跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.59) 您好!臺灣時間:2023/01/27 18:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃品豪
研究生(外文):Pin-Hao Huang
論文名稱:Y型與ZSM-5沸石應用於揮發性有機物之吸脫附特性研究
論文名稱(外文):Applications of Y and ZSM-5 zeolites in VOCs adsorption
指導教授:鄭淑芬鄭淑芬引用關係
指導教授(外文):Soofin Cheng
口試委員:萬本儒邱靜雯
口試委員(外文):Ben-Zu WanChing-Wen Chiu
口試日期:2015-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:125
中文關鍵詞:Y型沸石ZSM-5揮發性有機物甲苯吸附
外文關鍵詞:Y-type zeoliteZSM-5volatile organic compoundstoluene adsorption
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
揮發性有機物(Volatile organic compounds)係指在標準狀態下蒸氣壓大於0.1 mmHg之有機物質,因此容易揮發且具有較低的沸點,其不只對於環境有害,也會讓人體產生嘔吐、噁心等不適症狀,某些揮發性有機物更被證實對人體有致癌性,因此如何有效減少揮發性有機物的汙染是當今急需迫切解決的問題。在各種去除方法中,以吸附法擁有高操作彈性、價錢便宜最為廣泛使用,其中又以活性碳最常被當作吸附劑使用,因其吸附能力佳、造價便宜,但其在吸附時容易造成孔洞阻塞,容易吸水,更有自燃等安全上得虞慮。沸石(Zeolite),因其具有獨特的晶體結構、高熱穩定性與表面積等特性,被認為是非常有潛力作為吸附揮發性有機物的替代材料。

本研究利用矽鋁比不同的Y型與ZSM-5型沸石作為吸附劑捕捉代表性揮發性有機物(甲苯、甲基環戊烷、巴豆醛),並將材料做後修飾:包括與鈉、銀、銅、氫離子做離子交換,或者經過酸鹼溶液處理進行介孔製備,同時也合成含鈦之沸石TS-1進行比較,材料以X光粉末繞射鑑定其晶體結構,使用感應耦合電漿質譜分析儀計算其中各元素含量,並利用氮氣吸附-脫附測量表面積以及孔體積,使用掃描式電子顯微鏡鑑定沸石形貌,並以程溫脫附儀進行吸脫附特性的研究。實驗結果顯示,在相同吸附條件下,影響甲苯吸附量的關鍵因素為陽離子含量(矽鋁比),陽離子含量越多,甲苯吸附量越高,但同時也較吸水;次要因素為離子的型式,鈉離子最對於甲苯與水氣的吸附量最高,氫離子則相反,對於甲苯與水氣的吸附量最低;當矽鋁比相近、離子型式相同時,比較面積的貢獻才會較為明顯,比表面積越大的材料,吸附效果越好。在甲基環戊烷的吸附中,發現到當探針分子與材料孔洞大小相近時,會使分子類似卡在孔洞中的狀況,吸附量提升且不易脫附,如Na-Z120對於甲基環戊烷的吸附量為5.18 wt%,高於其對於甲苯的吸附量3.75 wt%。在巴豆醛的吸附中,我們發現到含有銀、銅、氫離子的Y型與ZSM-5型沸石的吸附的同時會伴隨產生氧化裂解等反應,而TS-1對於巴豆醛僅有單純吸脫附之作用,吸附量約為6 ~ 7 wt%。在經過諸多試驗後,我們也找出在不同條件下適用之吸附劑:若吸附環境為無水的狀態,適合使用經過鹼處理之Na-Y3B,其對於甲苯與甲基環戊烷的吸附量最高,達到了21.0 wt%與13.8 wt%。而若要在一般含水氣的環境下吸附,則氫離子型式的H-Z120最為適合,因其對於水氣的吸附量非常低,具有30.3的甲苯/水選擇率與44.8的甲基環戊烷/水選擇率。

Volatile organic compounds (VOCs) are organic chemicals that have high vapor pressure at ambient temperature, and many of them are harmful to the environment and are toxic or even carcinogenic to the human being. Many technologies are available for VOCs control, such as adsorption, condensation, membrane separation, oxidation and biological treatment, among which adsorption is the most applicable technology because of the flexibility of the system, low energy, and inexpensive operation costs. Activated carbon has long been recognized as the most versatile adsorbent due to its low cost and excellent adsorption capacity. However, several drawbacks, such as hygroscopicity, pore clogging,and low thermal stability are associated with its use in adsorption processes. Hence, extensive efforts have been focused on finding alternative adsorbents. Zeolites are microporous molecular sieves with crystalline structures, high specific surfaces and thermal stabilities, have been proposed as potential adsorbents for VOCs adsorption/separation.

In this study, zeolite Y and ZSM-5 were exchanged with different cations, including sodium, silver, copper and hydrogen or been treated with acid and base solution to create mesopores in zeolite structure. Futhermore, we synthesized zeolites with different amounts of Ti/Si ratio and used as the adsorbents of VOCs, including toluene, methylcyclopentane and crotonaldehyde. The materials were characterized by X-ray diffraction, nitrogen sorption, scanning electron microscope and elemental analysis. The uptakes of toluene, methylcyclopentane and steam over these zeolites were investigated by temperature programmed desorption. We found that under same experiment conditions, the amounts of cations was the key point to determine the amount of toluene adsorption; then was cation form; only when the adsorbent had similar cation amount and same cation form, the effect of specific surface area would show up. In the experiment of methylcyclopentane adsorption, we found that when the size of adsorbate molecules were similar to the pore size of adsorbent, adsorption capacity would increase and become hard to drsorb. In the experiment of crotonaldehyde adsorption, Y-type and ZSM-5 with silver, copper and hydrogen form would promote oxidation/cracking of crotonaldehyde, TS-1 only shows the adsorption/desorption peak without other reactions happened, the adsorption capacity was around 6 ~ 7 wt%. If we want to adsorption VOCs in dry condition, Na-Y3B is the best choice, because it has the largest adsorption for both toluene (21.0 wt%) and methylcyclopentane (13.8 wt%). H-Z120 is suitable for adsorption VOCs in normal condition, due to its hydrophobicity, has the highest toluene/steam selectivity (30.3) and methylcyclopentane/steam selectivity (44.8).

謝誌 I
摘要 II
Abstract IV
表目錄 IX
圖目錄 XI
第1章 緒論 1
1-1揮發性有機物之定義與種類 1
1-2揮發性有機物之來源與組成 2
1-3揮發性有機物造成之一次汙染 6
1-4揮發性有機物造成之二次汙染 11
1-5揮發性有機物之移除方法與材料 13
1-6沸石與分子篩 14
1-7沸石結構簡介 16
1-8 Y型沸石 20
1-9 ZSM-5型沸石 21
1-10影響吸附之因子 23
1-10-1物理吸附與化學吸附 23
1-10-2吸附劑性質 25
1-10-3吸附質性質 27
1-10-4環境因子 28
1-10-5混合吸附 30
1-11沸石吸附揮發性有機物相關文獻回顧 31
1-11-1沸石骨架中異原子之影響 31
1-11-2沸石不同矽鋁比之影響 32
1-11-3沸石離子交換位置之影響 33
1-11-4沸石結構含中孔洞之影響 36
1-12研究動機與目的 37
第2章 實驗部分 40
2-1化學藥品 40
2-2材料製備 41
2-2-1製備離子交換之沸石 41
2-2-1-1製備鈉離子交換之沸石 41
2-2-1-2製備銀離子交換之沸石 41
2-2-1-3製備銅離子交換之沸石 41
2-2-1-4製備氫離子交換之沸石 42
2-2-2製備含不同鈦比例之沸石 42
2-2-3製備酸鹼處理之沸石 43
2-3鑑定材料之儀器與方法 45
2-3-1 X光粉末繞射(Powder X-ray Diffraction,XRD) 45
2-3-2氮氣吸附-脫附等溫曲線(N2 Adsorption-desorption Isotherm) 46
2-3-3掃描式電子顯微鏡(Scanning electron microscopy, SEM) 48
2-3-4誘導偶極電漿質譜儀(Inductively Coupled Plasma/Mass Spectroscopy,ICP-MS) 48
2-3-5紫外-可見光分光光譜儀(Ultraviolet–visible Spectophotometer,UV-Vis) 49
2-3-6程式控溫脫附儀(Temperature Programmed Desorption,TPD) 49
第3章 結果與討論 59
3-1離子交換之沸石 59
3-1-1 XRD鑑定 59
3-1-2恆溫氮氣吸脫附鑑定 62
3-1-3 ICP-MS鑑定 65
3-1-4 SEM鑑定 65
3-1-5吸附效果鑑定 70
3-2含鈦之沸石 79
3-2-1 XRD鑑定 79
3-2-2 UV-VIS鑑定 79
3-2-3恆溫氮氣吸脫附鑑定 80
3-2-4 ICP-MS鑑定 81
3-2-5 SEM鑑定 82
3-2-6吸附效果鑑定 83
3-3酸鹼處理之沸石 88
3-3-1 XRD鑑定 88
3-3-2恆溫氮氣吸脫附鑑定 89
3-3-3 ICP-MS鑑定 91
3-3-4 SEM鑑定 92
3-3-5吸附效果鑑定 93
3-4巴豆醛吸附 98
3-5吸附影響因素之探討 101
3-6成果與文獻比較 108
第4章 結論 110
參考文獻 112
附錄一 揮發性有機物吸脫附實驗參數 121
附錄二 揮發性有機物檢量線之計算 124

1.J.M. Daisey, A. T. H., W.J. Fisk, M.J. Mendell, J. Ten Brinke, Volatile organic compounds in twelve California office buildings: Classes, concentrations and sources. Atmospheric Environment 1994, 28 (22), 3557-3562.
2.中華民國行政院環境保護署, 揮發性有機物空氣污染管制及排放標準. 2013.
3.Benitez, J., Process Engineering and Desugn for Air Pollution Control. 1993, 466.
4.劉國棟, VOCs管制趨勢展望. 工業污染防制 1992, 48, 15-31.
5.M. Placet, C. O. M., R.O. Gilbert, M.J. Niefer, Emissions of ozone precursors from stationary sources : a critical review. Atmospheric Environment 2000, 34, 2183-2204.
6.Yassaa, N.; Brancaleoni, E.; Frattoni, M.; Ciccioli, P., Isomeric analysis of BTEXs in the atmosphere using beta-cyclodextrin capillary chromatography coupled with thermal desorption and mass spectrometry. Chemosphere 2006, 63 (3), 502-8.
7.Tassi, F.; Montegrossi, G.; Vaselli, O.; Morandi, A.; Capecchiacci, F.; Nisi, B., Flux measurements of benzene and toluene from landfill cover soils. Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA 2011, 29 (1), 50-8.
8.PAUL J. CRUTZEN, M. A., Biomass Buriing in the Tropics : Impact on Atmospheric Chemistry and Biogeochemical Cycles. SCIENCE 1990, 250, 1669-1677.
9.Alex Guenther, C. N. H., David Erickson, Ray Fall, Chris Geron, Tom Graedel, Peter Harley, Lee Klinger, Manuel Lerdau, W.A. McKay, Tom Pierce, Bob Scholes, Rainer Steinbrecher, Raja Tallamraju, John Taylor and Pat Zimmerman, A global model of natural volatile organic compound emissions. JOURNAL OF GEOPHYSICAL RESEARCH, 1995, 100, 8873-8892.
10.Agency, U. S. E. P., The 2011 National Emissions Inventory. 2011.
11.Hai-lin, Z. Y.-m. H. Z.-p. W., Pollution and Source of Atmospheric Volatile Organic Compounds in Urbanrural Juncture Belt Area in Beijing. ENVIRONMENTAL SCIENCE 2011, 32, 3560-3565.
12.Yao, Z.; Wu, B.; Shen, X.; Cao, X.; Jiang, X.; Ye, Y.; He, K., On-road emission characteristics of VOCs from rural vehicles and their ozone formation potential in Beijing, China. Atmospheric Environment 2015, 105, 91-96.
13.Hakim, M.; Broza, Y. Y.; Barash, O.; Peled, N.; Phillips, M.; Amann, A.; Haick, H., Volatile organic compounds of lung cancer and possible biochemical pathways. Chemical reviews 2012, 112 (11), 5949-66.
14.Methylcyclopentane; Material Safety Data Sheet, CAS No.96-37-7.
15.Dichloromethane; Material Safety Data Sheet, CAS No.75-09-2.
16.Chloroform; Material Safety Data Sheet, CAS No.67-66-3.
17.1,2-Dichloroethane; Material Safety Data Sheet, CAS No.107-06-2.
18.1,1,1-Trichloroethane; Material Safety Data Sheet, CAS No.00071-55-6.
19.Benzene; Material Safety Data Sheet, CAS No.71-43-2.
20.Toluene; Material Safety Data Sheet, CAS No.108-88-3.
21.p-Xylene; Material Safety Data Sheet, CAS No.00106-42-3.
22.Phenyl Ethane; Material Safety Data Sheet, CAS No.100-41-4.
23.Styrene; Material Safety Data Sheet, CAS No.00100-42-5.
24.Vinyl chloride; Material Safety Data Sheet, CAS No.75-014.
25.Ethylene; Material Safety Data Sheet, CAS No.74-85-1.
26.Acetone; Material Safety Data Sheet, CAS No.00067-64-1.
27.Formaldehyde; Material Safety Data Sheet, CAS No.50-00-0.
28.Crotonaldehyde; Material Safety Data Sheet, CAS No.4170-30-3.
29.Atkinson, R., Atmospheric chemistry of VOCs and NOx. Atmospheric Environment 2000, 34, 2063-2101.
30.http://www.texaninspection.com/home-inspection-air-quality.php.
31.T.B.Ryerson, M. T., J.S.Holloway, D.D.Parrish, L.G.Huey, D.T.Sueper, G.J.Frost, S.G.Donnelly, S.Schauffler, E.L.Atlas, W.C.Kuster, P.D.Goldan, G.Hubler, J.F.Meagher,F.C.Fehsenfeld, Observations of Ozone Formation in Power Plant Plumes and Implications for Ozone Control Strategies. SCIENCE 2001, 292, 719-723.
32.Faisal I. Khan, A. K. G., Removal of Volatile Organic Compounds from polluted air. Journal of Loss Prevention in the Process Industries 2000, 13, 527-545.
33.Mohan, N.; Kannan, G. K.; Upendra, S.; Subha, R.; Kumar, N. S., Breakthrough of toluene vapours in granular activated carbon filled packed bed reactor. Journal of hazardous materials 2009, 168 (2-3), 777-81.
34.Ramos, M. E.; Bonelli, P. R.; Cukierman, A. L.; Ribeiro Carrott, M. M.; Carrott, P. J., Adsorption of volatile organic compounds onto activated carbon cloths derived from a novel regenerated cellulosic precursor. Journal of hazardous materials 2010, 177 (1-3), 175-82.
35.http://sushrutchemicals.com/activatedCarbon.html.
36.Bhatia, S., Zeolite catalysis principles and application. CRC press 1990.
37.Imelik, B. N., Y.; Vedrine, J. C.; Coudurier, G.; Praliaud, H., Catalysis by zeolite. Elesevier, Amstordam 1980.
38.J. S. Beck, J. C. V., W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenkert, A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chem. Sot. 1992, 114, 10834-10843.
39.Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. and Beck, J. S., Ordered mesoporous molecular sieves synthesized by a liquid crystal template mechanism. Nature 1992, 359, 710-712.
40.Ward, W. J., Molecular sieve catalysts, in applied industrial catalysis. Academic press, New York 1984, 3.
41.Liao, Y.-c., Studies on Fluorination of Zeolites and Amine Functionalization of Mesoporous Materials. Department of Chemistry, National Central University 2007.
42.Everett, D. H., Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Pure Appl. Chem 1972, 31 (4), 577-638.
43.Ch. Baerlocher, L. B. M., D.H. Olson, Atlas of Zeolite Framework types. ELSEVIER 2007.
44.S. Z. Xiu, G. Q. M. L., and Graeme J. Millar, Advances in Mesoporous Molecular Sieve MCM-41. Ind. Eng. Chem. Res. 1996, 35, 2075-2090.
45.http://www.iza-structure.org/databases/.
46.Ruthven, D. M., Principles of Adsorption and Adsorption Processes. John Wiley & Sons 1984.
47.Gupta, A.; Gaur, V.; Verma, N., Breakthrough analysis for adsorption of sulfur-dioxide over zeolites. Chemical Engineering and Processing: Process Intensification 2004, 43 (1), 9-22.
48.Ichiura, H.; Nozaki, M.; Kitaoka, T.; Tanaka, H., Influence of uniformity of zeolite sheets prepared using a papermaking technique on VOC adsorptivity. Advances in Environmental Research 2003, 7 (4), 975-979.
49.X. S. Zhao, Q. M., and G. Q. (Max) Lu, VOC Removal : Comparison of MCM-41 with Hydrophobic Zeolites and Activated Carbon. Energy & Fuels 1998, 12, 1051-1054.
50.Prashant S. Chintawar, H. L. G., Adsorption and catalytic destruction of trichloroethylene in hydrophobic zeolites. Applied Catalysis B: Environmental 1997, 14, 37-47.
51.David Ramirez ; Patrick D. Sullivan ; Mark J. Rood, M. A. a. K. J. H., Equilibrium Adsorption of Phenol-, Tire-, and Coal-Derived Activated Carbons for Organic Vapors. Journal of Environmental Engineering 2004, 130, 231-241.
52.Sai V. Gollakota , C. D. C., Study of an adsorption process using silicalite for sulfur dioxide removal from combustion gases. Industrial & Engineering Chemistry Research 1988, 27, 139-143.
53.G. Calleja , J. P., and J. A. Calles, Pure and Multicomponent Adsorption Equilibrium of Carbon Dioxide, Ethylene, and Propane on ZSM-5 Zeolites with Different Si/Al Ratios. Journal of Chemical & Engineering Data 1998, 43, 994-1003.
54.Farrell, J.; Manspeaker, C.; Luo, J., Understanding competitive adsorption of water and trichloroethylene in a high-silica Y zeolite. Microporous and Mesoporous Materials 2003, 59 (2-3), 205-214.
55.Benoı̂t Clausse, B. G., Cédric Cornier, Christian Paulin, Marie-Hélène Simonot-Grange, Faddy Boutros, Adsorption of chlorinated volatile organic compounds on hydrophobic faujasite: correlation between the thermodynamic and kinetic properties and the prediction of air cleaning. Microporous and Mesoporous Materials 1998, 25 (1-3), 169-177.
56.Thomas P O''Connor, J. M., Modeling competitive adsorption of chlorinated volatile organic compounds with the Dubinin–Radushkevich equation. Microporous and Mesoporous Materials 2001, 46 (2-3), 341-349.
57.Garrot, M.-H. l. n. S.-G. a. B. n. d., Thermodynamics and Kinetics of Adsorption of Gaseous Single Cl/Br-VOCs of the Ethane Series onto Siliceous ZSM-5 at 25 °C. Prediction of the Adsorption Selectivity in the Gas Phase. Langmuir 2001, 17, 8188-8192.
58.Klaus Otto , C. N. M., Olimpia Todor , Robert W. McCabe , Haren S. Gandhi, Adsorption of hydrocarbons and other exhaust components on silicalite. Industrial & Engineering Chemistry Research 1991, 30, 2333-2340.
59.Denayer, J. F.; De Meyer, K.; Martens, J. A.; Baron, G. V., Molecular competition effects in liquid-phase adsorption of long-chain n-alkane mixtures in ZSM-5 zeolite pores. Angewandte Chemie 2003, 42 (24), 2774-7.
60.Docquir, B.-L. S. a. F., Competitive Adsorption of Benzene and Ammonia on NaEMT Zeolite: A Quantitative Infrared Study. Langmuir 2001, 17, 3341-3347.
61.Yasushi Takeuchi, H. l., Norio Miyata, Seiichi Asano, Masashi Harada, Adsorption of 1-butanol and p-xylene vapor and their mixtures with high silica zeolites. Separations Technology 1995, 5 (1), 23~24.
62.Serrano, D. P.; Calleja, G.; Botas, J. A.; Gutierrez, F. J., Characterization of adsorptive and hydrophobic properties of silicalite-1, ZSM-5, TS-1 and Beta zeolites by TPD techniques. Separation and Purification Technology 2007, 54 (1), 1-9.
63.黃海鳳, 戎文娟, 顧勇義,常仁芹,盧唅鋒, ZSM-5沸石分子篩吸附-脫附VOCs的性能研究. 環境科學學報 2014, 34, 3144-3151.
64.Carsten K.W. Meininghaus, R. P., Sorption of volatile organic compounds on hydrophobic zeolites. Microporous and Mesoporous Materials 2000, 35-36, 349-365.
65.Wang, W.; Wang, H.; Zhu, T.; Fan, X., Removal of gas phase low-concentration toluene over Mn, Ag and Ce modified HZSM-5 catalysts by periodical operation of adsorption and non-thermal plasma regeneration. Journal of hazardous materials 2015, 292, 70-8.
66.Ryosuke Yoshimoto, K. H., Kazu Okumura, Naonobu Katada, and Miki Niwa, Analysis of Toluene Adsorption on Na-Form Zeolite with a Temperature-Programmed Desorption Method. The Journal of Physical Chemistry C 2007, 111, 1474-1479.
67.Zhao, H.; Ma, J.; Zhang, Q.; Liu, Z.; Li, R., Adsorption and Diffusion ofn-Heptane and Toluene over Mesoporous ZSM-5 Zeolites. Industrial & Engineering Chemistry Research 2014, 53 (35), 13810-13819.
68.Guo, H.; Lee, S. C.; Chan, L. Y.; Li, W. M., Risk assessment of exposure to volatile organic compounds in different indoor environments. Environmental Research 2004, 94 (1), 57-66.
69.Zhao, Y.; Wang, S.; Aunan, K.; Seip, H. M.; Hao, J., Air pollution and lung cancer risks in China--a meta-analysis. The Science of the total environment 2006, 366 (2-3), 500-13.
70.Ma, F.-J.; Liu, S.-X.; Liang, D.-D.; Ren, G.-J.; Wei, F.; Chen, Y.-G.; Su, Z.-M., Adsorption of volatile organic compounds in porous metal–organic frameworks functionalized by polyoxometalates. Journal of Solid State Chemistry 2011, 184 (11), 3034-3039.
71.Dwivedi, P.; Gaur, V.; Sharma, A.; Verma, N., Comparative study of removal of volatile organic compounds by cryogenic condensation and adsorption by activated carbon fiber. Separation and Purification Technology 2004, 39 (1-2), 23-37.
72.Liu, S.; Teo, W. K.; Tan, X.; Li, K., Preparation of PDMSvi–Al2O3 composite hollow fibre membranes for VOC recovery from waste gas streams. Separation and Purification Technology 2005, 46 (1-2), 110-117.
73.Wang, S.; Ang, H. M.; Tade, M. O., Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art. Environment international 2007, 33 (5), 694-705.
74.Li, L.; Wang, S. B.; Feng, Q. C.; Liu, J. X., Removal ofo-xylene from off-gas by a combination of bioreactor and adsorption. Asia-Pacific Journal of Chemical Engineering 2008, 3 (5), 489-496.
75.Wang, H.; Tang, M.; Zhang, K.; Cai, D.; Huang, W.; Chen, R.; Yu, C., Functionalized hollow siliceous spheres for VOCs removal with high efficiency and stability. Journal of hazardous materials 2014, 268, 115-23.
76.Antoine, C., Tensions des vapeurs; nouvelle relation entre les tensions et les températures" [Vapor Pressure: a new relationship between pressure and temperature. Comptes Rendus des Séances de l''Académie des Sciences 1888, 107, 681-684, 778-780, 836-837.
77.http://www.mycheme.com/.
78.http://www.zeolyst.com/home.aspx.
79.Soledad G. Aspromonte, R. M. S., Eduardo E. Miró, Alicia V. Boix, AgNaMordenite catalysts for hydrocarbon adsorption and deNOx processes. Applied Catalysis A: General 2011, 407, 134-144.
80.(a) Ke, X.; Xu, L.; Zeng, C.; Zhang, L.; Xu, N., Synthesis of mesoporous TS-1 by hydrothermal and steam-assisted dry gel conversion techniques with the aid of triethanolamine. Microporous and Mesoporous Materials 2007, 106 (1-3), 68-75; (b) J.L. Grieneisen, H. K., E. Fache, A.M. Le Govic, Synthesis of mesoporous TS-1 by hydrothermal and steam-assisted dry gel conversion techniques with the aid of triethanolamine. Microporous and Mesoporous Materials 2000, 37, 379-386.
81.Huang, D.-G.; Zhang, X.; Chen, B.-H.; Chao, Z.-S., Ethanol-assistant synthesis of TS-1 containing no extra-framework Ti species. Catalysis Today 2010, 158 (3-4), 510-514.
82.Weibin Fan, R.-G. D., Toshiyuki Yokoi, Peng Wu, Yoshihiro Kubota and Takashi Tatsumi, Synthesis, Crystallization Mechanism, and Catalytic Properties of Titanium-Rich TS-1 Free of Extraframework Titanium Species. Journal of the American Chemical Society 2008, 130, 10150-10164.
83.Silaghi, M.-C.; Chizallet, C.; Raybaud, P., Challenges on molecular aspects of dealumination and desilication of zeolites. Microporous and Mesoporous Materials 2014, 191, 82-96.
84.Xinsheng Liu, J. K. L., Dmitrii A. Arendarskiia, Robert J. Farrauto, FT-IR spectroscopic studies of hydrocarbon trapping in Ag+-ZSM-5 for gasoline engines under cold-start conditions. Applied Catalysis B: Environmental 2001, 35 (2), 125-136.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top