跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 16:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林羿君
研究生(外文):Yi-Jyun Lin
論文名稱:巰基苯甲酸異構物對銅奈米團簇的製備及其螢光性質的影響
論文名稱(外文):Isomeric Effect of Mercaptobenzoic Acids on the Preparation and Fluorescent Properties of Copper Nanoclusters
指導教授:張煥宗張煥宗引用關係
指導教授(外文):Huan-Tsung Chang
口試委員:吳秀梅胡焯淳
口試委員(外文):Shiou-Mei WuCho-Chun Hu
口試日期:2015-06-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:53
中文關鍵詞:異構效應銅奈米團簇螢光聚集誘導發光氰離子偵測
外文關鍵詞:Isomeric effectcopper nanoclusterfluorescenceaggregation-induced emissioncyanide detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要開發一步合成法在70 °C利用巰基苯甲酸(mercaptobenzoic acid)與銅離子反應30分鐘來合成發光銅奈米團簇聚集體(copper nanocluster aggregates),且藉由使用不同的巰基苯甲酸異構物,可合成出具有不同物理及光學性質的銅奈米團簇。以鄰、對巰基苯甲酸分別可合成出具有藍色及紅色放光性質的銅奈米團簇,其量子產率分別為13.2% 和 0.5%。另一方面,以間巰基苯甲酸合成的銅奈米團簇雖具放紅光性質,但十分微弱。隨著 pH 值的提高,鄰巰基苯甲酸與對巰基苯甲酸合成的銅奈米團簇,其螢光分別有上升以及下降的趨勢,其中對巰基苯甲酸之銅奈米團簇具有聚集誘導放光的性質,相較之下,由於鄰巰基苯甲酸之銅奈米團簇具有在水溶液分散性好、穩定以及高量子產率的特性,其可透過分析物誘導消光作用(analyte-induced fluorescence quenching)用於氰離子的偵測,其偵測極限(limit of detection)為 5 nM。

An one-pot approach has been developed to synthesize copper nanoclusters (Cu NCs) aggregates from copper nitrate and mercaptobenzoic acid (MBA) at 70 °C within 30 min. Cu NCs prepared separately from the three isomers of MBA exhibit different physical and optical properties. 2-Mercaptobenzoic acid (thiosalicylic acid, TA) and 4-mercaptobenzoic acid (4-MBA) allow preparation of blue- and red-emissive Cu NCs aggregates when excited at 338 and 324 nm, with quantum yields of 13.2% and 0.5%, respectively. On the other hand, Cu NCs aggregates prepared from 3-mercaptobenzoic acid (3-MBA) have very weak red-emission properties. Upon increasing pH values from 3.0 to 11.0, the fluorescence intensity of TA-Cu NCs and 4-MBA-Cu NCs aggregates increases and decreases, respectively. Unlike TA-Cu NCs aggregates, 4-MBA-Cu NCs aggregates show strong aggregation-induced emission. The water-dispersible, stable, and highly fluorescent TA-Cu NCs aggregates allow detection of CNˉ down to 5 nM, based on analyte-induced fluorescence quenching.

目錄

論文審定書 #
謝誌 i
中文摘要 iii
英文摘要 iv
目錄 v
圖目錄 vii
第一章 緒論 1
1.1 螢光貴金屬奈米團簇 1
1.2 螢光銅奈米團簇 4
1.3 螢光銅奈米團簇之製備方法 5
1.3.1 以聚合物穩定之銅奈米團簇 6
1.3.2 以DNA分子穩定之銅奈米團簇 8
1.3.3 以巰基分子穩定之銅奈米團簇 9
1.4 螢光奈米團簇之應用 11
1.5 研究動機 12
1.6 參考文獻 21
第二章 巰基苯甲酸異構物對銅奈米團簇聚集體的影響及氰離子偵測 26
2.1 前言 26
2.2 實驗方法 27
2.2.1 實驗試藥 27
2.2.2 銅奈米團簇聚集體的合成 27
2.2.3 實驗儀器 28
2.2.4 利用鄰巰基苯甲酸之銅奈米團簇聚集體偵測氰離子 29
2.2.5 偵測湖水樣品中的氰離子 30
2.3 實驗結果與討論 30
2.3.1 鄰巰基苯甲酸之銅奈米團簇聚集體的形成與特性 30
2.3.2 巰基苯甲酸之異構效應 32
2.3.3 鄰巰基苯甲酸之銅奈米團簇聚集體偵測氰離子之機制與真實樣品的偵測 35
2.4 結論 37
2.5 參考文獻 50


1.6參考文獻
(1)De, M.; Ghosh, P. S.; Rotello, V. M. Applications of nanoparticles in biology. Adv. Mater. 2008, 20, 4225–4241.
(2)Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Springer: New York 1995.
(3)Ashcroft, N. W.; Mermin, N. D. Solid State Physics; Books/Cole: Australia 1976.
(4)Choi, S.; Dickson, R. M.; Yu, J. Developing luminescent silver nanodots for biological applications. Chem. Soc. Rev. 2012, 41, 1867–1891.
(5)Yuan, X.; Luo, Z.; Yu, Y.; Yao, Q.; Xie, J. Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem. Asian J. 2013, 8, 858–871.
(6)Murray, R. W. Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem. Rev. 2008, 108, 2688–2720.
(7)de Heer, W. A. The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 1993, 65, 611–676.
(8)de Heer, W. A.; Selby, K.; Kresin, V.; Masui, J.; Vollmer, M.; Châtelain, A.; Knight, W. D. Collective dipole oscillations in small sodium clusters. Phys. Rev. Lett. 1987, 59, 1805–1808.
(9)Zheng, J.; Zhang, C. W.; Dickson, R. M. Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys. Rev. Lett. 2004, 93, 077402(1)–077402(4).
(10)Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261-5270.
(11)Wu, Z.; Jin, R. On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett. 2010, 10, 2568-2573.
(12)Díez, I.; Ras, R. H. A. Fluorescent silver nanoclusters. Nanoscale 2011, 3, 1963–1970.
(13)Jin, R. Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2010, 2, 343–362.
(14)Lu, Y.; Chen, W. Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 2012, 41, 3594–3623.
(15)Shang, L.; Dong, S.; Nienhaus, G. U. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 2011, 6, 401–418.
(16)Shiang, Y.-C.; Huang, C.-C.; Chen, W.-Y.; Chen, P.-C.; Chang, H.-T. Fluorescent gold and silver nanoclusters for the analysis of biopolymers and cell imaging. J. Mater. Chem. 2012, 22, 12972–12982.
(17)Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361-5388.
(18)Luo, Z.; Yuan, X.; Yu, Y.; Zhang, Q.; Leong, D. T.; Lee, J. Y.; Xie, J. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662-16670.
(19)Dou, X.; Yuan, X.; Yu, Y.; Luo, Z.; Yao, Q.; Leong, D. T.; Xie, J. Lighting up thiolated Au@Ag nanoclusters via aggregation-induced emission. Nanoscale 2014, 6, 157-161.
(20)Balogh, L.; Tomalia, D. A. Poly(Amidoamine) dendrimer-templated nanocomposites. 1. synthesis of zerovalent copper nanoclusters. J. Am. Chem. Soc. 1998, 120, 7355–7356.
(21)Zhao, M.; Sun, L.; Crooks, R. M. Preparation of Cu nanoclusters within dendrimer templates. J. Am. Chem. Soc. 1998, 120, 4877–4878.
(22)Vilar-Vidal, N.; Blanco, M. C.; López-Quintela, M. A.; Rivas, J.; Serra, C. Electrochemical synthesis of very stable photoluminescent copper clusters. J. Phys. Chem. C 2010, 114, 15924–15930.
(23)Vázquez-Vázquez, C.; Bañobre-López, M.; Mitra, A.; López-Quintela, M. A.; Rivas, J. Synthesis of small atomic copper clusters in microemulsions. Langmuir 2009, 25, 8208–8216.
(24)Wei, W.; Lu, Y.; Chen, W.; Chen, S. One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J. Am. Chem. Soc. 2011, 133, 2060–2063.
(25)Rotaru, A.; Dutta, S.; Jentzsch, E.; Gothelf, K.; Mokhir, A. Selective dsDNA-templated formation of copper nanoparticles in solution. Angew. Chem. Int. Ed. 2010, 49, 5665–5667.
(26)Jia, X.; Li, J.; Han, L.; Ren, J.; Yang, X; Wang, E. DNA-hosted copper nanoclusters for fluorescent identification of single nucleotide polymorphisms. ACS Nano 2012, 6, 3311–3317.
(27)Qing, Z.; He, X.; He, D.; Wang, K.; Xu, F.; Qing, T.; Yang, X. Poly(thymine)-templated selective formation of fluorescent copper nanoparticles. Angew. Chem. Int. Ed. 2013, 52, 9719–9722.
(28)Qing, Z.; He, X.; Qing, T.; Wang, K.; Shi, H.; He, D.; Zou, Z.; Yan, L.; Xu, F.; Ye, X.; Mao, Z. Poly(thymine)-templated fluorescent copper nanoparticles for ultrasensitive label-free nuclease assay and its inhibitors screening. Anal. Chem. 2013, 85, 12138–12143.
(29)Kawasaki, H.; Kosaka, Y.; Myoujin, Y; Narushima, T.; Yonezawa, T.; Arakawa, R. Microwave-assisted polyol synthesis of copper nanocrystals without using additional protective agents. Chem. Commun. 2011, 47, 7740–7742.
(30)Lu, Y.; Wei, W.; Chen, W. Copper nanoclusters: Synthesis, characterization and properties. Chinese Sci. Bull. 2012, 57, 41–47.
(31)Zhang, H.; Huang, X.; Li, L.; Zhang, G.; Hussain, I.; Li, Z.; Tan, B. Photoreductive synthesis of water-soluble fluorescent metal nanoclusters. Chem. Commun. 2012, 48, 567-569.
(32)Yu, Y.; Yao, Q.; Luo, Z.; Yuan, X.; Lee, J. Y.; Xie, J. Precursor engineering and controlled conversion for the synthesis of monodisperse thiolate-protected metal nanoclusters. Nanoscale 2013, 5, 4606–4620.
(33)Jin, R.; Qian, H.; Wu, Z.; Zhu, Y.; Zhu, M.; Mohanty, A.; Garg, N. Size focusing: a methodology for synthesizing atomically precise gold nanoclusters. J. Phys. Chem. Lett. 2010, 1, 2903–2910.
(34)Yuan, X.; Luo, Z.; Zhang, Q.; Zhang, X.; Zheng, Y.; Lee, J. Y.; Xie, J. Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. ACS Nano 2011, 5, 8800–8808.
(35)Jia, X.; Li, J.; Wang, E. Cu nanoclusters with aggregation induced emission enhancement. Small 2013, 9, 3873-3879.
(36)Yu, J.; Patel, S. A.; Dickson, R. M. In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters. Angew. Chem. Int. Ed. 2007, 119, 2074-2076.
(37)Goswami, N.; Giri, A.; Bootharaju, M. S.; Xavier, P. L.; Pradeep, T.; Pal, S. K. Copper quantum clusters in protein matrix: potential sensor of Pb2+ ion. Anal. Chem. 2011, 83, 9676-9680.
(38)Xie, J.; Zheng, Y.; Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888-889.
(39)Becerril, H. A.; Woolley, A. T. DNA-templated nanofabrication. Chem. Soc. Rev. 2009, 38, 329–337.
(40)Darugar, Q.; Qian, W.; El-Sayed, M. A. Size-dependent ultrafast electronic energy relaxation and enhanced fluorescence of copper nanoparticles. J. Phys. Chem. B 2006, 110, 143–149.
(41)Thorum, M. S.; Yadav, J.; Gewirth, A. A. Angew. Chem. Int. Ed. 2009, 48, 165–167.
(42)Brushett, F. R.; Thorum, M. S.; Lioutas, N. S.; Naughton, M. S.; Tornow, C.; Jhong, H. R.; Gewirth, A. A.; Kenis, P. J. A. Oxygen reduction activity of a copper complex of 3,5-diamino-1,2,4-triazole supported on carbon black. J. Am. Chem. Soc. 2010, 132, 12185–12187.
(43)Chen, W.; Chen, S. Oxygen electroreduction catalyzed by gold nanoclusters: strong core size effects. Angew. Chem. Int. Ed. 2009, 48, 4386–4389.
(44)Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.
(45)Tang, W.; Lin, H. F.; Kleiman-Shwarsctein, A.; Stucky, G. D.; McFarland, E. W. Size-dependent activity of gold nanoparticles for oxygen electroreduction in alkaline electrolyte. J. Phys. Chem. C 2008, 112, 10515–10519.
(46)Campbell, F. W.; Belding, S. R.; Baron, R.; Xiao, L.; Compton, R. G. Hydrogen peroxide electroreduction at a silver-nanoparticle array: Investigating nanoparticle size and coverage effects. J. Phys. Chem. C 2009, 113, 9053–9062.
(47)Herzing, A. A.; Kiely, C. J.; Carley, A. F.; Landon, P.; Hutchings, G. J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 2008, 321, 1331–1335.
(48)Er, J. C.; Tang, M. K.; Chia, C. G.; Liew, H.; Vendrell, M.; Chang, Y. T. MegaStokes BODIPY-triazoles as environmentally sensitive turn-on fluorescent dyes. Chem. Sci. 2013, 4, 2168–2176.
(49)He, X.; Wang, Y.; Wang, K.; Chen, M.; Chen, S. Fluorescence resonance energy transfer mediated large stokes shifting near-infrared fluorescent silica nanoparticles for in vivo small-animal imaging. Anal. Chem. 2012, 84, 9056–9064.
(50)Ma, J.-Y.; Chen, P.-C.; Chang, H.-T. Detection of hydrogen sulfide through photoluminescence quenching of penicillamine-copper nanocluster aggregates Nanotechnology 2014, 25, 195502(1)-195502(7).
2.5參考文獻
(1)Zheng, J.; Nicovich, P. R.; Dickson, R. M. Highly fluorescent noble metal quantum dots. Annu. Rev. Phys. Chem. 2007, 58, 409-431.
(2)Luo, Z.; Zheng, K.; Xie, J. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. Chem. Commun. 2014, 50, 5143-5155.
(3)Yuan, Z.; Chen, Y.-C.; Li, H.-W.; Chang, H.-T. Fluorescent silver nanoclusters stabilized by DNA scaffolds. Chem. Commun. 2014, 50, 9800-9815.
(4)Yuan, X.; Luo, Z.; Yu, Y.; Yao, Q.; Xie, J. Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem. Asian J. 2013, 8, 858-871.
(5)Shiang, Y.-C.; Huang, C.-C.; Chen, W.-Y.; Chen, P.-C.; Chang, H.-T. Fluorescent gold and silver nanoclusters for the analysis of biopolymers and cell imaging. J. Mater. Chem. 2012, 22, 12972-12982.
(6)Liu, J. DNA-stabilized, fluorescent, metal nanoclusters for biosensor development. TrAC, Trends Anal. Chem. 2014, 58, 99-111.
(7)Goswami, N.; Zheng, K.; Xie, J. Bio-NCs – the marriage of ultrasmall metal nanoclusters with biomolecules. Nanoscale 2014, 6, 13328-13347.
(8)Ghosh, R.; Sahoo, A. K.; Ghosh, S. S.; Paul, A.; Chattopadhyay, A. Blue-emitting copper nanoclusters synthesized in the presence of lysozyme as candidates for cell labeling. ACS Appl. Mater. Interfaces 2014, 6, 3822-3828.
(9)Vilar-Vidal, N.; Blanco, M. C.; López-Quintela, M. A.; Rivas, J.; Serra, C. Electrochemical synthesis of very stable photoluminescent copper clusters. J. Phys. Chem. C 2010, 114, 15924-15930.
(10)Goswami, N.; Giri, A.; Bootharaju, M. S.; Xavier, P. L.; Pradeep, T.; Pal, S. K. Copper quantum clusters in protein matrix: potential sensor of Pb2+ ion. Anal. Chem. 2011, 83, 9676-9680.
(11)Wang, C.; Wang, C.; Xu, L.; Cheng, H.; Lin, Q.; Zhang, C. Protein-directed synthesis of pH-responsive red fluorescent copper nanoclusters and their applications in cellular imaging and catalysis. Nanoscale 2014, 6, 1775-1781.
(12)Qing, Z.; He, X.; He, D.; Wang, K.; Xu, F.; Qing, T.; Yang, X. Poly(thymine)-templated selective formation of fluorescent copper nanoparticles. Angew. Chem., Int. Ed. 2013, 52, 9719-9722.
(13)Chen, J.; Liu, J.; Fang, Z.; Zeng, L. Random dsDNA-templated formation of copper nanoparticles as novel fluorescence probes for label-free lead ions detection. Chem. Commun. 2012, 48, 1057-1059.
(14)Zhou, Z.; Du, Y.; Dong, S. Double-strand DNA-templated formation of copper nanoparticles as fluorescent probe for label-free aptamer sensor. Anal. Chem. 2011, 83, 5122-5127.
(15)Wei, W.; Lu, Y.; Chen, W.; Chen, S. One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J. Am. Chem. Soc. 2011, 133, 2060-2063.
(16)Ma, J.-Y.; Chen, P.-C.; Chang, H.-T. Detection of hydrogen sulfide through photoluminescence quenching of penicillamine-copper nanocluster aggregates. Nanotechnology 2014, 25, 195502(1)-195502(7).
(17)Jia, X.; Li, J.; Wang, E. Cu nanoclusters with aggregation induced emission enhancement. Small 2013, 9, 3873-3879.
(18)Jia, X.; Yang, X.; Li, J.; Li, D.; Wang, E. Stable Cu nanoclusters: from an aggregation-induced emission mechanism to biosensing and catalytic applications. Chem. Commun. 2014, 50, 237-239.
(19)Abu-Bakr, M. S. Complexation equilibria between copper(II) and thiosalicylic acid. Spectrophotometric determination of copper in non-ferrous alloys. Monatsh. Chem. 1997, 128, 563-570.
(20)Ma, C.; Zhang, Q.; Zhang, R.; Wang, D. Self-assembly of dialkyltin moieties and mercaptobenzoic acid into macrocyclic complexes with hydrophobic "pseudo-cage" or double-cavity structures: supramolecular infrastructures involving intermolecular C-H...S weak hydrogen bonds and pi-pi interactions. Chem. -Eur. J. 2006, 12, 420-428.
(21)Pauly, N.; Tougaard, S.; Yubero, F. Determination of the Cu 2p primary excitation spectra for Cu, Cu2O and CuO. Surf. Sci. 2014, 620, 17-22.
(22)Yuan, X.; Yeow, T. J.; Zhang, Q.; Lee, J. Y.; Xie, J. Highly luminescent Ag+ nanoclusters for Hg2+ ion detection. Nanoscale 2012, 4, 1968-1971.
(23)Idriss, K.; Saleh, M.; Sedaira, H.; Seleim, M. M.; Hashem, E. Solution equilibria and stability of the complexes of pyridinecarboxylic acids: Complexation reaction of mercury(II) with 2-hydroxynicotinic acid. Monatsh. Chem. 1991, 122, 507-520.
(24)Tan, Y.; Wang, Y.; Jiang, L.; Zhu, D. Thiosalicylic acid-functionalized silver nanoparticles synthesized in one-phase system. J. Colloid Interface Sci. 2002, 249, 336-345.
(25)Nomiya, K.; Kondoh, Y.; Onoue, K.; Kasuga, N. C.; Nagano, H.; Oda, M.; Sudoh, T.; Sakuma, S. Synthesis and characterization of polymeric,anionic Thiosalicylato-Ag(I) complexes with antimicrobial activities. Journal of Inorganic Biochemistry 1995, 58, 255-267.
(26)Vivekananda, K. V.; Dey, S.; Wadawale, A.; Bhuvanesh, N.; Jain, V. K. Supramolecular 3-/4-mercaptobenzoic acid complexes of palladium(II) and platinum(II) stabilized by hydrogen bonding. Eur. J. Inorg. Chem. 2014, 2014, 2153-2161.
(27)Wu, Z.; Jin, R. On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett. 2010, 10, 2568-2573.
(28)Luo, Z.; Yuan, X.; Yu, Y.; Zhang, Q.; Leong, D. T.; Lee, J. Y.; Xie, J. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662-16670.
(29)Chen, P.-C.; Ma, J.-Y.; Chen, L.-Y.; Lin, G.-L.; Shih, C.-C.; Lin, T.-Y.; Chang, H.-T. Photoluminescent AuCu bimetallic nanoclusters as pH sensors and catalysts. Nanoscale 2014, 6, 3503-3507.
(30)Yuan, Z.; Cai, N.; Du, Y.; He, Y.; Yeung, E. S. Sensitive and selective detection of copper ions with highly stable polyethyleneimine-protected silver nanoclusters. Anal. Chem. 2013, 86, 419-426.
(31)Le Guevel, X.; Hotzer, B.; Jung, G.; Hollemeyer, K.; Trouillet, V.; Schneider, M. Formation of fluorescent metal (Au, Ag) nanoclusters capped in bovine serum albumin followed by fluorescence and spectroscopy. J. Phys. Chem. C 2011, 115, 10955-10963.
(32)Zheng, J.; Zhou, C.; Yu, M.; Liu, J. Different sized luminescent gold nanoparticles. Nanoscale 2012, 4, 4073-4083.
(33)Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261-5270.
(34)Yuan, X.; Setyawati, M. I.; Tan, A. S.; Ong, C. N.; Leong, D. T.; Xie, J. Highly luminescent silver nanoclusters with tunable emissions: cyclic reduction–decomposition synthesis and antimicrobial properties. NPG Asia Materials 2013, 5, e39.
(35)Jensen, P.; Wilson, M. T.; Aasa, R.; Malmström, B. G. Cyanide inhibition of cytochrome c oxidase. A rapid-freeze e.p.r. investigation. Biochem. J. 1984, 224, 829-837.
(36)Liu, Y.; Ai, K.; Cheng, X.; Huo, L.; Lu, L. Gold-nanocluster-based fluorescent sensors for highly sensitive and selective detection of cyanide in water. Adv. Funct. Mater. 2010, 20, 951-956.
(37)Du, Y.; Yuan, Z.; Xu, D.; Cai, N.; He, Y.; Yeung, E. S. Polyethyleneimine solubilized luminescent Au(I)-thiolate complexes for highly sensitive and selective cyanide anion sensing. J. Chin. Chem. Soc. 2013, 60, 1347-1352.
(38)Shang, L.; Jin, L.; Dong, S. Sensitive turn-on fluorescent detection of cyanide based on the dissolution of fluorophore functionalized gold nanoparticles. Chem. Commun. 2009, 3077-3079.
(39)Liu, C.-Y.; Tseng, W.-L. Colorimetric assay for cyanide and cyanogenic glycoside using polysorbate 40-stabilized gold nanoparticles. Chem. Commun. 2011, 47, 2550-2552.
(40)Izatt, R. M.; Johnston, H. D.; Watt, G. D.; Christensen, J. J. Thermodynamics of metal cyanide coordination. VI. Copper(I)- and silver(I)-cyanide systems. Inorg. Chem. 1967, 6, 132-135.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 1. 李紹威,陸海空軍刑法修正之刑事政策,軍法專刊,第43卷第12期,1997年12月。
2. 3. 李聖傑,從性自主權思考刑法的性行為,中原財經法學,第10期,2003年6月。
3. 4. 李瑞典、軍法觀護工作回顧與前瞻,軍法專刊,第52卷第3期,2006年3月。
4. 5. 邱惟真、邱思潔、李粵羚,三個月的性侵害加害人社區輔導教育團體該做什麼:政策與實務的對話,輔導季刊,第43卷第2期,2007年6月。
5. 6. 孟玉梅,新刑法與性犯罪,全國律師,第9卷第9期,2005年9月。
6. 7. 吳景欽,利用電子監控解消性侵害犯再犯疑慮之立法評析,軍法專刊第51卷第8期,2005年8月。
7. 8. 吳文正,從精神醫學之觀點探討性侵害加害人之強制治療,全國律師,第9卷第10期,2005年10月。
8. 10. 林東茂,刑法體系對於集團犯罪的回應,臺灣法學會學報,第18輯,1997年11月。
9. 11. 林故廷,測謊技術之沿革,刑事科學,第48期,1999年9月。
10. 12. 林明傑,美國性犯罪心理療方案及技術暨我國改進之道,社區發展季刊,第82期,1998年。
11. 13. 林明傑、張晏綾、陳英明、沈勝昂,性侵害犯罪加害人之處遇-較佳方案及三個爭議方案,月旦法學,第96期,2003年5月。
12. 14. 林明傑,性犯罪之再犯率、危險評估、及未來法律展望,律師雜誌,第301期,2004年10月。
13. 15. 林順昌,犯罪者處遇新動向-以日本中間處遇制度之發展為中心,月旦法學,第130期,2006年3月。
14. 16. 法思齊,論性侵害犯罪之本質與修正,月旦法學,第145期,2007年6月。
15. 18. 周愫嫻、張祥儀,突圍:論性侵害犯罪人再社會化之可能性,月旦法學,第96期,2003年5月。
 
無相關點閱論文