跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/28 09:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沙 德
研究生(外文):Saad Gomaa Mohamed Mohamed
論文名稱:應用於高性能儲能系統之奈米結構三元金屬氧化物電極材料
論文名稱(外文):Nanostructured Ternary Metal Oxides as Electrode Materials for High-Performance Energy-Storage Systems
指導教授:劉如熹劉如熹引用關係
指導教授(外文):Ru-Shi Liu
口試委員:鄭淑芬梁文傑張家欽吳溪煌陳金銘陳錦明廖秋峰
口試委員(外文):Soofin ChengMan-kit LeungChia-Chin ChangShe-Huang WuJinming ChenJin-Ming ChenC. F. Liaw
口試日期:2015-05-19
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:188
中文關鍵詞:三元金屬氧化物鋰離子電池超級電容器鋰氧電池
外文關鍵詞:Ternary Metal OxidesLi-ion batterySupercapacitorsLi-O2 battery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Lithium-ion batteries and supercapacitors are important energy-storage systems that enable more efficient energy storage and usage than other solutions. Both systems are excellent choices for electrical vehicles or hybrid electrical vehicles, as well as other portable devices that require both high power and high energy density. Li–ion batteries conduct electrical work by Li+ ion diffusion and faradaic redox reaction of electrical reagents between two electrodes driven by the differences in the electrochemical potential. Consequently, enormous works have focused on investigating the performances of these kinds of active materials with respect to the energy density, high capacity and cycling stability of Li–ion batteries. Supercapacitors can temporarily store a large amount of charges and then release it by a non-faradaic electrical energy storage process, which has concerned intensive attention for their high power density, fast charging–discharging, and long cycle life. In addition, Supercapacitors can store energy based on ion adsorption and/or fast surface redox reactions. Therefore, their performance is largely determined by the electrode material’s morphology, size, and porosity.
Rechargeable lithium–air (Li–O2) batteries using aprotic solvent as an electrolyte have recently attracted considerable attention because they offer an extremely high theoretical volumetric energy density of 3436 W h L-1 based on the sum of Li volumes at the beginning of discharge and Li2O2 at the end. This value is more than thrice that of state-of-the-art lithium-ion batteries (1015 W h L-1). Such fascinating features make Li–O2 batteries the most promising power source for next-generation electrical vehicles.
The key aspect to improving the performance of these kinds of energy devices is to improve the performance of active materials. The use of nanostructured materials supported on binder and conductive-agent-free electrodes are designed to enhance both ion transport and electron transport by shortening the diffusion lengths of ions (for instance Li+) and increasing the conductivity within electrode materials, respectively.
In this doctoral work, we demonstrate an easy, two-step hydrothermal/calcination approach for growing uniform Mn, Fe, and Zn cobaltite (MCo2O4) nanostructure (NS) on flexible binder-and conductive-agent-free Ni foam and carbon substrates, respectively. The hierarchical Mn, Fe, and Zn cobaltite nanowire- and nanoflake-based architectures onto conductive substrate allow enhanced electrolyte transport and charge transfer toward/from Mn, Fe, and Zn cobaltite NS surface with numerous electroactive sites. In addition, the direct growth and attachment of Mn, Fe, and Zn cobaltite NSs in supporting conductive substrates provide substantially reduced contact resistance and efficient charge transfer. These excellent features allow the use of Mn, Fe, and Zn cobaltite NS as lithium-ion battery and supercapacitors electrodes.
In the first research part, the application of nanostructured MCo2O4 electrodes as electrode material for Li–ion batteries and supercapacitors is evaluated in Chapters 3 to 5. FeCo2O4 nanoflakes electrodes exhibit a better performance towards Li-ion battery MnCo2O4 and ZnCo2O4 because of Fe electroactivity towards Li, Fe2+ free electrons, and the high-surface area of FeCo2O4 2D nanoflakes. MnCo2O4 nanowires electrodes exhibit better performance than the flower-like ZnCo2O4 nanowires because Mn can transport free electrons and acquires high-capacity, in addition, the high-surface area of the discrete MnCo2O4 nanowire structures. MnCo2O4 nanowires exhibit better supercapacitive performance and higher capacitance values than FeCo2O4 nanoflakes, because of the porous structure MnCo2O4 1D nanowires which have a higher surface area than 2D FeCo2O4 nanoflakes.
In the second research part, catalytic behaviors of MCo2O4 nanorods (M = Mn, Fe, Ni, and Zn) as cathode material for lithium–O2 battery are also been studied by synthesizing MnCo2O4, FeCo2O4, NiCo2O4, and ZnCo2O4 nanorods through an easy hydrothermal method. These nanorod structures are porous, which further improve capacity and cycling performance. The mesoporous structure enables oxygen and electrolyte flow during discharge reaction and provides a good two-phase interface for catalysis. FeCo2O4 nanorods display higher capacity and lower overpotential than other MCo2O4 nanorods which can be attributed to the higher Co3+/Co2+ ratio in FeCo2O4 system, resulting in high O2 absorption of the catalytic surface. As a result, more electropositive Co3+ ions act as active sites to adsorb oxygen molecules. Also ZnCo2O4 nanorods show a comparable electrochemical performance results with FeCo2O4 nanorods, which also is due to a relatively high amount of Co3+ ions.



Contents
Abstract I
Contents i
Figures Caption vii
Tables Caption xv
Chapter 1. Introduction 1
1.1 Lithium Ion Batteries 2
1.1.1 Background 2
1.1.2 Electrochemistry basics of lithium ion batteries 3
1.1.3 Anode materials. 5
1.1.3.1 Carbonaceous materials 6
1.1.3.2 Lithium alloying compound 7
1.1.3.2 Lithium alloying compound 7
1.1.3.3 Metal oxides 9

1.1.4 Cathode Materials 14
1.1.5 Electrolyte 17
1.2 Supercapacitors 19
1.2.1 History and progress 19
1.2.2 Advantages of supercapacitors 20
1.2.3 Energy storage mechanism in electrochemical supercapacitors. 22
1.2.3.1 Electric double-layer supercapacitors (EDLCs) 22
1.2.3.2 Pseudo-supercapacitors 24
1.2.4 Electrode materials for supercapacitors 26
1.2.4.1 Carbon-based materials 26
1.2.4.2 Metal oxides, hydroxides, nitrides, and sulfides 28
1.2.4.3 Conducting polymers 29
1.2.5 Electrolytes. 30
1.3 Li-O2 Battery. 31
1.3.1 History and background 31
1.3.2 Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) 33
1.3.3Catalytic materials for air electrodes (cathode). 35
1.3.3.1 Noble metals and alloys 35
1.3.3.2 Metal oxides 36
1.3.3.3 porous carbon materials 37
1.3.4 Electrolyte. 37
1.3.5 Anode. 38
1.4 Objectives and Research Motivation 38
References (Chapter 1) 43
Chapter 2. Experimental Techniques 55
2.1 List of Materials 56
2.2 Hydrothermal Syntheses of the MCo2O4 Nanostructures. 58
2.2.1 Hydrothermal synthesis of MnCo2O4 nanowires on nickel foam. 58
2.2.2 Hydrothermal synthesis of FeCo2O4 nanoflakes on nickel foam. 59
2.2.3 Hydrothermal synthesis of flower-like ZnCo2O4 nanowires on carbon fiber.59
2.2.4 Preparation of MCo2O4 (M = Mn, Fe, Ni and Zn) porous nanorods. 60
2.3 Growth Mechanism of Porous Nanostructure MCo2O4 Using Hydrothermal Reaction. 61
2.4 Electrode Preparation. 62
2.5 Coin-Cell Assembly. 63
2.6 The Instruments for Characterization 65
2.6.1 X-ray diffraction (XRD) 65
2.6.2 Transmission electron microscopy (TEM) 68
2.6.3 Scanning electron microscopy (SEM) 71
2.6.4 X-ray photoelectron spectroscopy (XPS) 72
2.6.5 X-ray absorption spectroscopy (XAS). 75
2.6.6 Surface area measurement 77
2.6.7 Cyclic voltammetry 78
2.6.8 Galvanostatic charge- discharge studies. 83
2.6.9 Electrochemical impedance spectroscopy. 86
References (Chapter 2). 87
Chapter 3. Efficient energy storage capabilities promoted by hierarchical MnCo2O4 nanowire-based architectures……………………………………………………………………..90
3.1 Introduction………………………………………………………………….90
3.2 Experimental Section………………………………………………………....93
3.2.1 Hydrothermal Synthesis of Flower-like MnCo2O4 Nanowires:…………....93
3.2.2 Electrochemical Measurements:……………………………………………93
3.3 Results and Discussion………………………………………………………..95
3.4 Conclusions……………………………………………………………………109
References (Chapter 3)……………………………………………………………….110
Chapter 4. High-Performance Lithium-Ion Battery and Symmetric Supercapacitors Based on FeCo2O4 Nanoflakes Electrodes 115
4.1 Introduction 115
4.2 Experimental Section 117
4.2.1 Hydrothermal synthesis of FCO-NFs 117
4.2.2 Electrochemical measurements 118
4.3 Results and Discussion 119
4.4 Conclusions 135
References (Chapter 4) ..136
Chapter 5. Flower-like ZnCo2O4 Nanowires: Toward High-Performance Anode Material of Li-Ion Batteries 139
5.1 Introduction 139
5.2 Experimental Section 141
5.2.1 Hydrothermal synthesis of flower-like ZnCo2O4 nanowires 141
5.2.3 Electrochemical measurements 142
5.3 Results and Discussion 143
5.4 Conclusions 154
References (Chapter 5) 154
Chapter 6. Ternary Spinel MCo2O4 (M = Mn, Fe, Ni, and Zn) Porous Nanorods as Bifunctional Cathode Materials for Lithium-O2 Batteries 157
6.1 Introduction 157
6.2 Experimental Section 159
6.2.1 Preparation of MCo2O4 (M = Mn, Fe, Ni, and Zn) porous rods 159
6.2.2 Li-O2 battery measurements 159
6.3 Results and Discussion 160
6.4 Conclusions 180
References (Chapter 6) 180
Chapter 7. Conclusions 183
7.1 General Conclusions 183
7.1.1 Li-ion battery electrodes 183
7.1.2 Supercapacitors electrodes 184
7.1.3 Li-O2 Battery electrodes 185
References (Chapter 7) 185
Scientific Journal Publication List 187
Patents in application ….188


References (Chapter 1)
[1] V. Smil, Energy at the Crossroads: Global Perspectives and Uncertainties, MIT press, 2005.
[2] M. Klare, Blood and Oil: The Dangers and Consequences of America''s Growing Dependency on Imported Petroleum, Macmillan, 2007.
[3] R. Younesi, Batteries: An Important Piece in the Puzzle of Renewable Energies for a Better World, Front. Energy Res. 2014, 2, doi: 10.3389/fenrg.2014.00014.
[4] M. R. Palacín, Recent Advances in Rechargeable Battery Materials: A Chemist’s Perspective, Chem. Soc. Rev. 2009, 38, 2565.
[5] K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chem. Rev. 2004, 104, 4303.
[6] M. Winter, R. J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors? (Chem. Rev. 2003, 104, 4245-4269. Published on the Web 09/28/2004.), Chem. Rev. 2005, 105, 1021.
[7] D. Linden, T. B. Reddy, Handbook of Batteries 3rd, McGraw-Hill, 2002.
[8] J. M. Tarascon, M. Armand, Issues and Challenges Facing Rechargeable Lithium Batteries, Nature 2001, 414, 359.
[9] J. B. Goodenough, Y. Kim, Challenges for Rechargeable Li Batteries, Chem. Mater. 2009, 22, 587.
[10]M. S. Whittingham, Materials Challenges Facing Electrical Energy Storage, MRS Bull. 2008, 33, 411.
[11]M. Yoshio, R. J. Brodd, A. Kozawa, Lithium-Ion Batteries, Springer, 2009.
[12]J. Dahn, T. Zheng, Y. Liu, J. Xue, Mechanisms for Lithium Insertion in Carbonaceous Materials, Science 1995, 270, 590.
[13]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. Tarascon, Nano-Sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-Ion Batteries, Nature 2000, 407, 496.
[14]J. Fischer, Chemical Physics of Intercalation, Plenum Press, New York 1987, 59.
[15]J. L. Tirado, Inorganic Materials for the Negative Electrode of Lithium-Ion Batteries: State-of-the-Art and Future Prospects, Mat. Sci. Eng. R 2003, 40, 103.
[16]Y. Nishi, The Development of Lithium Ion Secondary Batteries, The Chemical Record 2001, 1, 406.
[17]J. Yamaura, Y. Ozaki, A. Morita, A. Ohta, High Voltage, Rechargeable Lithium Batteries Using Newly-Developed Carbon for Negative Electrode Material, J. Power Sources 1993, 43, 233.
[18]B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo, R. P. Raffaelle, Carbon Nanotubes for Lithium-ion batteries, Energ. Environ. Sci. 2009, 2, 638.
[19]L. F. Cui, Y. Yang, C. M. Hsu, Y. Cui, Carbon− Silicon Core− Shell Nanowires as High Capacity Electrode for Lithium-ion batteries, Nano Lett. 2009, 9, 3370.
[20]L. Ji, Z. Lin, A. J. Medford, X. Zhang, In‐Situ Encapsulation of Nickel Particles in Electrospun Carbon Nanofibers and the Resultant Electrochemical Performance, Chem.-Eur. J. 2009, 15, 10718.
[21]H. Li, Z. Wang, L. Chen, X. Huang, Research on Advanced Materials for Li‐Ion Batteries, Adv. Mater. 2009, 21, 4593.
[22]K. T. Lee, J. C. Lytle, N. S. Ergang, S. M. Oh, A. Stein, Synthesis and Rate Performance of Monolithic Macroporous Carbon Electrodes for Lithium-Ion Secondary Batteries, Adv. Funct. Mater. 2005, 15, 547.
[23]J. H. Lee, W. J. Kim, J. Y. Kim, S. H. Lim, S. M. Lee, Spherical Silicon/Graphite/Carbon Composites as Anode Material for Lithium-Ion Batteries, J. Power Sources 2008, 176, 353.
[24]L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Recent Developments in Nanostructured Anode Materials for Rechargeable Lithium-Ion Batteries, Energ. Environ. Sci. 2011, 4, 2682.
[25]C. M. Park, J. H. Kim, H. Kim, H. J. Sohn, Li-Alloy Based Anode Materials for Li Secondary Batteries, Chem. Soc. Rev. 2010, 39, 3115.
[26]M. Winter, J. O. Besenhard, M. E. Spahr, P. Novák, Insertion Electrode Materials for Rechargeable Lithium Batteries, Adv. Mater. 1998, 10, 725.
[27]A. N. Dey, Electrochemical Alloying of Lithium in Organic Electrolytes, J. Electrochem. Soc. 1971, 118, 1547.
[28]M. Holzapfel, H. Buqa, W. Scheifele, P. Novak, F.-M. Petrat, A New Type of Nano-Sized Silicon/Carbon Composite Electrode for Reversible Lithium Insertion, Chem. Commun. 2005, 1566.
[29]T. Prem Kumar, R. Ramesh, Y. Y. Lin, G. T. K. Fey, Tin-Filled Carbon Nanotubes as Insertion Anode Materials for Lithium-Ion Batteries, Electrochem. Commun. 2004, 6, 520.
[30]W. J. Zhang, Lithium Insertion/Extraction Mechanism in Alloy Anodes for Lithium-Ion Batteries, J. Power Sources 2011, 196, 877.
[31]J. Hassoun, S. Panero, B. Scrosati, Metal Alloy Electrode Configurations for Advanced Lithium‐Ion Batteries, Fuel Cells 2009, 9, 277.
[32]R. Huggins, J. Besenhard, Handbook of Battery Materials, Wiley VCH, Weinheim 1999.
[33]H. Li, X. Huang, L. Chen, Z. Wu, Y. Liang, A High Capacity Nano Si Composite Anode Material for Lithium Rechargeable Batteries, Electrochem. Solid-State Lett. 1999, 2, 547.
[34]G. Zhou, H. Li, H. Sun, D. Yu, Y. Wang, X. Huang, L. Chen, Z. Zhang, Controlled Li Doping of Si Nanowires by Electrochemical Insertion Method, Appl. Phys. Lett. 1999, 75, 2447.
[35]Y. Miyaki, US7060389 B2, Google Patents, 2005.
[36]C. J. Wen, R. A. Huggins, Thermodynamic Study of the Lithium‐Tin System, J. Electrochem. Soc. 1981, 128, 1181.
[37]C. J. Wen, R. A. Huggins, Chemical Diffusion in Intermediate Phases in the Lithium-Silicon System, J. Solid State Chem. 1981, 37, 271.
[38]G. Jeong, Y. U. Kim, H. Kim, Y. J. Kim, H. J. Sohn, Prospective Materials and Applications for Li Secondary Batteries, Energ. Environ. Sci. 2011, 4, 1986.
[39]M. Reddy, G. Subba Rao, B. Chowdari, Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries, Chem. Rev. 2013, 113, 5364.
[40]K. S. Park, A. Benayad, D.-J. Kang, S. G. Doo, Nitridation-Driven Conductive Li4ti5o12 for Lithium-ion batteries, J. Am. Chem. Soc. 2008, 130, 14930.
[41]S. Huang, Z. Wen, B. Lin, J. Han, X. Xu, The High-Rate Performance of the Newly Designed Li4Ti5O12/Cu Composite Anode for Lithium-ion batteries, J. Alloy. Compd. 2008, 457, 400.
[42]S. A. Needham, G. X. Wang, H. K. Liu, Synthesis of Nio Nanotubes for Use as Negative Electrodes in Lithium-ion batteries, J. Power Sources 2006, 159, 254.
[43]L. Chen, N. Lu, C. Xu, H. Yu, T. Wang, Electrochemical Performance of Polycrystalline CuO Nanowires as Anode Material for Li Ion Batteries, Electrochim. Acta 2009, 54, 4198.
[44]S. W. Oh, H. J. Bang, Y. C. Bae, Y. K. Sun, Effect of Calcination Temperature on Morphology, Crystallinity and Electrochemical Properties of Nano-Crystalline Metal Oxides (Co3O4, CuO, and NiO) Prepared Via Ultrasonic Spray Pyrolysis, J. Power Sources 2007, 173, 502.
[45]L. An, X. Gao, G. Li, T. Yan, H. Zhu, P. Shen, Electrochemical Lithium Storage of Titania Nanotubes Modified with Nio Nanoparticles, Electrochim. Acta 2008, 53, 4573.
[46]R. Malini, U. Uma, T. Sheela, M. Ganesan, N. Renganathan, Conversion Reactions: A New Pathway to Realise Energy in Lithium-Ion Battery—Review, Ionics 2009, 15, 301.
[47]F. Leroux, G. R. Goward, W. P. Power, L. F. Nazar, Understanding the Nature of Low‐Potential Li Uptake into High Volumetric Capacity Molybdenum Oxides, Electrochem. Solid-State Lett. 1998, 1, 255.
[48]V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the Development of Advanced Li-Ion Batteries: A Review, Energ. Environ. Sci. 2011, 4, 3243.
[49]H. Xia, Z. Luo, J. Xie, Nanostructured Lithium Titanate and Lithium Titanate/Carbon Nanocomposite as Anode Materials for Advanced Lithium-Ion Batteries, Nanotechnology Reviews, 2014, 3, 161.
[50]C. Yuan, H. B. Wu, Y. Xie, X. W. Lou, Mixed Transition-Metal Oxides: Design, Synthesis, and Energy-Related Applications, Angew. Chem. Int. Ed. 2014, 53, 1488.
[51]J. Cho, T. G. Kim, C. Kim, J. G. Lee, Y. W. Kim, B. Park, Comparison of Al2O3- and AlPO4-Coated LiCoO2 Cathode Materials for a Li-Ion Cell, J. Power Sources 2005, 146, 58.
[52]M. S. Whittingham, Lithium Batteries and Cathode Materials, Chem. Rev. 2004, 104, 4271.
[53]J. W. Fergus, Recent Developments in Cathode Materials for Lithium-ion batteries, J. Power Sources 2010, 195, 939.
[54]K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, LixCoO2 (0[55]J. H. Park, S. Y. Lee, J. H. Kim, S. Ahn, J. S. Park, Y. U. Jeong, Effect of Conducting Additives on the Properties of Composite Cathodes for Lithium-Ion Batteries, J. Solid State Electrochem. 2010, 14, 593.
[56]S. A. Needham, G. X. Wang, H. K. Liu, V. A. Drozd, R. S. Liu, Synthesis and Electrochemical Performance of Doped LiCoO2 Materials, J. Power Sources 2007, 174, 828.
[57]Y. Shao-Horn, L. Croguennec, C. Delmas, E. C. Nelson, M. A. O''Keefe, Atomic Resolution of Lithium Ions in LiCoO2, Nat. Mater. 2003, 2, 464.
[58]J. P. Tu, H. M. Wu, Y. Z. Yang, W. K. Zhang, Spray-Drying Technology for the Synthesis of Nanosized LiMn2O4 Cathode Material, Mater. Lett. 2007, 61, 864.
[59]H. W. Lee, P. Muralidharan, R. Ruffo, C. M. Mari, Y. Cui, D. K. Kim, Ultrathin Spinel LiMn2O4 Nanowires as High Power Cathode Materials for Li-Ion Batteries, Nano Lett. 2010, 10, 3852.
[60]C. Julien, Local Structure of Lithiated Manganese Oxides, Solid State Ionics 2006, 177, 11.
[61]A. K. Padhi, K. Nanjundaswamy, J. B. d. Goodenough, Phospho‐Olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries, J. Electrochem. Soc. 1997, 144, 1188.
[62]F. F. Bazito, R. M. Torresi, Cathodes for Lithium-ion batteries: The Benefits of Using Nanostructured Materials, J. Braz. Chem. Soc. 2006, 17, 627.
[63]P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J.-M. Tarascon, C. Masquelier, Room-Temperature Single-Phase Li Insertion/Extraction in Nanoscale LixFePO4, Nat. Mater. 2008, 7, 741.
[64]S. Y. Chung, J. T. Bloking, Y. M. Chiang, Electronically Conductive Phospho-Olivines as Lithium Storage Electrodes, Nat. Mater. 2002, 1, 123.
[65]D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J. S. Gnanaraj, H. J. Kim, Design of Electrolyte Solutions for Li and Li-Ion Batteries: A Review, Electrochim. Acta 2004, 50, 247.
[66]G. E. Blomgren, Liquid Electrolytes for Lithium and Lithium-Ion Batteries, J. Power Sources 2003, 119, 326.
[67]B. Conway, in Electrochemical Supercapacitors, Springer, 1999, pp. 1.
[68]H. I. Becker, US2800616 A, Google Patents, 1957.
[69]R. A. Rightmire, US3288641 A, Google Patents, 1966.
[70]R. Kötz, M. Carlen, Principles and Applications of Electrochemical Capacitors, Electrochim. Acta 2000, 45, 2483.
[71]P. Simon, Y. Gogotsi, Materials for Electrochemical Capacitors, Nat. Mater. 2008, 7, 845.
[72]B. E. Conway, Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage, J. Electrochem. Soc. 1991, 138, 1539.
[73]W. Wang, S. Guo, I. Lee, K. Ahmed, J. Zhong, Z. Favors, F. Zaera, M. Ozkan, C. S. Ozkan, Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors, Sci. Rep. 2014, 4, 4452.
[74]Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, Progress of Electrochemical Capacitor Electrode Materials: A Review, Int. J. Hydrogen Energy 2009, 34, 4889.
[75]H. D. Abruña, Y. Kiya, J. C. Henderson, Batteries and Electrochemical Capacitors, Physics Today 2008, 61, 43.
[76]X. Ge, C. Fu, S. H. Chan, Double Layer Capacitance of Anode/Solid-Electrolyte Interfaces, Phys. Chem. Chem. Phys. 2011, 13, 15134.
[77]B. Conway, V. Birss, J. Wojtowicz, The Role and Utilization of Pseudocapacitance for Energy Storage by Supercapacitors, J. Power Sources 1997, 66, 1.
[78]A. Burke, Ultracapacitors: Why, How, and Where Is the Technology, J. Power Sources 2000, 91, 37.
[79]B. Conway, W. Pell, Double-Layer and Pseudocapacitance Types of Electrochemical Capacitors and Their Applications to the Development of Hybrid Devices, J. Solid State Electrochem. 2003, 7, 637.
[80]J. Zheng, T. Jow, High Energy and High Power Density Electrochemical Capacitors, J. Power Sources 1996, 62, 155.
[81]A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. van Schalkwijk, Nanostructured Materials for Advanced Energy Conversion and Storage Devices, Nat. Mater. 2005, 4, 366.
[82]G. Wang, L. Zhang, J. Zhang, A Review of Electrode Materials for Electrochemical Supercapacitors, Chem. Soc. Rev. 2012, 41, 797.
[83]M. Endo, T. Maeda, T. Takeda, Y. Kim, K. Koshiba, H. Hara, M. Dresselhaus, Capacitance and Pore-Size Distribution in Aqueous and Nonaqueous Electrolytes Using Various Activated Carbon Electrodes, J. Electrochem. Soc. 2001, 148, A910.
[84]B. Fang, L. Binder, A Modified Activated Carbon Aerogel for High-Energy Storage in Electric Double Layer Capacitors, J. Power Sources 2006, 163, 616.
[85]S. Shiraishi, H. Kurihara, K. Okabe, D. Hulicova, A. Oya, Electric Double Layer Capacitance of Highly Pure Single-Walled Carbon Nanotubes (Hipco™ Buckytubes™) in Propylene Carbonate Electrolytes, Electrochem. Commun. 2002, 4, 593.
[86]C. Portet, Z. Yang, Y. Korenblit, Y. Gogotsi, R. Mokaya, G. Yushin, Electrical Double-Layer Capacitance of Zeolite-Templated Carbon in Organic Electrolyte, J. Electrochem. Soc. 2009, 156, A1.
[87]B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, Z. Zhou, Y. Yang, Highly Mesoporous and High Surface Area Carbon: A High Capacitance Electrode Material for Edlcs with Various Electrolytes, Electrochem. Commun. 2008, 10, 795.
[88]M. Inagaki, H. Konno, O. Tanaike, Carbon Materials for Electrochemical Capacitors, J. Power Sources 2010, 195, 7880.
[89]L. L. Zhang, X. S. Zhao, Carbon-Based Materials as Supercapacitor Electrodes, Chem. Soc. Rev. 2009, 38, 2520.
[90]D. D. Zhao, S. J. Bao, W. J. Zhou, H. L. Li, Preparation of Hexagonal Nanoporous Nickel Hydroxide Film and Its Application for Electrochemical Capacitor, Electrochem. Commun. 2007, 9, 869.
[91]S. Trasatti, P. Kurzweil, Electrochemical Supercapacitors as Versatile Energy Stores, Platinum Met. Rev. 1994, 38, 46.
[92]V. Subramanian, H. Zhu, R. Vajtai, P. Ajayan, B. Wei, Hydrothermal Synthesis and Pseudocapacitance Properties of MnO2 Nanostructures, J. Phys. Chem. B 2005, 109, 20207.
[93]S. Xiong, C. Yuan, X. Zhang, B. Xi, Y. Qian, Controllable Synthesis of Mesoporous Co3O4 Nanostructures with Tunable Morphology for Application in Supercapacitors, Chem.-Eur. J. 2009, 15, 5320.
[94]C. Yuan, X. Zhang, L. Su, B. Gao, L. Shen, Facile Synthesis and Self-Assembly of Hierarchical Porous NiO Nano/Micro Spherical Superstructures for High Performance Supercapacitors, J. Mater. Chem. 2009, 19, 5772.
[95]V. Gupta, T. Kusahara, H. Toyama, S. Gupta, N. Miura, Potentiostatically Deposited Nanostructured α-Co(OH)2: A High Performance Electrode Material for Redox-Capacitors, Electrochem. Commun. 2007, 9, 2315.
[96]D. Choi, G. E. Blomgren, P. N. Kumta, Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors, Adv. Mater. 2006, 18, 1178.
[97]S. J. Bao, C. M. Li, C. X. Guo, Y. Qiao, Biomolecule-Assisted Synthesis of Cobalt Sulfide Nanowires for Application in Supercapacitors, J. Power Sources 2008, 180, 676.
[98]P. Sharma, T. Bhatti, A Review on Electrochemical Double-Layer Capacitors, Energy Conv. Manag. 2010, 51, 2901.
[99]A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, J. P. Ferraris, Conducting Polymers as Active Materials in Electrochemical Capacitors, J. Power Sources 1994, 47, 89.
[100] F. Fusalba, P. Gouérec, D. Villers, D. Bélanger, Electrochemical Characterization of Polyaniline in Nonaqueous Electrolyte and Its Evaluation as Electrode Material for Electrochemical Supercapacitors, J. Electrochem. Soc. 2001, 148, A1.
[101] L. Z. Fan, J. Maier, High-Performance Polypyrrole Electrode Materials for Redox Supercapacitors, Electrochem. Commun. 2006, 8, 937.
[102] J. Wang, Y. Li, X. Sun, Challenges and Opportunities of Nanostructured Materials for Aprotic Rechargeable Lithium–Air Batteries, Nano Energy 2013, 2, 443.
[103] K. Abraham, A Brief History of Non-Aqueous Metal-Air Batteries, ECS Transactions 2008, 3, 67.
[104] G. Girishkumar, B. McCloskey, A. Luntz, S. Swanson, W. Wilcke, Lithium− Air Battery: Promise and Challenges, J. Phys. Chem. Lett. 2010, 1, 2193.
[105] E. L. Littauer, K. C. Tsai, Anodic Behavior of Lithium in Aqueous Electrolytes I. Transient Passivation, J. Electrochem. Soc. 1976, 123, 771.
[106] K. Abraham, Z. Jiang, A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery, J. Electrochem. Soc. 1996, 143, 1.
[107] L. L. Zhang, Z. L. Wang, D. Xu, X.-B. Zhang, L. M. Wang, The Development and Challenges of Rechargeable Non-Aqueous Lithium–Air Batteries, Int. J. Smart Nano Mater. 2013, 4, 27.
[108] P. G. Bruce, Energy Storage Beyond the Horizon: Rechargeable Lithium Batteries, Solid State Ionics 2008, 179, 752.
[109] G. Girishkumar, B. McCloskey, A. Luntz, S. Swanson, W. Wilcke, Lithium− Air Battery: Promise and Challenges, J. Phys. Chem. Lett 2010, 1, 2193.
[110] S. S. Zhang, D. Foster, J. Read, Discharge Characteristic of a Non-Aqueous Electrolyte Li/O2 Battery, J. Power Sources 2010, 195, 1235.
[111] F. Cheng, J. Chen, Metal–Air Batteries: From Oxygen Reduction Electrochemistry to Cathode Catalysts, Chem. Soc. Rev. 2012, 41, 2172.
[112] Y. C. Lu, H. A. Gasteiger, M. C. Parent, V. Chiloyan, Y. Shao-Horn, The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries, Electrochem. Solid-State Lett. 2010, 13, A69.
[113] Y. C. Lu, Z. Xu, H. A. Gasteiger, S. Chen, K. Hamad-Schifferli, Y. Shao-Horn, Platinum− Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithium− Air Batteries, J. Am. Chem. Soc. 2010, 132, 12170.
[114] A. K. Thapa, T. Ishihara, Mesoporous α-MnO2/Pd Catalyst Air Electrode for Rechargeable Lithium–Air Battery, J. Power Sources 2011, 196, 7016.
[115] A. Débart, A. J. Paterson, J. Bao, P. G. Bruce, α-MnO2 Nanowires: A Catalyst for the O2 Electrode in Rechargeable Lithium Batteries, Angew. Chem. Int. Ed. 2008, 47, 4521.
[116] A. Débart, J. Bao, G. Armstrong, P. G. Bruce, An O2 Cathode for Rechargeable Lithium Batteries: The Effect of a Catalyst, J. Power Sources 2007, 174, 1177.
[117] Y. Shao, F. Ding, J. Xiao, J. Zhang, W. Xu, S. Park, J. G. Zhang, Y. Wang, J. Liu, Making Li‐Air Batteries Rechargeable: Material Challenges, Adv. Funct. Mater. 2013, 23, 987.
[118] J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G. L. Graff, W. D. Bennett, Z. Nie, L. V. Saraf, I. A. Aksay, J. Liu, J. G. Zhang, Hierarchically Porous Graphene as a Lithium–Air Battery Electrode, Nano Lett. 2011, 11, 5071.
[119] V. Etacheri, D. Sharon, A. Garsuch, M. Afri, A. A. Frimer, D. Aurbach, Hierarchical Activated Carbon Microfiber (Acm) Electrodes for Rechargeable Li-O2 Batteries, J. Phys. Chem. A 2013, 1, 5021.
[120] J. Read, Characterization of the Lithium/Oxygen Organic Electrolyte Battery, J. Electrochem. Soc. 2002, 149, A1190.
[121] T. Ogasawara, A. Débart, M. Holzapfel, P. Novák, P. G. Bruce, Rechargeable Li2O2 Electrode for Lithium Batteries, J. Am. Chem. Soc. 2006, 128, 1390.
[122] R. Younesi, S. Urbonaite, K. Edström, M. Hahlin, The Cathode Surface Composition of a Cycled Li–O2 Battery: A Photoelectron Spectroscopy Study, J. Phys. Chem. C 2012, 116, 20673.
[123] F. Mizuno, S. Nakanishi, Y. Kotani, S. Yokoishi, H. Iba, Rechargeable Li-Air Batteries with Carbonate-Based Liquid Electrolytes, Electrochemistry 2010, 78, 403.
[124] C. Laoire, S. Mukerjee, E. J. Plichta, M. A. Hendrickson, K. Abraham, Rechargeable Lithium/Tegdme-LiPF6∕ O2 Battery, J. Electrochem. Soc. 2011, 158, A302.
[125] H. Wang, K. Xie, Investigation of Oxygen Reduction Chemistry in Ether and Carbonate Based Electrolytes for Li–O2 Batteries, Electrochim. Acta 2012, 64, 29.
[126] S. A. Freunberger, Y. Chen, N. E. Drewett, L. J. Hardwick, F. Bardé, P. G. Bruce, The Lithium–Oxygen Battery with Ether‐Based Electrolytes, Angew. Chem. Int. Ed. 2011, 50, 8609.
[127] M. M. O. Thotiyl, S. A. Freunberger, Z. Peng, Y. Chen, Z. Liu, P. G. Bruce, A Stable Cathode for the Aprotic Li–O2 Battery, Nat. Mater. 2013, 12, 1050.
[128] B. McCloskey, A. Speidel, R. Scheffler, D. Miller, V. Viswanathan, J. Hummelshj, J. Nrskov, A. Luntz, Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li–O2 Batteries, J. Phys. Chem. Lett. 2012, 3, 997.
[129] D. Chalasani, B. L. Lucht, Reactivity of Electrolytes for Lithium-Oxygen Batteries with Li2O2, ECS Electrochem. Lett. 2012, 1, A38.
[130] F. Li, T. Zhang, H. Zhou, Challenges of Non-Aqueous Li–O2 Batteries: Electrolytes, Catalysts, and Anodes, Energ. Environ. Sci. 2013, 6, 1125.
[131] J. Hassoun, H. G. Jung, D. J. Lee, J. B. Park, K. Amine, Y. K. Sun, B. Scrosati, A Metal-Free, Lithium-Ion Oxygen Battery: A Step Forward to Safety in Lithium-Air Batteries, Nano Lett. 2012, 12, 5775.
References (Chapter 2)
[1] A. T. Chien, Hydrothermal Epitaxy of Perovskite Thin Films, Ph.D. thesis, University of California, Santa Barbara (Ann Arbor), 1998.
[2] Y. Sharma, N. Sharma, G. V. Subba Rao, B. V. R. Chowdari, Studies on Spinel Cobaltites, FeCo2O4 and MgCo2O4 as Anodes for Li-Ion Batteries, Solid State Ionics 2008, 179, 587.
[3] R. Zhang, J. Liu, H. Guo, X. Tong, Rational Synthesis of Three-Dimensional Porous ZnCo2O4 Film with Nanowire Walls via Simple Hydrothermal Method, Mater. Lett. 2014, 115, 208.
[4] A. R. West, Solid State Chemistry and Its Applications, John Wiley & Sons, Inc., 2014.
[5] B. D. Cullity, S. R. Stock, Elements of X-Ray Diffraction, Pearson, 2001.
[6] W. L. Bragg, The Diffraction of Short Electromagnetic Waves by a Crystal, Proceedings of the Cambridge Philosophical Society, Vol. 17, 1913, p. 4.
[7] A. R. West, Basic Solid State Chemistry, John Wiley & Sons, New York, 1999.
[8] Z. L. Wang, New Developments in Transmission Electron Microscopy for Nanotechnology, Adv. Mater. 2003, 15, 1497.
[9] D. B. Williams, C. B. Carter, Transmission Electron Microscopy : A Textbook for Materials Science, Plenum Press, New York, 1996.
[10]H. Rose, Optics of High-Performance Electron Microscopes, Sci. Technol. Adv. Mater. 2008, 9, 014107.
[11] G. Danilatos, Foundations of Environmental Scanning Electron Microscopy, Advances in electronics and electron physics 1988, 71, 109.
[12]D. R. Vij, Handbook of Applied Solid State Spectroscopy, Springer, New York, 2006.
[13]N. Matthew, Fundamentals of XAFS, Consortium for Advanced Radiation Sources 2004, 7.
[14]S. Brunauer, P. H. Emmett, E. Teller, Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc. 1938, 60, 309.
[15]A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001, 2nd Ed.
[16]R. G. Compton, E. Laborda, K. R. Ward, Understanding Voltammetry: Simulation of Electrode Processes, Imperial College Press, 2014.
[17]R. S. Nicholson, I. Shain, Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems, Anal. Chem. 1964, 36, 706.
[18]R. Huggins, Advanced Batteries: Materials Science Aspects, Springer, 2008.
[19]C. Z. Yuan, B. Gao, X. G. Zhang, Electrochemical Capacitance of NiO/Ru0.35V0.65O2 Asymmetric Electrochemical Capacitor, J. Power Sources 2007, 173, 606.
[20]D. Linden, T. B. Reddy, Handbook of Batteries 3rd, McGraw-Hill, 2002.
[21]S. M. Park, J. S. Yoo, Peer Reviewed: Electrochemical Impedance Spectroscopy for Better Electrochemical Measurements, Anal. Chem. 2003, 75, 455A.
[22]D. A. Dornbusch, R. Hilton, M. J. Gordon, G. J. Suppes, Effects of Sonication on EIS Results for Zinc Alkaline Batteries, ECS Electrochem. Lett. 2013, 2, A89.
References (Chapter 3)
[1] Y. Chen, B. Qu, L. Hu, Z. Xu, Q. Li, T. Wang, High-Performance Supercapacitor And Lithium-Ion Battery Based on 3D Hierarchical NH4F-Induced Nickel Cobaltate Nanosheet-Nanowire Cluster Arrays as Self-Supported Electrodes, Nanoscale 2013, 5, 9812.
[2] D. Cericola, P. W. Ruch, R. Kötz, P. Novák, A. Wokaun, Simulation Of A Supercapacitor/Li-Ion Battery Hybrid for Pulsed Applications, J. Power Sources 2010, 195, 2731.
[3] H. D. Abruña, Y. Kiya, J. C. Henderson, Batteries and Electrochemical Capacitors, Physics Today 2008, 61, 43.
[4] M. Winter, R. J. Brodd, What are Batteries, Fuel Cells, and Supercapacitors?, Chem. Rev. 2004, 104, 4245.
[5] L. S. Aravinda, K. K. Nagaraja, K. U. Bhat, B. R. Bhat, Magnetron Sputtered MoO3/Carbon Nanotube Composite Electrodes for Electrochemical Supercapacitor, J. Electroanal. Chem. 2013, 699, 28.
[6] Q. Lu, J. G. Chen, J. Q. Xiao, Nanostructured Electrodes for High-Performance Pseudocapacitors, Angew. Chem. Int. Ed. Engl. 2013, 52, 1882.
[7] X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous Metal/Oxide Hybrid Electrodes for Electrochemical Supercapacitors, Nat. Nanotechnol. 2011, 6, 232.
[8] J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X. W. Lou, Recent Advances in Metal Oxide-Based Electrode Architecture Design for Electrochemical Energy Storage, Adv. Mater. 2012, 24, 5166.
[9] L. Liu, Y. Yang, Shape-Controlled Synthesis of Mnco Complex Oxide Nanostructures Via A Polyol-Based Precursor Route and Their Catalytic Properties, Superlattices Microstruct. 2013, 54, 26.
[10] B. Liu, B. Liu, Q. Wang, X. Wang, Q. Xiang, D. Chen, G. Shen, New Energy Storage Option: Toward ZnCo2O4 Nanorods/Nickel Foam Architectures for High-Performance Supercapacitors, ACS Appl Mater Interfaces 2013, 5, 10011.
[11] S. Sun, Z. Wen, J. Jin, Y. Cui, Y. Lu, Synthesis Of Ordered Mesoporous CuCo2O4 with Different Textures as Anode Material For Lithium Ion Battery, Microporous Mesoporous Mater. 2013, 169, 242.
[12] Y. Sharma, N. Sharma, G. V. S. Rao, B. V. R. Chowdari, Lithium Recycling Behaviour of Nano-Phase-CuCo2O4 ss Anode for Lithium-Ion Batteries, J. Power Sources 2007, 173, 495.
[13] J. Li, S. Xiong, X. Li, Y. Qian, A Facile Route To Synthesize Multiporous MnCo2O4 and CoMn2O4 Spinel Quasi-Hollow Spheres with Improved Lithium Storage Properties, Nanoscale 2013, 5, 2045.
[14] T. Nissinen, Y. Kiros, M. Gasik, M. Lampinen, Comparison of Preparation Routes of Spinel Catalyst for Alkaline Fuel Cells, Mater. Res. Bull. 2004, 39, 1195.
[15] Z. Q. Liu, K. Xiao, Q. Z. Xu, N. Li, Y. Z. Su, H. J. Wang, S. Chen, Fabrication of Hierarchical Flower-Like Super-Structures Consisting of Porous NiCo2O4 Nanosheets and Their Electrochemical and Magnetic Properties, RSC Advances 2013, 3, 4372.
[16] Y. NuLi, P. Zhang, Z. Guo, H. Liu, J. Yang, NiCo2O4 / C Nanocomposite as a Highly Reversible Anode Material for Lithium-Ion Batteries, Electrochem. Solid-State Lett. 2008, 11, A64.
[17] L. Li, Y. Cheah, Y. Ko, P. Teh, G. Wee, C. Wong, S. Peng, M. Srinivasan, The Facile Synthesis of Hierarchical Porous Flower-Like NiCo2O4 with Superior Lithium Storage Properties, J. Mater. Chem. A 2013, 1, 10935.
[18] H. Jiang, J. Ma, C. Li, Hierarchical Porous NiCo2O4 Nanowires for High-Rate Supercapacitors, Chem. Commun. 2012, 48, 4465.
[19] S. G. Mohamed, T. F. Hung, C. J. Chen, C. K. Chen, S.-F. Hu, R. S. Liu, K. C. Wang, X. K. Xing, H.-M. Liu, A. S. Liu, M.-H. Hsieh, B. J. Lee, Flower-Like ZnCo2O4 Nanowires: Toward a High-Performance Anode Material for Li-Ion Batteries, RSC Advances 2013, 3, 20143.
[20] L. Hu, B. Qu, C. Li, Y. Chen, L. Mei, D. Lei, L. Chen, Q. Li, T. Wang, Facile Synthesis of Uniform Mesoporous ZnCo2O4 Microspheres as a High-Performance Anode Material For Li-Ion Batteries, J. Mater. Chem. A 2013, 1, 5596.
[21] Z. Jia, D. Ren, Q. Wang, R. Zhu, A New Precursor Strategy to Prepare ZnCo2O4 Nanorods and Their Excellent Catalytic Activity for Thermal Decomposition of Ammonium Perchlorate, Appl. Surf. Sci. 2013, 270, 312.
[22] K. Karthikeyan, D. Kalpana, N. G. Renganathan, Synthesis and Characterization of ZnCo2O4 Nanomaterial for Symmetric Supercapacitor Applications, Ionics 2009, 15, 107.
[23] M. A. Zamudio, S. Bensaid, D. Fino, N. Russo, Influence of The MgCo2O4 Preparation Method on N2O Catalytic Decomposition, Ind. Eng. Chem. Res. 2011, 50, 2622.
[24] Y. Sharma, N. Sharma, G. V. Subba Rao, B. V. R. Chowdari, Studies on Spinel Cobaltites, FeCo2O4 and MgCo2O4 as Anodes for Li-Ion Batteries, Solid State Ionics 2008, 179, 587.
[25] M. U. Anu Prathap, R. Srivastava, Synthesis of NiCo2O4 and Its Application in The Electrocatalytic Oxidation of Methanol, Nano Energy 2013, 2, 1046.
[26] G. Zhang, X. W. Lou, General Solution Growth of Mesoporous NiCo2O4 Nanosheets on Various Conductive Substrates as High-Performance Electrodes for Supercapacitors, Adv. Mater. 2013, 25, 976.
[27] L. Huang, D. Chen, Y. Ding, S. Feng, Z. L. Wang, M. Liu, Nickel-Cobalt Hydroxide Nanosheets Coated on NiCoO Nanowires Grown on Carbon Fiber Paper for High-Performance Pseudocapacitors, Nano Lett. 2013, 13, 3135.
[28] B. Sun, J. Zhang, P. Munroe, H.-J. Ahn, G. Wang, Hierarchical NiCo2O4 Nanorods as an Efficient Cathode Catalyst for Rechargeable Non-Aqueous Li–O2 Batteries, Electrochem. Commun. 2013, 31, 88.
[29] J. Liu, C. P. Liu, Y. L. Wan, W. Liu, Z. S. Ma, S. M. Ji, J. B. Wang, Y. C. Zhou, P. Hodgson, Y. C. Li, Facile Synthesis of NiCo2O4 Nanorod Arrays on Cu Conductive Substrates as Superior Anode Materials for High-Rate Li-Ion Batteries, CrystEngComm 2013, 15, 1578.
[30] K. Uusi-Esko, E. L. Rautama, M. Laitinen, T. Sajavaara, M. Karppinen, Control of Oxygen Nonstoichiometry and Magnetic Property of MnCo2O4 Thin Films Grown by Atomic Layer Deposition, Chem. Mater. 2010, 22, 6297.
[31] F. M. M. Borges, D. M. A. Melo, M. S. A. Camara, A. E. Martinelli, J. M. Soares, J. H. de Araujo, F. A. O. Cabral, Magnetic Behavior of Nanocrystalline MnCo2O4 Spinels, J. Magn. Magn. Mater. 2006, 302, 273.
[32] P. S. Arun, B. P. Ranjith, S. M. Shibli, Control of Carbon Monoxide (CO) from Automobile Exhaust by a Dealuminated Zeolite Supported Regenerative MnCo2O4 Catalyst, Environ. Sci. Technol. 2013, 47, 2746.
[33] Y. Liang, H. Wang, J. Zhou, Y. Li, J. Wang, T. Regier, H. Dai, Covalent Hybrid of Spinel Manganese-Cobalt Oxide and Graphene as Advanced Oxygen Reduction Electrocatalysts, J. Am. Chem. Soc. 2012, 134, 3517.
[34] J. Zhu, Q. Gao, Mesoporous MCo2O4 (M=Cu, Mn and Ni) spinels: Structural Replication, Characterization and Catalytic Application in CO Oxidation, Microporous Mesoporous Mater. 2009, 124, 144.
[35] P. Lavela, J. L. Tirado, C. Vidal-Abarca, Sol–Gel Preparation of Cobalt Manganese Mixed Oxides for Their Use as Electrode Materials in Lithium Cells, Electrochim. Acta 2007, 52, 7986.
[36] H. Liu, J. Wang, Hydrothermal Synthesis and Electrochemical Performance of MnCo2O4 Nanoparticles as Anode Material in Lithium-Ion Batteries, J. Electron. Mater. 2012, 41, 3107.
[37] J. Gomez, E. E. Kalu, High-Performance Binder-Free Co–Mn Composite Oxide Supercapacitor Electrode, J. Power Sources 2013, 230, 218.
[38] A. G. Pandolfo, A. F. Hollenkamp, Carbon Properties and Their Role in Supercapacitors, J. Power Sources 2006, 157, 11.
[39] J. Chang, M. Jin, F. Yao, T. H. Kim, V. T. Le, H. Yue, F. Gunes, B. Li, A. Ghosh, S. Xie, Y. H. Lee, Asymmetric Supercapacitors Based on Graphene/MnO2 Nanospheres and Graphene/MoO3Nanosheets with High Energy Density, Adv. Funct. Mater. 2013, 23, 5074.
[40] M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari, Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries, Chem. Rev. 2013, 113, 5364.
[41] L. Zhou, D. Zhao, X. W. Lou, Double-Shelled CoMn2O4 Hollow Microcubes as High-Capacity Anodes for Lithium-Ion Batteries, Adv. Mater. 2012, 24, 745.
[42] B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, G. Shen, Hierarchical Three-Dimensional ZnCo2O4 Nanowire Arrays/Carbon Cloth Anodes for a Novel Class of High-Performance Flexible Lithium-Ion Batteries, Nano Lett. 2012, 12, 3005.
[43] T. Wang, Z. Peng, Y. Wang, J. Tang, G. Zheng, MnO Nanoparticle@Mesoporous Carbon Composites Grown on Conducting Substrates Featuring High-performance Lithium-ion Battery, Supercapacitor and Sensor, Sci. Rep. 2013, 3. 2693
[44] W. Li, Q. Liu, Y. Sun, J. Sun, R. Zou, G. Li, X. Hu, G. Song, G. Ma, J. Yang, Z. Chen, J. Hu, MnO2 Ultralong Nanowires with Better Electrical Conductivity and Enhanced Supercapacitor Performances, J. Mater. Chem. 2012, 22, 14864.
[45] W. Yao, H. Zhou, Y. Lu, Synthesis and Property of Novel MnO2@Polypyrrole Coaxial Nanotubes as Electrode Material for Supercapacitors, J. Power Sources 2013, 241, 359.
[46] X. S. Du, C. F. Zhou, H. Y. Liu, Y. W. Mai, G. X. Wang, Facile Chemical Synthesis of Nitrogen-Doped Graphene Sheets and Their Electrochemical Capacitance, J. Power Sources 2013, 241, 460.
[47] H. Xia, D. Zhu, Z. Luo, Y. Yu, X. Shi, G. Yuan, J. Xie, Hierarchically Structured Co3O4@Pt@MnO2 Nanowire Arrays for High-Performance Supercapacitors, Scientific Reports 2013, 3, 2978.
[48] R. S. Kalubarme, H. S. Jadhav, C.-J. Park, Electrochemical Characteristics of Two-Dimensional Nano-Structured MnO2 For Symmetric Supercapacitor, Electrochim. Acta 2013, 87, 457.
[49] J. G. Wang, Y. Yang, Z. H. Huang, F. Kang, A High-Performance Asymmetric Supercapacitor Based on Carbon and Carbon–MnO2 Nanofiber Electrodes, Carbon 2013, 61, 190.
[50] R. S. Kalubarme, Y. H. Kim, C. J. Park, One Step Hydrothermal Synthesis of a Carbon Nanotube/Cerium Oxide Nanocomposite and Its Electrochemical Properties, Nanotechnology 2013, 24, 365401.
[51] H. Zeng, Y. Cao, S. Xie, J. Yang, Z. Tang, X. Wang, L. Sun, Synthesis, Optical and Electrochemical Properties Of ZnO Nanowires/Graphene Oxide Heterostructures, Nanoscale Res. Lett. 2013, 8, 1.
References (Chapter 4)
[1] C. Yuan, H. B. Wu, Y. Xie, X. W. Lou, Mixed Transition-Metal Oxides: Design, Synthesis, and Energy-Related Applications, Angew. Chem. Int. Ed. Engl. 2014, 53, 1488.
[2] J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X. W. Lou, Recent Advances in Metal Oxide-Based Electrode Architecture Design for Electrochemical Energy Storage, Adv. Mater. 2012, 24, 5166.
[3] M. Winter, R. J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?, Chem. Rev. 2004, 104, 4245.
[4] Y.-Y. Horng, Y.-C. Lu, Y.-K. Hsu, C.-C. Chen, L.-C. Chen, K.-H. Chen, Flexible Supercapacitor Based on Polyaniline Nanowires/Carbon Cloth with Both High Gravimetric and Area-Normalized Capacitance, J. Power Sources 2010, 195, 4418.
[5] Q. Lu, J. G. Chen, J. Q. Xiao, Nanostructured Electrodes for High-Performance Pseudocapacitors, Angew. Chem. Int. Ed. Engl. 2013, 52, 1882.
[6] X. F. Li, A. Dhanabalan, L. Gu, C. L. Wang, Three-Dimensional Porous Core-Shell Sn@Carbon Composite Anodes for High-Performance Lithium-Ion Battery Applications, Adv. Energy Mater. 2012, 2, 238.
[7] L. Gao, X. Wang, Z. Xie, W. Song, L. Wang, X. Wu, F. Qu, D. Chen, G. Shen, High-Performance Energy-Storage Devices Based on Wo3 Nanowire Arrays/Carbon Cloth Integrated Electrodes, J. Mater. Chem. A 2013, 1, 7167.
[8] A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nanostructured Materials for Advanced Energy Conversion and Storage Devices, Nat. Mater. 2005, 4, 366.
[9] M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari, Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries, Chem. Rev. 2013, 113, 5364.
[10] P. Simon, Y. Gogotsi, Materials for Electrochemical Capacitors, Nat Mater 2008, 7, 845.
[11] G. Gao, H. B. Wu, X. W. D. Lou, Citrate-Assisted Growth of NiCo2O4 Nanosheets on Reduced Graphene Oxide for Highly Reversible Lithium Storage, Adv. Energy Mater.2014, doi: 10.1002/aenm.201400422
[12] L. Liu, Y. Yang, Shape-Controlled Synthesis of Mnco Complex Oxide Nanostructures Via a Polyol-Based Precursor Route and Their Catalytic Properties, Superlattices Microstruct. 2013, 54, 26.
[13] S. G. Mohamed, T.-F. Hung, C.-J. Chen, C. K. Chen, S.-F. Hu, R.-S. Liu, Efficient Energy Storage Capabilities Promoted by Hierarchical Mnco2o4 Nanowire-Based Architectures, RSC Adv. 2014, 4, 17230.
[14] L. Li, Y. Q. Zhang, X. Y. Liu, S. J. Shi, X. Y. Zhao, H. Zhang, X. Ge, G. F. Cai, C. D. Gu, X. L. Wang, J. P. Tu, One-Dimension Mnco2o4 Nanowire Arrays for Electrochemical Energy Storage, Electrochim. Acta 2014, 116, 467.
[15] C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, X. W. Lou, Ultrathin Mesoporous Nico2o4 Nanosheets Supported on Ni Foam as Advanced Electrodes for Supercapacitors, Adv. Funct. Mater. 2012, 22, 4592.
[16] J. Li, S. Xiong, Y. Liu, Z. Ju, Y. Qian, High Electrochemical Performance of Monodisperse NiCo2O4 Mesoporous Microspheres as an Anode Material for Li-Ion Batteries, ACS Appl. Mater. Interfaces 2013, 5, 981.
[17] B. Liu, B. Liu, Q. Wang, X. Wang, Q. Xiang, D. Chen, G. Shen, New Energy Storage Option: Toward ZnCo2O4 Nanorods/Nickel Foam Architectures for High-Performance Supercapacitors, ACS Appl. Mater. Interfaces 2013, 5, 10011.
[18] J. Bai, X. Li, G. Liu, Y. Qian, S. Xiong, Unusual Formation of ZnCo2O4 3d Hierarchical Twin Microspheres as a High-Rate and Ultralong-Life Lithium-Ion Battery Anode Material, Adv. Funct. Mater. 2014, 24, 3012.
[19] W. Kang, Y. Tang, W. Li, Z. Li, X. Yang, J. Xu, C.-S. Lee, Porous CuCo2O4 Nanocubes Wrapped by Reduced Graphene Oxide as High-Performance Lithium-Ion Battery Anodes, Nanoscale 2014, 6, 6551.
[20] E. Laouini, Y. Berghoute, J. Douch, M. H. Mendonça, M. Hamdani, M. I. S. Pereira, Electrochemical Behaviour of FeXCo3−XO4 with (X = 0, 1, 2 and 3) Oxides Thin Film Electrodes in Alkaline Medium, J. Appl. Electrochem. 2009, 39, 2469.
[21] Y. Sharma, N. Sharma, G. V. Subba Rao, B. V. R. Chowdari, Studies on Spinel Cobaltites, FeCo2O4 and MgCo2O4 as Anodes for Li-Ion Batteries, Solid State Ionics 2008, 179, 587.
[22] R. B. Rakhi, W. Chen, D. Cha, H. N. Alshareef, Nanostructured Ternary Electrodes for Energy-Storage Applications, Adv. Energy Mater. 2012, 2, 381.
[23] C. Z. Yuan, B. Gao, X. G. Zhang, Electrochemical Capacitance of NiO/Ru0.35V0.65O2 Asymmetric Electrochemical Capacitor, J. Power Sources 2007, 173, 606.
[24] T. A. S. Ferreira, J. C. Waerenborgh, M. H. R. M. Mendonça, M. R. Nunes, F. M. Costa, Structural and Morphological Characterization of FeCo2O4 and CoFe2O4 Spinels Prepared by a Coprecipitation Method, Solid State Sci. 2003, 5, 383.
[25] L. Hu, H. Zhong, X. Zheng, Y. Huang, P. Zhang, Q. Chen, CoMn2O4 Spinel Hierarchical Microspheres Assembled with Porous Nanosheets as Stable Anodes for Lithium-Ion Batteries, Sci Rep 2012, 2, 986.
[26] T. Yamashita, P. Hayes, Analysis of Xps Spectra of Fe2+ and Fe3+ Ions in Oxide Materials, Appl. Surf. Sci. 2008, 254, 2441.
[27] S. Li, B. Wang, J. Liu, M. Yu, In Situ One-Step Synthesis of CoFe2O4/Graphene Nanocomposites as High-Performance Anode for Lithium-Ion Batteries, Electrochim. Acta 2014, 129, 33.
[28] J. Li, S. Xiong, X. Li, Y. Qian, A Facile Route to Synthesize Multiporous MnCo2O4 and CoMn2O4 Spinel Quasi-Hollow Spheres with Improved Lithium Storage Properties, Nanoscale 2013, 5, 2045.
[29] B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, G. Shen, Hierarchical Three-Dimensional ZnCo2O4 Nanowire Arrays/Carbon Cloth Anodes for a Novel Class of High-Performance Flexible Lithium-Ion Batteries, Nano Lett. 2012, 12, 3005.
[30] T. Wang, Z. Peng, Y. Wang, J. Tang, G. Zheng, Mno Nanoparticle@Mesoporous Carbon Composites Grown on Conducting Substrates Featuring High-Performance Lithium-Ion Battery, Supercapacitor and Sensor, Sci. Rep. 2013, 3, 2693.
[31] R. S. Kalubarme, H. S. Jadhav, C.-J. Park, Electrochemical Characteristics of Two-Dimensional Nano-Structured MnO2 for Symmetric Supercapacitor, Electrochim. Acta 2013, 87, 457.
[32] J. G. Wang, Y. Yang, Z. H. Huang, F. Kang, A High-Performance Asymmetric Supercapacitor Based on Carbon and Carbon–MnO2 Nanofiber Electrodes, Carbon 2013, 61, 190.
[33] S. K. Ramchandra, K. Yong-Han, P. Chan-Jin, One Step Hydrothermal Synthesis of a Carbon Nanotube/Cerium Oxide Nanocomposite and Its Electrochemical Properties, Nanotechnology 2013, 24, 365401.
References (Chapter 5)
[1] W. Wang, M. Tian, A. Abdulagatov, S. M. George, Y.-C. Lee, R. Yang, Three-Dimensional Ni/TiO2 Nanowire Network for High Areal Capacity Lithium Ion Microbattery Applications, Nano Lett. 2011, 12, 655.
[2] M. C. Qiu, L. W. Yang, X. Qi, J. Li, J. X. Zhong, Fabrication of Ordered NiO Coated Si Nanowire Array Films as Electrodes for a High Performance Lithium Ion Battery, ACS Appl. Mater. Interfaces 2010, 2, 3614.
[3] N. Li, Z. Chen, W. Ren, F. Li, H.-M. Cheng, Flexible Graphene-Based Lithium Ion Batteries with Ultrafast Charge and Discharge Rates, Proc. Natl. Acad. Sci. U. S. A 2012, 109, 17360.
[4] J. Li, S. Xiong, Y. Liu, Z. Ju, Y. Qian, High Electrochemical Performance of Monodisperse NiCo2O4 Mesoporous Microspheres as an Anode Material for Li-Ion Batteries, ACS Appl. Mater. Interfaces 2013, 5, 981.
[5] Y. Qiu, S. Yang, H. Deng, L. Jin, W. Li, A Novel Nanostructured Spinel ZnCo2O4 Electrode Material: Morphology Conserved Transformation from a Hexagonal Shaped Nanodisk Precursor and Application in Lithium Ion Batteries, J. Mater. Chem. 2010, 20, 4439.
[6] P. Poizot, S. Laruelle, S. Grugeon, J.-M. Tarascon, Rationalization of the Low-Potential Reactivity of 3d-Metal-Based Inorganic Compounds toward Li, J. Electrochem. Soc. 2002, 149, A1212.
[7] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nano-Sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-Ion Batteries, Nature 2000, 407, 496.
[8] L. Wang, B. Liu, S. Ran, H. Huang, X. Wang, B. Liang, D. Chen, G. Shen, Nanorod-Assembled Co3O4 Hexapods with Enhanced Electrochemical Performance for Lithium-Ion Batteries, J. Mater. Chem. 2012, 22, 23541.
[9] Y. M. Kang, M. S. Song, J. H. Kim, H. S. Kim, M. S. Park, J. Y. Lee, H. K. Liu, S. X. Dou, A Study on the Charge–Discharge Mechanism of Co3O4 as an Anode for the Li Ion Secondary Battery, Electrochim. Acta 2005, 50, 3667.
[10] R. Alcántara, M. Jaraba, P. Lavela, J. L. Tirado, NiCo2O4 Spinel:  First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries, Chem. Mater. 2002, 14, 2847.
[11] C. Ai, M. Yin, C. Wang, J. Sun, Synthesis and Characterization of Spinel Type ZnCo2O4 as a Novel Anode Material for Lithium Ion Batteries, J. Mater. Sci. 2004, 39, 1077.
[12] J. Li, S. Xiong, X. Li, Y. Qian, A Facile Route to Synthesize Multiporous MnCo2O4 and CoMn2O4 Spinel Quasi-Hollow Spheres with Improved Lithium Storage Properties, Nanoscale 2013, 5, 2045.
[13] H. Liu, J. Wang, Hydrothermal Synthesis and Electrochemical Performance of MnCo2O4 Nanoparticles as Anode Material in Lithium-Ion Batteries, J. Electron. Mater. 2012, 41, 3107.
[14] Y. Sharma, N. Sharma, G. V. S. Rao, B. V. R. Chowdari, Lithium Recycling Behaviour of Nano-Phase-CuCo2O4 as Anode for Lithium-Ion Batteries, J. Power Sources 2007, 173, 495.
[15] W. Luo, X. Hu, Y. Sun, Y. Huang, Electrospun Porous ZnCo2O4 Nanotubes as a High-Performance Anode Material for Lithium-Ion Batteries, J. Mater. Chem. 2012, 22, 8916.
[16] B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, G. Shen, Hierarchical Three-Dimensional ZnCo2O4 Nanowire Arrays/Carbon Cloth Anodes for a Novel Class of High-Performance Flexible Lithium-Ion Batteries, Nano Lett. 2012, 12, 3005.
[17] Y. Sharma, N. Sharma, G. V. Subba Rao, B. V. R. Chowdari, Nanophase ZnCo2O4 as a High Performance Anode Material for Li-Ion Batteries, Adv. Funct. Mater. 2007, 17, 2855.
[18] N. Du, Y. Xu, H. Zhang, J. Yu, C. Zhai, D. Yang, Porous ZnCo2O4 Nanowires Synthesis Via Sacrificial Templates: High-Performance Anode Materials of Li-Ion Batteries, Inorg. Chem. 2011, 50, 3320.
[19] H. Liu, J. Wang, One-Pot Synthesis of ZnCo2O4 Nanorod Anodes for High Power Lithium Ions Batteries, Electrochim. Acta 2013, 92, 371.
[20] H. Li, W. Kang, Y. Yu, J. Liu, Y. Qian, Synthesis of Bamboo-Structured Carbon Nanotubes and Honeycomb Carbons with Long-Cycle Li-Storage Performance by in Situ Generated Zinc Oxide, Carbon 2012, 50, 4787.
[21] Z. Q. Liu, K. Xiao, Q. Z. Xu, N. Li, Y. Z. Su, H. J. Wang, S. Chen, Fabrication of Hierarchical Flower-Like Super-Structures Consisting of Porous NiCo2O4 Nanosheets and Their Electrochemical and Magnetic Properties, RSC Adv. 2013, 3, 4372.
[22] L. Hu, B. Qu, C. Li, Y. Chen, L. Mei, D. Lei, L. Chen, Q. Li, T. Wang, Facile Synthesis of Uniform Mesoporous ZnCo2O4 Microspheres as a High-Performance Anode Material for Li-Ion Batteries, Journal of Materials Chemistry A 2013, 1, 5596.
[23] X. H. Huang, X. H. Xia, Y. F. Yuan, F. Zhou, Porous ZnO Nanosheets Grown on Copper Substrates as Anodes for Lithium Ion Batteries, Electrochim. Acta 2011, 56, 4960.
[24] Z. S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H.-M. Cheng, Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance, ACS Nano 2010, 4, 3187.
[25] C. Q. Zhang, J. P. Tu, Y. F. Yuan, X. H. Huang, X. T. Chen, F. Mao, Electrochemical Performances of Ni-Coated ZnO as an Anode Material for Lithium-Ion Batteries, J. Electrochem. Soc. 2007, 154, A65.
[26] K. W. Schroder, H. Celio, L. J. Webb, K. J. Stevenson, Examining Solid Electrolyte Interphase Formation on Crystalline Silicon Electrodes: Influence of Electrochemical Preparation and Ambient Exposure Conditions, J. Phys. Chem. C 2012, 116, 19737.
[27] D. Deng, J. Y. Lee, Linker-Free 3d Assembly of Nanocrystals with Tunable Unit Size for Reversible Lithium Ion Storage, Nanotechnology 2011, 22, 355401.
References (Chapter 6)

[1] M. Mirzaeian, P. J. Hall, Characterizing Capacity Loss of Lithium Oxygen Batteries by Impedance Spectroscopy, J. Power Sources 2010, 195, 6817.
[2] G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, W. Wilcke, Lithium−Air Battery: Promise and Challenges, J. Phys. Chem. Lett. 2010, 1, 2193.
[3] R. Cao, J. S. Lee, M. Liu, J. Cho, Recent Progress in Non-Precious Catalysts for Metal-Air Batteries, Adv. Energy Mater. 2012, 2, 816.
[4] X. Wang, D. Zhu, M. Song, S. Cai, L. Zhang, Y. Chen, A Li–O2/Air Battery Using an Inorganic Solid-State Air Cathode, ACS Appl. Mater. Interfaces 2014, 6, 11204.
[5] Z. Peng, S. A. Freunberger, Y. Chen, P. G. Bruce, A Reversible and Higher-Rate Li-O2 Battery, Science 2012, 337, 563.
[6] Y. Shao, S. Park, J. Xiao, J.-G. Zhang, Y. Wang, J. Liu, Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective, ACS Catal. 2012, 2, 844.
[7] V. Etacheri, D. Sharon, A. Garsuch, M. Afri, A. A. Frimer, D. Aurbach, Hierarchical Activated Carbon Microfiber (Acm) Electrodes for Rechargeable Li-O2 Batteries, J. Mater. Chem. A 2013, 1, 5021.
[8] A. Débart, J. Bao, G. Armstrong, P. G. Bruce, An O2 Cathode for Rechargeable Lithium Batteries: The Effect of a Catalyst, J. Power Sources 2007, 174, 1177.
[9] K. Kim, Y. Park, Catalytic Properties of Co3o4 Nanoparticles for Rechargeable Li/Air Batteries, Nanoscale Res. Lett. 2012, 7, 1.
[10] Y. Cui, Z. Wen, S. Sun, Y. Lu, J. Jin, Mesoporous Co3O4 with Different Porosities as Catalysts for the Lithium–Oxygen Cell, Solid State Ionics 2012, 225, 598.
[11] G. Zhang, X. W. Lou, General Solution Growth of Mesoporous NiCo2O4 Nanosheets on Various Conductive Substrates as High-Performance Electrodes for Supercapacitors, Adv. Mater. 2013, 25, 976.
[12] H. Wang, Y. Yang, Y. Liang, G. Zheng, Y. Li, Y. Cui, H. Dai, Rechargeable Li-O2 Batteries with a Covalently Coupled MnCo2O4-Graphene Hybrid as an Oxygen Cathode Catalyst, Energy Environ. Sci. 2012, 5, 7931.
[13] L. Zhang, S. Zhang, K. Zhang, G. Xu, X. He, S. Dong, Z. Liu, C. Huang, L. Gu, G. Cui, Mesoporous NiCo2O4 Nanoflakes as Electrocatalysts for Rechargeable Li-O2 Batteries, Chem. Commun. 2013, 49, 3540.
[14] T. F. Hung, S. G. Mohamed, C. C. Shen, Y.-Q. Tsai, W. S. Chang, R. S. Liu, Mesoporous ZnCo2O4 Nanoflakes with Bifunctional Electrocatalytic Activities toward Efficiencies of Rechargeable Lithium-Oxygen Batteries in Aprotic Media, Nanoscale 2013, 5, 12115.
[15] S. Ma, L. Sun, L. Cong, X. Gao, C. Yao, X. Guo, L. Tai, P. Mei, Y. Zeng, H. Xie, R. Wang, Multiporous MnCo2O4 Microspheres as an Efficient Bifunctional Catalyst for Nonaqueous Li–O2 Batteries, J. Phys. Chem. C 2013, 117, 25890.
[16] K. Sing, Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Provisional), Pure Appl. Chem. 1982, 54, 2201.
[17] M. De Koninck, S.-C. Poirier, B. Marsan, CuXCo3 − X O4 Used as Bifunctional Electrocatalyst: Physicochemical Properties and Electrochemical Characterization for the Oxygen Evolution Reaction, J. Electrochem. Soc. 2006, 153, A2103.
[18] J. Xiao, Q. Kuang, S. Yang, F. Xiao, S. Wang, L. Guo, Surface Structure Dependent Electrocatalytic Activity of Co3O4 Anchored on Graphene Sheets toward Oxygen Reduction Reaction, Sci. Rep. 2013, 3. 2300
[19] C. Fu, G. Li, D. Luo, X. Huang, J. Zheng, L. Li, One-Step Calcination-Free Synthesis of Multicomponent Spinel Assembled Microspheres for High-Performance Anodes of Li-Ion Batteries: A Case Study of MnCo2O4, ACS Appl. Mater. Interfaces 2014, 6, 2439.
[20] P. Mills, J. Sullivan, A Study of the Core Level Electrons in Iron and Its Three Oxides by Means of X-Ray Photoelectron Spectroscopy, J. Phys. D: Appl. Phys. 1983, 16, 723.
[21] L. Qian, L. Gu, L. Yang, H. Yuan, D. Xiao, Direct Growth of NiCo2O4 Nanostructures on Conductive Substrates with Enhanced Electrocatalytic Activity and Stability for Methanol Oxidation, Nanoscale 2013, 5, 7388.
[22] L. Hu, B. Qu, C. Li, Y. Chen, L. Mei, D. Lei, L. Chen, Q. Li, T. Wang, Facile Synthesis of Uniform Mesoporous ZnCo2O4 Microspheres as a High-Performance Anode Material for Li-Ion Batteries, J. Mater. Chem. A 2013, 1, 5596.
[23] S. Alibeigi, M. R. Vaezi, Phase Transformation of Iron Oxide Nanoparticles by Varying the Molar Ratio of Fe2+:Fe3+, Chem. Eng. Technol. 2008, 31, 1591.
[24] T. Zhang, H. Fan, G. Liu, J. Jiang, J. Zhou, Q. Jin, Different Effects of Fe2+ and Fe3+ on Conjugated Polymer PPESO3: A Novel Platform for Sensitive Assays of Hydrogen Peroxide and Glucose, Chem. Commun. 2008, 42, 5414.
[25] J. J. Xu, Z. L. Wang, D. Xu, L. L. Zhang, X. B. Zhang, Tailoring Deposition and Morphology of Discharge Products Towards High-Rate and Long-Life Lithium-Oxygen Batteries, Nat Commun 2013, 4, 2438, DOI: 10.1038/ncomms3438
[26] K. Zhang, L. Zhang, X. Chen, X. He, X. Wang, S. Dong, P. Han, C. Zhang, S. Wang, L. Gu, G. Cui, Mesoporous Cobalt Molybdenum Nitride: A Highly Active Bifunctional Electrocatalyst and Its Application in Lithium–O2 Batteries, J. Phys. Chem. C 2012, 117, 858.
[27] Z. L. Wang, D. Xu, J. J. Xu, L. L. Zhang, X. B. Zhang, Graphene Oxide Gel-Derived, Free-Standing, Hierarchically Porous Carbon for High-Capacity and High-Rate Rechargeable Li-O2 Batteries, Adv. Funct. Mater. 2012, 22, 3699.
References (Chapter 7)
[1] C. Yuan, H. B. Wu, Y. Xie, X. W. Lou, Mixed Transition-Metal Oxides: Design, Synthesis, and Energy-related Applications, Angew. Chem. Int. Ed. 2014, 53, 1488.
[2] J. Li, S. Xiong, X. Li, Y. Qian, A Facile Route to Synthesize Multiporous MnCo2O4 and CoMn2O4 Spinel Quasi-Hollow Spheres with Improved Lithium Storage Properties, Nanoscale 2013, 5, 2045.
[3] V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive Oxide Materials for High-Rate Electrochemical Energy Storage, Energy Environ. Sci. 2014, 7, 1597.
[4] C. Cao, Z. Li, X.-L. Wang, X. Zhao, W.-Q. Han, Recent Advances in Inorganic Solid Electrolytes for Lithium Batteries, Front. Energy Res 2014, 2. doi:10.3389/fenrg.2014.00025.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top