跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 08:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳姿穎
研究生(外文):Tzu-Ying Chen
論文名稱:沸石晶種自組裝合成中孔洞二氧化矽奈米材料之結構鑑定及催化應用
論文名稱(外文):Direct Assembly of Beta Zeolite Seeds into Mesoporous Nanomaterials: Structural Characterization and Catalytic Application
指導教授:牟中原
指導教授(外文):Chung-Yuan Mou
口試委員:劉尚斌劉沂欣
口試委員(外文):Shang-Bin LiuYi-Hsin Liu
口試日期:2015-07-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:116
中文關鍵詞:中孔洞二氧化矽垂直孔道薄膜ß-沸石酸性
外文關鍵詞:Mesoporous silicavertical channelsthin filmbeta zeoliteacidity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
垂直孔道之二氧化矽中孔薄膜材料(mesoporous silica thin films, MSTFs)具有週期性中孔排列及短通道特性,應用價值高,使成熱門研究主題。考量模板於兩界面作用力差異,軟式模板合成方法(micelle-templating)傾向生成平行基板之孔道。本論文中,藉由引入疏水性有機分子(正癸烷)於合成系統中,進而吸附於基材表面後,緩和界面上造成歧異性,幫助矽烷類分子於基板上進行組裝與縮合、形成垂直排列的中孔道二氧化矽薄膜材料。透過選擇油性分子結構與其大小,能調控其孔道之大小與薄膜平整度。以低掠角X光小角散射(grazing-incidence small angle X-ray scattering, GISAXS)進行薄膜孔道排列位向的分析。為了更提高材料的應用性,以沸石晶種作為矽源。除了添加酸性點於薄膜材料,也提升結構的熱穩定性,能承受高達900 °C的高溫。另外置換前趨物使矽源和微胞間的作用力改變,此時引入結構導向劑成功調控通道之孔徑大小擴大到6 ~ 11 nm的範圍。
由於針對薄膜材料的分析訊號較微弱,第二部分實驗收集溶液中懸浮的中孔奈米粒子,做為類比薄膜材料進行鑑定分析。該珊瑚礁狀的奈米粒子之孔徑大小約為5 nm。經由時間解析之X光小角散射技術進行懸浮奈米粒子之孔徑擴張的生成機制監測與探討。有鑑於奈米尺度的孔道壁厚之緣故,不易在高角度粉末X光繞射圖譜中觀測結晶的訊號。轉以129Xe NMR圖譜檢視,利用Xenon做為探針,同時偵測到微孔和中孔環境的訊號,間接推得沸石結構的存在。為了針對材料酸性特質做分析,以27Al NMR圖譜檢視鋁原子在結構中以四配位存在的多寡;透過氨氣程溫脫附儀,瞭解其酸性強度分佈與b-沸石相近。再者,為了得知不同酸型態的酸量多寡,我們利用實驗室中的儀器做延伸,先以熱重分析儀量化布忍思特酸的酸量;接著,利用吡啶(pyridine)紅外線光譜圖推得布忍思特酸和路易斯酸的比例,完整得知兩種酸在此固態酸裡的含量。最後將此酸性材料成功應用在醯化反應的實驗中。

A large-area two-dimensional mesostructure with well-ordered mesochannels, especially for supported mesoporous silica thin films (MSTFs) with vertical mesochannels, have drawn lots of attention in potential applications. However, due to dissimilarity of two interfaces, micelle-templating method usually leads to parallel aligned channels on substrates. Herein we introduce an oil agent into synthetic solution for effectively tuning interfacial interaction between the substrate and solution. As a result, the oil agent here serves as two key roles: (i) one is to tune the orientation of mesochannels perpendicular to the substrate. (ii) The other is to controll the mesochannel sizes in the range of 4-6 nm. Thus, a series of pore-size controllable silica thin films can be obtained in the size of 1

Table of Content
誌謝……………………………………………………….………i
摘要 ………………………………………………………………ii
Abstract ……………………………………………………...………iii
Table of Content v
List of Figures viii
List of Tables xiii
Chapter 1 General Introduction 1
1-1 Introduction to Mesoporous Silica Nanoparticles (MSNs) 1
1-1-1 Background 1
1-1-2 Synthesis Mechanism of Mesoporous Silica Nanoparticles (MSNs) 2
1-1-3 Applications of MSNs 4
1-2 Introduction of Zeolites 6
1-2-1 Background 6
1-2-2 Synthesis of Zeolites 7
1-2-3 Applications of Zeolites 10
1-3 Motivation 11
Chapter 2 Synthesis of Mesoporous Silica Thin Films on Flat Substrates with Perpendicular Mesochannels 13
2-1 Introduction 13
2-1-1 Mesoporous Silica Thin Film with Perpendicular Channels 13
2-1-2 The Physics of Foam 21
2-2 Materials 24
2-2-1 Synthesis of Silicieous Silicate (SS) 24
2-2-2 Synthesis of Beta Zeolite Seeds (BZS) 24
2-2-3 Synthesis of Perpendicular Mesoporous Silica Thin Films on Substrate 25
2-3 Characterization Methods 26
2-3-1 Scanning Electron Microscopy (SEM) 26
2-3-2 Grazing Incidence Small Angle X-ray Scattering (GISAXS) 26
2-3-3 Sigma Scan Pro 5 27
2-4 Result and Discussion 27
2-4-1 Effect of Different Oil Phase 27
2-4-2 Grown on Different Substrates 32
2-4-3 Using Silicieous Silicate Solution (SS) as Silica Source 33
2-4-4 Using Beta Zeolite Seeds (BZS) Solution as Silica Source 37
2-5 Conclusions 55
Chapter 3 Direct Assembly of Beta zeolite seeds into Mesoporous Nanoparticles 56
3-1 Introduction 56
3-1-1 Mesoporous Zeolite 56
3-2 Materials 60
3-2-1 Synthesis of pore-expanded MSN (PE-MSN) 60
3-2-2 Synthesis of Beta Zeolite Seeds 60
3-2-3 Synthesis of Pore-Expanded Mesoporous Zeolitic Nanoparticle (PE-MZN) 61
3-2-4 Synthesis of Mesoporous Zeolitic Nanoparticle (MZN) 62
3-2-5 Synthesis of Al-MSN 63
3-2-6 Synthesis of Pore-Expanded Al-MSN (PE-Al-MSN) 64
3-2-7 Synthesis of p-octanoyl anisole (o-PA) 65
3-3 Instruments 66
3-3-1 Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) 66
3-3-2 Powder X-ray Diffraction (XRD) 66
3-3-3 Nitrogen Adsorption Analysis 66
3-3-4 Small Angle X-ray Scattering (SAXS) 67
3-3-5 Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) 67
3-3-6 27Al NMR 68
3-3-7 HP- 129Xe NMR 68
3-3-8 Proton NMR 69
3-3-9 Ammonia Temperature Programmed Desorption (NH3-TPD) 69
3-3-10 Thermogravimetric Analysis (TGA) 70
3-3-11 Fourier Transform Infrared Spectroscopy (FTIR) 70
3-3-12 Gas Chromatography-Mass Spectroscopy (GC-MS) 70
3-4 Methods 71
3-4-1 Characterization Methods 71
3-4-2 TGA of isopropylamine decomposition 71
3-4-3 Catalytic Methods 74
3-5 Results and Discussion 77
3-5-1 Morphology and Structure 77
3-5-2 Post-Hydrothermal Experiments 83
3-5-3 Structural and Acidic Properties 86
3-5-4 Catalytic Application 102
3-6 Conclusion 113
Reference……………………………………………………………...114
v


1.Hoffmann, F.; Cornelius, M.; Morell, J.; Froba, M., Angew. Chem. Int. Ed. 2006, 45 (20), 3216-3251.
2.Stöber, W.; Fink, A.; Bohn, E., J. Colloid Interface Sci. 1968, 26 (1), 62-69.
3.Grun, M.; Lauer, I.; Unger, K. K., Adv. Mater. 1997, 9 (3), 254-&.
4.Matsumoto, A.; Chen, H.; Tsutsumi, K.; Grün, M.; Unger, K., Microporous Mesoporous Mater. 1999, 32 (1–2), 55-62.
5.Wu, S.-H.; Mou, C.-Y.; Lin, H.-P., Chem. Soc. Rev. 2013, 42 (9), 3862-3875.
6.Crnstedt, A. F., Akad. Handl. Stockholm 1751, 12, 287-292.
7.Cundy, C. S.; Cox, P. A., Chem. Rev. 2003, 103 (3), 663-701.
8.Claire-Deville, H. d. S., Comptes Rendus Acad. Sci. 1862, 54, 324.
9.Barrer, R. M.; Falconer, J. D., Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 1956, 236 (1205), 227-&.
10.Barrer, R. M.; Meier, W. M., Transactions of the Faraday Society 1958, 54 (7), 1074-&.
11.Barrer, R. M.; Denny, P. J., J. Chem. Soc. 1961, (MAR), 971-&.
12.Cundy, C. S.; Cox, P. A., Microporous Mesoporous Mater. 2005, 82 (1–2), 1-78.
13.Weitkamp, J., Solid State Ionics 2000, 131 (1–2), 175-188.
14.Naber, J. E.; de Jong, K. P.; Stork, W. H. J.; Kuipers, H. P. C. E.; Post, M. F. M., Industrial applications of zeolite catalysis. In Stud. Surf. Sci. Catal., J. Weitkamp, H. G. K. H. P.; Hölderich, W., Eds. Elsevier: 1994; Vol. Volume 84, pp 2197-2219.
15.Firouzi, A.; Schaefer, D. J.; Tolbert, S. H.; Stucky, G. D.; Chmelka, B. F., J. Am. Chem. Soc. 1997, 119 (40), 9466-9477.
16.Hara, M.; Nagano, S.; Seki, T., J. Am. Chem. Soc. 2010, 132 (39), 13654-13656.
17.Manne, S.; Gaub, H. E., Science 1995, 270 (5241), 1480-1482.
18.Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Nature 1992, 359 (6397), 710-712.
19.Kim, K. Y. K.; Jang, K. Y.; Upadhye, R. S., J. Am. Ceram. Soc. 1991, 74 (8), 1987-1992.
20.Shi, K.; Chi, Y.; Yu, H.; Xin, B.; Fu, H., The Journal of Physical Chemistry B 2005, 109 (7), 2546-2551.
21.Tamura, M.; Kemmochi, Y.; Murakami, Y.; Chino, N.; Ogura, M.; Naik, S. P.; Takai, M.; Tsuji, Y.; Maruyama, S.; Okubo, T., Applied Physics a-Materials Science & Processing 2006, 84 (3), 247-250.
22.Elbert, J.; Krohm, F.; Ruettiger, C.; Kienle, S.; Didzoleit, H.; Balzer, B. N.; Hugel, T.; Stuehn, B.; Gallei, M.; Brunsen, A., Advanced Functional Materials 2014, 24 (11), 1591-1601.
23.Liu; Dunphy, D. R.; Atanassov, P.; Bunge, S. D.; Chen, Z.; López, G. P.; Boyle, T. J.; Brinker, C. J., Nano Letters 2004, 4 (4), 551-554.
24.Lu, Y. F.; Ganguli, R.; Drewien, C. A.; Anderson, M. T.; Brinker, C. J.; Gong, W. L.; Guo, Y. X.; Soyez, H.; Dunn, B.; Huang, M. H.; Zink, J. I., Nature 1997, 389 (6649), 364-368.
25.Sanchez, C.; Boissiere, C.; Grosso, D.; Laberty, C.; Nicole, L., Chem. Mater. 2008, 20 (3), 682-737.
26.Ma, C.; Han, L.; Jiang, Z.; Huang, Z.; Feng, J.; Yao, Y.; Che, S., Chem. Mater. 2011, 23 (16), 3583-3586.
27.Shan, F.; Lu, X.; Zhang, Q.; Wu, J.; Wang, Y.; Bian, F.; Lu, Q.; Fei, Z.; Dyson, P. J., J. Am. Chem. Soc. 2012, 134 (50), 20238-20241.
28.Wu, K. C. W.; Jiang, X.; Yamauchi, Y., Journal of Materials Chemistry 2011, 21 (25), 8934-8939.
29.Teng, Z. G.; Zheng, G. F.; Dou, Y. Q.; Li, W.; Mou, C. Y.; Zhang, X. H.; Asiri, A. M.; Zhao, D. Y., Angew. Chem. Int. Ed. 2012, 51 (9), 2173-2177.
30.Weaire, D.; Phelan, R., Journal of Physics-Condensed Matter 1996, 8 (47), 9519-9524.
31.Weaire, D.; Fortes, M. A., Advances in Physics 1994, 43 (6), 685-738.
32.Shih, P. C.; Lin, H. P.; Mou, C. Y., Ultrastable acidic MCM-48-S assembled from zeolite seeds. In Nanotechnology in Mesostructured Materials, Park, S. E.; Ryoo, R.; Ahn, W. S.; Lee, C. W.; Chang, J. S., Eds. 2003; Vol. 146, pp 557-560.
33.Anderson, M. T.; Martin, J. E.; Odinek, J. G.; Newcomer, P. P., Chem. Mater. 1998, 10 (1), 311-321.
34.Luan, Z. H.; Cheng, C. F.; Zhou, W. Z.; Klinowski, J., J. Phys. Chem. 1995, 99 (3), 1018-1024.
35.Luan, Z. H.; He, H. Y.; Zhou, W. Z.; Cheng, C. F.; Klinowski, J., Journal of the Chemical Society-Faraday Transactions 1995, 91 (17), 2955-2959.
36.Kao, K.-C.; Mou, C.-Y., Microporous Mesoporous Mater. 2013, 169, 7-15.
37.Swaddle, T. W.; Salerno, J.; Tregloan, P. A., Chem. Soc. Rev. 1994, 23 (5), 319-325.
38.Kao, K.-C.; Lin, C.-H.; Chen, T.-Y.; Liu, Y.-H.; Mou, C.-Y., J. Am. Chem. Soc. 2015, 137 (11), 3779-3782.
39.Moeller, K.; Bein, T., Chem. Soc. Rev. 2013, 42 (9), 3689-3707.
40.Na, K.; Jo, C.; Kim, J.; Cho, K.; Jung, J.; Seo, Y.; Messinger, R. J.; Chmelka, B. F.; Ryoo, R., Science 2011, 333 (6040), 328-332.
41.Xu, D.; Ma, Y.; Jing, Z.; Han, L.; Singh, B.; Feng, J.; Shen, X.; Cao, F.; Oleynikov, P.; Sun, H.; Terasaki, O.; Che, S., Nature Communications 2014, 5.
42.Chen, F.; Zhang, M. J.; Han, Y.; Xiao, F. S.; Yue, Y.; Ye, C. H.; Deng, F., Journal of Physical Chemistry B 2004, 108 (12), 3728-3734.
43.黃信炅; 陳文華; 劉守恆; 劉尚斌, :化學 卷期:63卷2期, 頁217-230.
44.Zhao, Z.; Xu, S.; Hu, M. Y.; Bao, X.; Peden, C. H. F.; Hu, J., The Journal of Physical Chemistry C 2015, 119 (3), 1410-1417.
45.Farneth, W. E.; Gorte, R. J., Chem. Rev. 1995, 95 (3), 615-635.
46.Lee, A. F.; Bennett, J. A.; Manayil, J. C.; Wilson, K., Chem. Soc. Rev. 2014, 43 (22), 7887-7916.
47.Pirez, C.; Caderon, J.-M.; Dacquin, J.-P.; Lee, A. F.; Wilson, K., Acs Catalysis 2012, 2 (8), 1607-1614.
48.Zhang, Q.; Ming, W.; Ma, J.; Zhang, J.; Wang, P.; Li, R., Journal of Materials Chemistry A 2014, 2 (23), 8712-8718.
49.Kim, J.-C.; Cho, K.; Lee, S.; Ryoo, R., Catalysis Today 2015, 243, 103-108.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top