跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/06 17:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:杜庭熏
研究生(外文):Ting-Hsun Tu
論文名稱:6-Azaindole的激發態特性
論文名稱(外文):The Excited State Properties of 6-Azaindole
指導教授:周必泰
指導教授(外文):Pi-Tai Chou
口試委員:張鎮平何美霖
口試委員(外文):Chen-Pin ChangMei-Lin Ho
口試日期:2015-07-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:57
中文關鍵詞:激發態質子轉移6-氮雜吲哚三聚體
外文關鍵詞:Excited State Proton Transfer6-Azaindoletrimer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
1969年由Taylor發現7-azaindole會自身聚集產生Hydrogen-bonded dimer並且進行excited state double proton transfer (ESDPT) 。我們發現其衍生物6-azaindole於非極性環境下 (例如:環己烷) ,由於立體障礙的關係會阻止6-azaindole自身聚集成dimer,取而代之的是形成hydrogen-bonded trimer,其平衡常數大約為6.4 × 106 M-2。當光激發trimer吸收的位置 (310 nm) 時,除了會產生normal - 325 nm放光之外還會產生進行excited state triple proton transfer (ESTPT) 後的tautomer - 435 nm放光,我們也透過理論計算的結果說明trimer在能量上是可以傾向形成的。
除此之外,我們也研究6-azaindole於乙醇和水中的性質與光物理現象。6-azaindole於乙醇中從基態被激發到激發態後可以透過溶劑重組成1:3的環狀結構後再進行激發態質子轉移,其性質類似於7-Hydroxyquinoline於乙醇中﹔而6-azaindole在水中被質子化的pKa = 8和pKa* = 14.37,所以在pH > 10的環境中,基態都是以中性分子存在時,6-azaindole會有不同的激發態特性,像是在pH = 10.9的時候,除了可進行溶劑重組成1:3環狀結構再進行激發態質子轉移產生tautomer之外,也因為在此pH值下小於6-azaindole被質子化的pKa*所以仍可觀察到陽離子的放光﹔而在pH = 12.7的時候,除了會進行與上條件相同的激發態質子轉移,還會產生陽離子因為於此pH值下依舊小於6-azaindole被質子化的pKa*,但在此pH值下比6-azaindole tautomer被質子化的pKa* ~ 11.1大,所以產生的陽離子經共振後會將N1-H解離產生tautomer,此過程近似於兩步驟的質子轉移,而陽離子於過程中只是扮演中間體的角色。



In 1969, Taylor discovered the hydrogen-bond dimer of 7-azaindole and its associated excited-state double proton transfer reaction. We discover that 6-azaindole in nonpolar solvent (e.g. cyclohexane) would self-assemble cyclic hydrogen-bonded trimer. The steric hindrance prohibits simultaneous dual N(1)-H---N(6) H-bonded dimer formation. Instead, self-assembly via N(1)-H---N(6) H-bond takes place in non-polar solvents, forming the H-bonded trimer with an association constant of 6.4 ×106 M-2 in cyclohexane. When UV excitation (310 nm) the H-bonded trimer, it would produce normal emission at 325 nm and undergo ESTPT to result in a tautomer emission at 435 nm .Computational approach further affirms the cyclic H-bond trimer formation and its energetically favorable ESTPT reaction.
Otherwise, we also study the properties and photophysical characteristics of 6-azaindole in water and ethanol. In ethanol, 6-azaindole would proceed solvent reorganization to form 1:3 cyclic structure and couple intrinsic proton transfer in the excited state which like the property of 7-hydroxyquinoline in ethanol. In water, the pKa of 6-azaindole protonated form is drastically increased from 8.0 (ground state) to 14.37 in the excited state. When the pH is greater than 10, neutral (normal) is the dominant form in the ground state which has distinct properties of excited state. Following we take two different pH as example. Firstly, at pH = 10.9, 6-azaindole can form the 1:3 cyclic structure through solvent reorganization then proceed excited state proton transfer. The pKa* of the 6-azaindole protonated form is greater than this pH so the cationic emission can also be observed. Secondly, at pH = 12.7, 6-azaindole can undergo proton transfer to form the tautomer as well. In this pH is still smaller than the pKa* of 6-azaindole protonated form so cation would also be produced. Besides, the pKa* (~11.16) of the 6-azaindole tautomer protonated form is smaller than the environment. Therefore, the N1-H may dissociate and end up with the tautomer form after a redistribution of the electron density. This phenomenon can be considered as two-step proton-transfer mechanism. The cationic form is just an intermediate specie in the tautomerization process.



謝辭..............................................................i
中文摘要…………………………………………………………………………....…ii
ABSTRACT…………………………………………………………………………..iii
CONTENTS……………………………………………………………………….…..v
LIST OF FIGURES…………………………………………………………..………vii
第一章 序論……………………………………………………………………..........1
第二章 引言…………………………………………………………………..............2
第三章 實驗……………………………………………………………......................8
3.1 樣品純化與合成……………………………………………….....................8
3.2測量儀器……………………………………………………………………..9
3.3 quantum yield 量測………………………………………………………...11
3.4 Dissociation constant (pKa)……………………………………....................11
3.5理論計算………………………………………………………………........12
第四章實驗結果與討論……………………………………………………………..14
4-1 6-Aaindole (6AI) 於非極性溶劑 (例如:環己烷) 中的氫鍵鍵結…..…....14
4-2 6-Azaindole (6AI) 於乙醇中的激發態性質……………………………....17
4-3 6-Azaindole (6AI) 於鹼性溶液下的激發態性質…………………………21
第五章結論…………………………………………………………………………..48
參考文獻……………………………………………………………………………..49
附錄…………………………………………………………………………………..51
1.公式導證: 6-Azaindole timer association constant Ka-吸收方法…………....51
2.公式導證: 6-Azaindole timer association constant Ka-螢光方法…………....52
3.公式導證: 6-Azaindole與乙醇分子形成hydrogen-bonded complex之平衡常數……………………………………………………………………………………..53
4. 理論計算方法修正-free energy………………………………………..........54



(1)Ingham, K.; El-Bayoumi, M. A. Journal of the American Chemical Society 1974, 96, 1674.
(2)Watson, J. D.; Crick, F. H. C. Nature 1953, 171, 964.
(3)Chen, Y.; Rich, R. L.; Gai, F.; Petrich, J. W. The Journal of Physical Chemistry 1993, 97, 1770.
(4)Rich, R. L.; Gai, F.; Lane, J. W.; Petrich, J. W.; Schwabacher, A. W. Journal of the American Chemical Society 1995, 117, 733.
(5)Moog, R. S.; Maroncelli, M. The Journal of Physical Chemistry 1991, 95, 10359.
(6)McMorrow, D.; Aartsma, T. J. Chemical Physics Letters 1986, 125, 581.
(7)Takeuchi, S.; Tahara, T. Chemical Physics Letters 1997, 277, 340.
(8)Takeuchi, S.; Tahara, T. Proceedings of the National Academy of Sciences 2007, 104, 5285.
(9)Chapman, C. F.; Maroncelli, M. The Journal of Physical Chemistry 1992, 96, 8430.
(10)Wu, Y.-S.; Huang, H.-C.; Shen, J.-Y.; Tseng, H.-W.; Ho, J.-W.; Chen, Y.-H.; Chou, P.-T. The Journal of Physical Chemistry B 2015, 119, 2302.
(11)Chou, P.-T.; Wei, C.-Y.; Chris Wang, C.-R.; Hung, F.-T.; Chang, C.-P. The Journal of Physical Chemistry A 1999, 103, 1939.
(12)Nakagawa, T.; Kohtani, S.; Itoh, M. Journal of the American Chemical Society 1995, 117, 7952.
(13)Itoh, M.; Adachi, T.; Tokumura, K. Journal of the American Chemical Society 1984, 106, 850.
(14)Kohtani, S.; Tagami, A.; Nakagaki, R. Chemical Physics Letters 2000, 316, 88.
(15)Konijnenberg, J.; Ekelmans, G. B.; Huizer, A. H.; Varma, C. A. G. O. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 1989, 85, 39.
(16)Crosby, G. A.; Demas, J. N. The Journal of Physical Chemistry 1971, 75, 991.
(17)Wang, J.; Boyd, R. J. The Journal of Physical Chemistry 1996, 100, 16141.
(18)Wang, J.; Boyd, R. J. Chemical Physics Letters 1996, 259, 647.
(19)Chou, P.-T; Wei, C.-Y; Chris Wang, C.-R; Hung, F.-T; Chang, C.-P. The Journal of Physical Chemistry A 1999, 103, 1939.
(20)Kwon, O.-H; Lee, Y.-S; Yoo, B. K; Jang, D.-J. Angewandte Chemie International Edition 2006, 45, 415.
(21)Baba, H.; Matsuyama, A.; Kokubun, H. Spectrochimica Acta Part A: Molecular Spectroscopy 1969, 25, 1709.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top