. D. Treat, S. Krmer, Z. Chen, A. Facchetti, M. L. Chabinyc, A. J. Heeger, Nano Lett., 2013, 13, 2522.
23.Y. Liu, C.-C. Chen, Z. Hong, J. Gao, Y. (Michael) Yang, H. Zhou, L. Dou, G. Li and Y. Yang, Sci. Rep., 2013, 3, 3356.
24.Y. Liu, X. Wan, F. Wang, J. Zhou, G. Long, J. Tian, J. You, Y. Yang and Y. Chen, Adv. Energy Mater., 2011, 1, 771.
25.Y. Liu , X. Wan , F. Wang , J. Zhou , G. Long , J. Tian and Y. Chen, Adv. Mater. 2011, 23, 5387.
26.Z. Li, G. He, X. Wan, Y. Liu, J. Zhou, G. Long,Y. Zuo, M. Zhang, and Y. Chen, Adv. Energy Mater., 2012, 2, 74.
27.J. Zhou, Y. Zuo, X. Wan, G. Long, Q. Zhang, W. Ni, Y. Liu, Z. Li, G. He, C. Li, B. Kan, M. Li, and Y. Chen, J. Am. Chem. Soc., 2013, 135, 8484.
28.G. C. Welch, L. A. Perez, C. V. Hoven, Y. Zhang, X.-D. Dang, A. Sharenko, M. F. Toney, E. J. Kramer, T.-Q. Nguyen, G. C. Bazan, J. Mater. Chem., 2011, 21, 12700.
29.C. J. Takacs, Y. Sun, G. C. Welch, L. A. Perez, X. Liu, W. Wen, G. C. Bazan and A. J. Heeger, J. Am. Chem. Soc., 2012, 134, 16597.
30.V. Gupta,A. K. K. Kyaw, D. H. Wang, S. Chand, G. C. Bazan and A. J. Heeger, Sci. Rep., 2013, 3, 1965.
31.J. Drechsel, B. M€annig, F. Kozlowski, M. Pfeiffer, K. Leo, H. Hoppe, Appl. Phys. Lett., 2005, 86, No. 244102.
32.X. Xiao, J. D. Zimmerman, B. E. Lassiter, K. J. Bergemann, S. R. Forrest,
Appl. Phys. Lett. 2013, 102, 073302.
33.M. Hirade, C. Adachi, Appl. Phys. Lett., 2011, 99, 153302.
34.N. M. Kronenberg, V. Steinmann, H. Bürckstümmer, J. Hwang, D. Hertel, F. Würthner, K. Meerholz, Adv. Mater., 2010, 22, 4193.
35.Heliatek GmbH, press release on January 16, 2013 (http://www.heliatek.com).
36.J. Xue, S. Uchida, B. P. Rand, S. R. Forrest, Appl. Phys. Lett., 2004, 84, 3013.
37.J. Xue, B. P. Rand, S. Uchida, S. R. Forrest, Adv. Mater., 2005, 17, 66.
38.K. Cnops, B. P. Rand, D. Cheyns, B. Verreet, M. A. Empl and P. Heremans, Nat. Commun., 2014, 5, 3406.
39.S. Wang, E. I. Mayo, M. D. Perez, L. Griffe, G. Wei, P. I. Djurovich, S. R. Forrest, M. E. Thompson, Appl. Phys. Lett., 2009, 94, 233304.
40.G. Chen, H. Sasabe, Z. Wang, X. -F. Wang, Z. Hong, Y. Yang and J. Kido, Adv. Mater., 2012, 24, 2768.
41.L.-C. Chi, H.-F. Chen, W.-Y. Hung, Y.-H. Hsu, P.-C. Feng, S.-H. Chou, Y.-H. Liu, K.-T. Wong, Sol. Energ. Mat. Sol. Cells, 2013, 109, 33.
42.V. Steinmann, N. M. Kronenberg, M. R. Lenze, S. M. Graf , D. Hertel, K. Meerholz, H. Bürckstümmer, E. V. Tulyakova, and F. Würthner, Adv. Energy Mater. 2011, 1, 888.
43.K. Meerholz and F. Würthner, Chem. Eur. J. 2010, 16, 9366.
44.L.-Y. Lin, Y.-H. Chen, Z.-Y. Huang, H.-W. Lin, S.-H. Chou, F. Lin, C.-W. Chen, Y.-H. Liu, and K.-T. Wong, J. Am. Chem. Soc., 2011, 133, 15822.
45.H.-W. Lin, L.-Y. Lin, Y.-H. Chen, C.-W. Chen, Y.-T. Lin, S.-W. Chiua and K.-T. Wong, Chem. Commun., 2011, 47, 7872.
46.Y.-H. Chen, L.-Y. Lin, C.-W. Lu, F. Lin, Z.-Y. Huang, H.-W. Lin, P.-H. Wang, Y.-H. Liu, K.-T. Wong, J. Wen, D. J. Miller and S. B. Darling, J. Am. Chem. Soc., 2012, 134, 13616.
47.Y. Zou, J. Holst, Y. Zhang and R. J. Holmes, J. Mater. Chem. A, 2014, 2, 12397.
48.M. Velusamy, K. R. J. Thomas, J. T. Lin, Y.-C. Hsu, and K.-C. Ho, Org. Lett., 2005, 7, 1899.
49.L.-Y. Lin, C.-H. Tsai, F. Lin, T.-W. Huang, S.-H. Chou, C.-C. Wu, K.-T. Wong, Tetrahedron, 2012, 68, 7509.
50.S.-W. Chiu, L.-Y. Lin, H.-W. Lin, Y.-H. Chen, Z.-Y. Huang, Y.-T. Lin, F. Lin, Y.-H. Liu and K.-T. Wong, Chem. Commun., 2012, 48, 1857.
51.L.-Y. Lin, C.-H. Tsai, K.-T. Wong, T.-W. Huang, C.-C. Wu, S.-H. Chou, F. Lin, S.-H. Chen and A.-I Tsai, J. Mater. Chem., 2011, 21, 5950.
52.C.-H. Chen, Y.-C. Hsu, H.-H. Chou, K. R. J. Thomas, J. T. Lin and C.-P. Hsu, Chem.–Eur. J., 2010, 16, 3184.
53.K. Peer, Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, Wiley-VCH, Weinheim, 2004.
54.H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu and W. You, Angew. Chem. 2011, 50, 2995.
55.S. Wong, H. Ma, A. K. Y. Jen, R. Barto and C.W. Frank, Macromolecules, 2003, 36, 8001.
56.K. Reichenbächer, H. I. Suss and J. Hulliger, Chem. Soc. Rev. 2005, 34, 22.
57.M. Pagliaro and R. Ciriminna, J. Mater. Chem., 2005, 15, 4981.
58.Y. Y. Liang, D. Q. Feng, Y. Wu, S. T. Tsai, G. Li, C. Ray and L. P. Yu, J. Am. Chem. Soc. 2009, 131, 7792.
59.Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray and L. Yu, Adv. Mater., 2010, 22, E135.
60.Y. Zhang, S. C. Chien, K. S. Chen, H. L. Yip, Y. Sun, J. A. Davices and F. C. Chen, A. K. Y. Jen, Chem. Commun. 2011, 47, 11026.
61.H.-C. Chen, Y.-H. Chen, C.-C. Liu, Y.-C. Chien, S.-W. Chou and P.-T. Chou, Chem. Mater., 2012, 24, 4766.
62.R. Zhou, Q.-D. Li, X.-C. Li, S.-M. Lu, L.-P. Wang, C.-H. Zhang, J. Huang, P. Chen, F. Li, X.-H. Zhu, W. C.H. Choy, J. Peng, Y. Cao, X. Gong, Dyes and Pigments, 2014, 101, 51.
63.N. Cho, K. Song, J. K. Lee, and J. Ko, Chem. Eur. J., 2012, 18, 11433.
64.S. Paek, N. Cho, K. Song, M.-J. Jun, J. K. Lee and J. Ko, J. Phys. Chem. C, 2012, 116, 23205.
65.T. Okamoto, K. Nakahara, A. Saeki, S. Seki, J. H. Oh, H. B. Akkerman, Z. Bao, and Y. Matsuo, Chem. Mater., 2011, 23, 1646.
66.L. Yang, J. R. Tumbleston, H. Zhou, H. Ade and W. You. Energy Environ. Sci. 2013, 6, 316.
67.J. R. Tumbleston, A. C. Stuart, E. Gann, W. You and H. Ade, Adv. Funct. Mater., 2013, 23, 3463.
68.B. Carsten, J. M. Szarko, H. J. Son, W. Wang, L. Lu, F. He, B. S. Rolczynski, S. J. Lou, L. X. Chen and L. Yu, J. Am. Chem. Soc., 2011, 133, 20468.
69.B. Carsten, J. M. Szarko, L. Lu, H. J. Son, F. He, Y. Y. Botros, L. X. Chen and L. Yu, Macromolecules, 2012, 45, 6390.
70.A. C. Stuart, J. R. Tumbleston, H. Zhou, W. Li, S. Liu, H. Ade, and W. You, J. Am. Chem. Soc., 2013, 135, 1806.

2-10參考文獻
1.M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. J. Brabec, Adv. Mater., 2006, 18, 789.
2.Z. Fei, M. Shahid, N. Y.-Gross, S. Rossbauer, H. Zhong, S. E. Watkins, T. D. Anthopoulos and M. Heeney, Chem. Commun., 2012, 48, 11130.
3.B. Carsten, J. M. Szarko, H. J. Son, W. Wang, L. Lu, F. He, B. S. Rolczynski, S. J. Lou, L. X. Chen and L. Yu, J. Am. Chem. Soc., 2011, 133, 20468.
4.J. W. Jo, S. Bae , F.g Liu , T. P. Russell and W. H. Jo, Adv. Funct. Mater., 2015, 25, 120.
5.M. Zhang, X. Guo, S. Zhang, and J. Hou, Adv. Mater., 2014, 26, 1118.
6.B. S. Rolczynski, J. M. Szarko, H. J. Son, Y. Liang, L. Yu, and L. X. Chen, J. Am. Chem. Soc., 2012, 134, 4142.
7.Y.-H. Chen, L.-Y. Lin, C.-W. Lu, F. Lin, Z.-Y. Huang, H.-W. Lin, P.-H. Wang, Y.-H. Liu, K.-T. Wong, J. Wen, D. J. Miller and S. B. Darling, J. Am. Chem. Soc., 2012, 134, 13616.
8.L. Castedo, E. Guitián, e-EROS Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Ltd, 2001.
9.P. S. Anderson, M. E. Christy, C. D. Colton, Tetrahedron Lett., 1976, 17,3673.
10.M. Piacenza, F. D. Sala, G. M. Farinola, C. Martinelli, and G. Gigli, J. Phys. Chem. B, 2008, 112, 2996.
11.S. Paek, N. Cho, K. Song, M.-J. Jun, J. K. Lee and J. Ko, J. Phys. Chem. C, 2012, 116, 23205.
12.Y. Li, J. Zou, H.L. Yip, C. Z. Li, Y. Zhang, C. C. Chueh, J. Intemann, Y. Xu, P. W. Liang, Y. Chen and A. K.-Y. Jen, Macromolecules, 2013, 46, 5497.
13.P. Liu, K. Zhang, F. Liu, Y. Jin, S. Liu, T. P. Russell, H. L. Yip, F. Huang and Y. Cao, Chem. Mater., 2014, 26, 3009.
14.A. L. Appleton, S. Miao, S. M. Brombosz, N. J. Berger, S. Barlow, S. R. Marder, B. M. Lawrence, K. I. Hardcastle, and U. H. F. Bunz, Org. Lett., 2009, 11, 5222.
15.B. D. Lindner, B. A. Coombs, M. Schaffroth, J. U. Engelhart, O. Tverskoy, F. Rominger, M. Hamburger, U. H. F. Bunz, Org. Lett., 2013, 15, 666.
16.T. Okamoto, K. Nakahara, A. Saeki, S. Seki, J. H. Oh, H. B. Akkerman, Z. Bao, and Y. Matsuo, Chem. Mater., 2011, 23, 1646.
17.Y. Zou, J. Holst, Y. Zhang and R. J. Holmes, J. Mater. Chem. A, 2014, 2, 12397.

3-10參考文獻
1.C. J. Brabec, M. Heeney, I. McCulloch and J. Nelson, Chem. Soc. Rev., 2011, 40, 1185.
2.M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. J. Brabec, Adv. Mater., 2006, 18, 789.
3.L.-Y. Lin, Y.-H. Chen, Z.-Y. Huang, H.-W. Lin, S.-H. Chou, F. Lin, C.-W. Chen, Y.-H. Liu, and K.-T. Wong, J. Am. Chem. Soc., 2011, 133, 15822.
4.Y.-H. Chen, L.-Y. Lin, C.-W. Lu, F. Lin, Z.-Y. Huang, H.-W. Lin, P.-H. Wang, Y.-H. Liu, K.-T. Wong, J. Wen, D. J. Miller and S. B. Darling, J. Am. Chem. Soc., 2012, 134, 13616.
5.Z. Fei, M. Shahid, N. Y.-Gross, S. Rossbauer, H. Zhong, S. E. Watkins, T. D. Anthopoulos and M. Heeney, Chem. Commun., 2012, 48, 11130.
6.Y. Sakamoto, S. Komatsu, and T. Suzuki, J. Am. Chem. Soc., 2001, 123, 4643.
7.S. Paek, N. Cho, K. Song, M.-J. Jun, J. K. Lee and J. Ko, J. Phys. Chem. C, 2012, 116, 23205.
8.M. Zhang, X. Guo, S. Zhang, and J. Hou, Adv. Mater., 2014, 26, 1118.
9.M. Piacenza, F. D. Sala, G. M. Farinola, C. Martinelli, and G. Gigli, J. Phys. Chem. B, 2008, 112, 2996
10.Y. Li, J. Zou, H.L. Yip, C. Z. Li, Y. Zhang, C. C. Chueh, J. Intemann, Y. Xu, P. W. Liang, Y. Chen and A. K.-Y. Jen, Macromolecules, 2013, 46, 5497.
11.P. Liu, K. Zhang, F. Liu, Y. Jin, S. Liu, T. P. Russell, H. L. Yip, F. Huang and Y. Cao, Chem. Mater., 2014, 26, 3009.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文