跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/27 20:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:應奇峰
研究生(外文):Chi-Feng Ying
論文名稱:C60於鈷奈米島/Cu(111)的台階邊緣之掃描穿隧顯微術研究:雙金屬界面的C60電子結構
論文名稱(外文):Electronic Structure Modulation at Molecule-Bimetallic Interface: an STM/STS Study of Single C60 at Biatomic Step Edge of Co/Cu(111)
指導教授:陳俊顯陳俊顯引用關係
口試委員:彭旭明金必耀陳祺林敏聰
口試日期:2015-06-02
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:61
中文關鍵詞:掃描穿隧顯微術掃描穿隧能譜Cu(111)碳六十分子-金屬界面p-d軌域混成
外文關鍵詞:Scanning Tunneling MicroscopyScanning Tunneling SpectroscopyCu(111)C60Molecule-Metal Interfacep-d hybridization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:81
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究碳六十(Buckminsterfullerene, C60)在Cu(111)單晶表面的鈷奈米島台階邊緣與Cu(111)台階邊緣的吸附方向與其電子結構,利用超高真空-低溫-掃描穿隧顯微鏡(ultrahigh vacuum-low temperature-scanning tunneling microscope, UHV-LT-STM)進行兩種樣品製備與表面分析,在超高真空的環境下經由(1)熱阻式方式,蒸鍍碳六十到Cu(111)表面取得C60/Cu(111)樣品;與(2)先熱蒸鍍金屬鈷到Cu(111)表面,獲得兩個原子層厚的三角形鈷奈米島,再蒸鍍碳六十,以獲得C60-Co/Cu(111)樣品。STM進行影像掃描,觀察碳六十分子在兩種基材表面的吸附位向;在穿隧迴路連接鎖相放大器(lock-in amplifier)可獲得掃描穿隧能譜(scanning tunneling spectroscopy, STS)。碳六十在平整表面的吸附位向可分為六邊形(hexagon)中心朝上(h)、五邊形(pentagon)中心朝上(p)、六邊形-五邊形鍵朝上(h:p)、六邊形-六邊形鍵朝上(p:p)或頂端原子(apex atom)朝上(a)等等。STM影像顯示碳六十在Cu(111)台階邊緣的吸附方向為h,而在鈷奈米島台階邊緣則為h:p。STS能譜顯示碳六十分子在兩種台階邊緣的電子結構有明顯的差異,在Cu(111)台階邊緣的碳六十LUMO (lowest unoccupied molecular orbital)譜峰分裂,而在鈷奈米島邊緣的碳六十,除了LUMO穿隧譜峰分裂,連HOMO (highest occupied molecular orbital)的譜峰也分裂了,顯示分子與這兩種金屬原子有不同的軌域混成作用(p-d hybridization)。經Atomistix ToolKit (ATK)軟體模擬獲得的能態密度(Density of States)與掃描穿隧能譜進行比較,佐證經由台階的側向接觸能明顯改變碳六十分子的軌域分佈。

Adsorbate-substrate interactions are important and typical subjects in surface science because the interactions modulate the electronic structures of the adsorbate and thus offer a tactic to modify the interfacial properties. At step edges, in addition to the underneath substrate, lateral interactions from the vertical face of the step come into play. In this thesis work of C60, a bimetallic step edge was prepared by deposition of cobalt nanoislands on Cu(111). Hence, the effect on the electronic structures of C60 from the bimetallic substrate can be compared with that from the Cu(111) step edge. UHV-LT-STM/STS (ultrahigh vacuum-low temperature- scanning tunneling microscopy/spectroscopy) was employed to acquire, at the molecular level, STM images and STS spectra of C60 lodged at the edges of Cu steps and Co nanoislands on Cu(111). Topographic images for the former suggested an orientation of C60 with the hexagon ring facing Cu(111) and for the latter with a hexagon-pentagon bond resting on Cu(111). The discrepancy manifested the effect of aforementioned lateral interactions on the orientation of C60 adsorption. dI/dV spectra of C60 at Cu(111) step edge exhibited LUMO (lowest unoccupied molecular orbital) splitting, while at the edge of cobalt nanoislands additional splitting at the HOMO (highest occupied molecular orbital) level took place. The splitting involved the coupling of adsorbate states to those of the substrate. Different degrees of p-d hybridizations between C60 and metal atoms on the vertical face of the step are proposed for the disparities of dI/dV peaks.

目錄
口試委員會審定書 #
謝辭 I
中文摘要 III
ABSTRACT IV
圖目錄 VII
CHAPTER 1 Introduction 1
1.1. Motivation 1
1.2. Principle of Scanning Tunneling Microscopy 2
1.2.1. Quantum Tunneling Effect 4
1.2.2. Scanning Modes 7
1.3. Principle of Scanning Tunneling Spectroscopy 8
1.3.1. Differential Conductance Curve 8
1.3.2. Conductance Map 9
1.4. Literature Review 10
1.4.1. C60 on Fcc(111) Metal Surfaces 11
1.4.2. C60 on Cu(111) with Annealing Procedure 14
1.4.3. C60 on Cu(111) without Annealing Procedure 17
1.4.4. Cobalt Islands on Cu(111) 22
1.4.5. STS Analysis and DOS Calculation of C60 on Metal Surfaces 25
CHAPTER 2 Instruments 30
2.1. Ultra-High Vacuum Chamber 30
2.2. Scanning Tunneling Microscope 34
2.3. Lock-In Amplifier 35
2.4. Calibration and Testing 36
2.5. Tip Fabrication 38
CHAPTER 3 C60 at Copper Step Edge and C60 at Cobalt Islands Edge 40
3.1. Sample Preparation 40
3.1.1. Cu(111) Single Crystal 40
3.1.2. C60 Self-Assembled Monolayers 41
3.1.3. Cobalt Islands 42
3.1.4. C60 at the Cobalt Island Edge 45
3.2. The Electronic Structure of C60 at the Copper Step Edge 47
3.3. The Electronic Structure of C60 at the Cobalt Island Edge 49
3.4. Comparison of C60 at Copper Step Edge and Cobalt Island Edge 53
CHAPTER 4 Conclusion 56
Appendix 57
References 59



[1]Chang, H. C.; Lu, C.; Liu, C. L.; Chen, W. C. Adv. Mater. 2015, 27, 27-33.
[2]Vak, D.; van Embden, J.; Wong, W. W.; Watkins, S. Appl. Phys. Lett. 2015, 106, 033302.
[3]Sun, Z.; Shi, S.; Bao, Q.; Liu, X.; Fahlman, M. Adv. Mater. Interfaces 2015, 2, 1400527.
[4]Tran, T. L. A.; Çakır, D.; Wong, P. J.; Preobrajenski, A. B.; Brocks, G.; van der Wiel, W. G.; de Jong, M. P. ACS Appl. Mater. Interfaces 2013, 5, 837-841.
[5]Torrente, I. F.; Franke, K. J.; Pascual, J. I. J. Phys. Condens. Matter 2008, 20, 184001.
[6]Lu, J.; Yeo, P. S. E.; Gan, C. K.; Wu, P.; Loh, K. P. Nat. Nanotechnol. 2011, 6, 247-252.
[7]Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E. Phys. Rev. Lett. 1983, 50, 120.
[8]Scanning Tunneling Microscopy.
http://www.ieap.uni-kiel.de/surface/ag-kipp/stm/stm.htm
(accessed Feb 21, 2015).
[9]Borisenko, N.; Atkin, R.; Lahiri, A.; El Abedin, S. Z.; Endres, F. J. Phys. Condens. Matter 2014, 26, 284111.
[10]Crommie, M. F.; Lutz, C. P.; Eigler, D. M. Science 1993, 262, 218-220.
[11]Endres, F.; Borisenko, N.; El Abedin, S. Z.; Hayes, R.; Atkin, R. Faraday Discuss. 2012, 154, 221-233.
[12]Wilms, M.; Broekmann, P.; Stuhlmann, C.; Wandelt, K. Surf. Sci. 1998, 416, 121-140.
[13]Scanning Tunneling Microscopy and Spectroscopy.
http://goo.gl/Zf984i
(accessed Mar 25, 2015).
[14]Chen, C. J., Introduction to Scanning Tunneling Microscopy. Oxford University Press: New York, 1993; p 23.
[15]STM Operation Modes.
http://eng.thesaurus.rusnano.com/wiki/article14154
(accessed Apr 11, 2015).
[16]Guo, S.; Fogarty, D. P.; Nagel, P. M.; Kandel, S. A. The Journal of Physical Chemistry B 2004, 108, 14074-14081.
[17]Li, H.-I.; Pussi, K.; Hanna, K.; Wang, L.-L.; Johnson, D.; Cheng, H.-P.; Shin, H.; Curtarolo, S.; Moritz, W.; Smerdon, J. Phys. Rev. Lett. 2009, 103, 056101.
[18]Grobis, M.; Lu, X.; Crommie, M. Phys. Rev. B 2002, 66, 161408.
[19]Hashizume, T.; Motai, K.; Wang, X.; Shinohara, H.; Saito, Y.; Maruyama, Y.; Ohno, K.; Kawazoe, Y.; Nishina, Y.; Pickering, H. Phys. Rev. Lett. 1993, 71, 2959.
[20]Abel, M.; Dmitriev, A.; Fasel, R.; Lin, N.; Barth, J.; Kern, K. Phys. Rev. B 2003, 67, 245407.
[21]Pinardi, A. L.; Biddau, G.; van De Ruit, K.; Otero-Irurueta, G.; Gardonio, S.; Lizzit, S.; Schennach, R.; Flipse, C. F.; López, M. F.; Méndez, J. Nat. Nanotechnol. 2014, 25, 385602.
[22]Shi, X.-Q.; Van Hove, M. A.; Zhang, R.-Q. J. Mater. Sci. 2012, 47, 7341-7355.
[23]Néel, N.; Kröger, J. r.; Limot, L.; Berndt, R. Nano Lett. 2008, 8, 1291-1295.
[24]Schull, G.; Becker, M.; Berndt, R. New J. Phys. 2008, 10, 065012.
[25]Gimzewski, J.; Modesti, S.; David, T.; Schlittler, R. J. Vac. Sci. Technol., B 1994, 12, 1942-1946.
[26]Pai, W. W.; Jeng, H.; Cheng, C.-M.; Lin, C.-H.; Xiao, X.; Zhao, A.; Zhang, X.; Xu, G.; Shi, X.; Van Hove, M. Phys. Rev. Lett. 2010, 104, 036103.
[27]Larsson, J. A.; Elliott, S. D.; Greer, J. C.; Repp, J.; Meyer, G.; Allenspach, R. Phys. Rev. B 2008, 77, 115434.
[28]Cepek, C.; Goldoni, A.; Modesti, S. Phys. Rev. B 1996, 53, 7466.
[29]Stróżecka, A.; Mysliveček, J.; Voigtländer, B. Appl. Phys. A 2007, 87, 475-478.
[30]Tsuei, K.-D.; Yuh, J.-Y.; Tzeng, C.-T.; Chu, R.-Y.; Chung, S.-C.; Tsang, K.-L. Phys. Rev. B 1997, 56, 15412.
[31]Lu, X.; Grobis, M.; Khoo, K.; Louie, S. G.; Crommie, M. Phys. Rev. Lett. 2003, 90, 096802.
[32]Silien, C.; Pradhan, N.; Ho, W.; Thiry, P. Phys. Rev. B 2004, 69, 115434.
[33]Kröger, J.; Néel, N.; Limot, L. J. Phys. Condens. Matter 2008, 20, 223001.
[34]de Parga, A. V.; García-Vidal, F.; Miranda, R. Phys. Rev. Lett. 2000, 85, 4365.
[35]Rabe, A.; Memmel, N.; Steltenpohl, A.; Fauster, T. Phys. Rev. Lett. 1994, 73, 2728.
[36]Negulyaev, N.; Stepanyuk, V.; Bruno, P.; Diekhöner, L.; Wahl, P.; Kern, K. Phys. Rev. B 2008, 77, 125437.
[37]Heinrich, B.; Iacovita, C.; Rastei, M.; Limot, L.; Ignatiev, P.; Stepanyuk, V.; Bucher, J. Eur. Phys. J. B 2010, 75, 49-56.
[38]Pietzsch, O.; Kubetzka, A.; Bode, M.; Wiesendanger, R. Phys. Rev. Lett. 2004, 92, 057202.
[39]Rastei, M.; Heinrich, B.; Limot, L.; Ignatiev, P.; Stepanyuk, V.; Bruno, P.; Bucher, J. Phys. Rev. Lett. 2007, 99, 246102.
[40]Wang, L.-L.; Cheng, H.-P. Phys. Rev. B 2004, 69, 045404.
[41]Hockett, L. A.; Creager, S. E. Rev. Sci. Instrum. 1993, 64, 263-264.
[42]Horcas, I.; Fernández, R.; Gomez-Rodriguez, J.; Colchero, J.; Gómez-Herrero, J.; Baro, A. Rev. Sci. Instrum. 2007, 78, 013705.
[43]Lewis, E.; Le, D.; Jewell, A.; Murphy, C.; Rahman, T.; Sykes, E. Chem. Commun. 2014, 50, 6537-6539.
[44]Zhang, X.; He, W.; Zhao, A.; Li, H.; Chen, L.; Pai, W. W.; Hou, J.; Loy, M.; Yang, J.; Xiao, X. Phys. Rev. B 2007, 75, 235444.
[45]Kawahara, S.; Lagoute, J.; Repain, V.; Chacon, C.; Girard, Y.; Rousset, S.; Smogunov, A.; Barreteau, C. Nano Lett. 2012, 12, 4558-4563.
[46]Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
[47]Scanning Tunneling Microscopy and Spectroscopy.
http://goo.gl/RbhlbA
(accessed May 20, 2015).
[48]Hands, I. D.; Dunn, J. L.; Bates, C. A. Phys. Rev. B 2010, 81, 205440.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top