跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 06:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃郁惠
研究生(外文):Yu-Hui Huang
論文名稱:結合奈米材料偵測寡去氧核糖核苷酸和藥物複合體之質譜法
論文名稱(外文):Nanomaterials Based Surface-Assisted Laser Desorption/Ionization Mass Spectrometry for Oligodeoxynucleotide-Drug Complexes
指導教授:張煥宗張煥宗引用關係
指導教授(外文):Huan-Tsung Chang
口試委員:吳秀梅胡焯淳
口試委員(外文):Shiou-Mei WuCho-Chun Hu
口試日期:2015-06-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:44
中文關鍵詞:寡去氧核糖核苷酸奈米材料解離常數基質輔助雷射脫附游離質譜儀
外文關鍵詞:oligodeoxynucleotidesnanomaterialdissociation constantssurface-assisted laser desorption/ionization mass spectrometry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:70
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是利用碲化汞奈米結構 (HgTe nanostructures) 作為基質輔助雷射脫附游離質譜法 (surface-assisted laser desorption/ionization mass spectrometry, SALDI-MS) 之基質,並應用於寡去氧核糖核苷酸 (oligodeoxynucleotides, ODNs) 及其和藥物複合體 (ODN-drug complexes) 之偵測。本研究所使用之寡去氧核糖核苷酸為四條易於急性骨髓白血病 (acute myeloid leukemia, AML) 病患中發現的序列,而藥物則是常用於治療急性骨髓白血病患的雙羥蒽醌 (Mitoxantrone, MTX)。本研究結果顯示此方法能成功地同時偵測到四條寡去氧核糖核苷酸,其質荷比 (m/z) 值分別為4571、 4586、 4610 和 4635,以及其與藥物之複合體,其質荷比值分別為5017、 5031、 5055和 5079。質荷比值在4610的寡去氧核糖核苷酸為正常表現的基因序列,而其它三條則為在急性骨髓白血病患中發生單點突變的基因序列。這方法對於此四條寡去氧核糖核苷酸所得到的偵測極限可以低至2 nM,說明其有潛力應用於急性骨髓白血病的診斷。經由此基質輔助雷射脫附游離質譜法也能計算四條寡去氧核糖核苷酸與雙羥蒽醌複合體的解離常數 (dissociation constants, Kd),此基質輔助雷射脫附游離質譜法方法與傳統光學的吸收方法所得到的Kd值在Student’s t test的統計法上無明顯差異。相對於傳統光學方法,此SALDI-MS方法提供了簡單、快速、良好的再現性及樣品需求量少等優勢。

A surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using HgTe nanostructures as the matrix has been employed for the detection of four 15-base oligodeoxynucleotides (ODNs) and their complexes with mitoxantrone (MTX) that is a common drug for treatment of acute myeloid leukemia (AML) patients. The major peaks for the four tested ODNs are genes found in AML patients at m/z values of 4571, 4586, 4610, and 4635, while they are at m/z values of 5017, 5031, 5055, and 5079 for their corresponding complexes with MTX. The ODN with m/z value of 4610 is assigned for a normal gene of AML, while the other three are single-base mutant ODNs. This approach allows detection of the tested ODNs at the concentrations down to 2 nM, showing their potential for diagnosis of AML. The dissociation constants values of the four tested ODN-MTX complexes determined by the SALDI-MS approach are similar and all in the μM level, which agree with that determined by applying a conventional absorption approach. Relative to the conventional approach, the SALDI-MS approach has advantages of simplicity, rapidity, reproducibility, and use of smaller amounts of ODNs and MTX.

目錄

口試委員會審定書 #
誌謝 i
中文摘要 ii
英文摘要 iii
目錄 iv
圖表目錄 vi
第1章 緒論 1
1.1 前言 1
1.2 基質輔助雷射脫附游離質譜法 2
1.2.1 發展歷史 2
1.2.2 樣品製備 3
1.2.3 有機基質的特性與功能 3
1.2.4 飛行時間 (Time-of-Flight, TOF) 質量分析器 4
1.2.5 影響分析物訊號之因素 5
1.3 表面輔助雷射脫附游離質譜法 6
1.3.1 發展歷史 6
1.3.2 表面輔助雷射脫附游離質譜法之機制 7
1.3.3 表面輔助雷射脫附游離質譜法之常見基質 8
1.3.3.1 金奈米粒子 8
1.3.3.2 氧化鐵奈米粒子 9
1.3.3.3 二氧化鈦奈米粒子 10
1.3.3.4 奈米碳管 10
1.3.3.5 矽奈米材料 11
1.3.3.6 碲化汞奈米結構 (HgTe nanostructures) 13
1.4 研究動機 15
1.5 參考文獻 18
第2章 利用碲化汞奈米結構偵測寡去氧核糖核苷酸和藥物複合體 24
2.1 前言 24
2.2 實驗材料與方法 26
2.2.1 實驗藥品 26
2.2.2 寡去氧核糖核苷酸和藥物複合體的分析 26
2.2.3 表面輔助雷射脫附游離法質譜技術分析 27
2.2.4 可見光紫外光光譜分析 27
2.3 實驗結果與討論 28
2.3.1 最佳化分析條件探討 28
2.3.2 寡去氧核糖核苷酸的分析 28
2.3.3 寡去氧核糖核苷酸和雙羥蒽醌複合體之分析 29
2.3.4 寡去氧核糖核苷酸和雙羥蒽醌複合體之吸收光譜分析 30
2.4 結論 32
2.5 參考文獻 40


1.5參考文獻
[1]J. J. Thomson, Rays of positive Electricity and their Application to Chemical Analysis Green and Co. 1998.
[2]M. Karas and F. Hillenkamp, Laser desorption Ionization of proteins with molecular masses exceeding 10 000 daltons. Anal. Chem. 1988, 60, 2299.
[3]K. Tanaka, H. Waki, Y. Ido, S. Akita and Y. Yoshida, Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151.
[4]R. E. Hoing and J. R. Woolston, Laser-induced emission of electrons, ions, and neutral atoms from solid surfaces. Appl. Phys. Lett. 1963, 2, 138.
[5]M. A. Posthumus, P. G. Kistemaker and H. L. C. Meuzelaar, Laser desorption-mass spectrometry of polar nonvolatile bio-organic molecules. Anal. Chem. 1978, 50, 985.
[6]B. Linder and U. Seydel, Laser desorption mass spectrometry of nonvolatiles under shock wave conditions. Anal. Chem. 1985, 57, 895.
[7]M. Karas, D. Bachmann and F. Hillenkamp, Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal. Chem. 1985, 57, 2935.
[8]K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida and T. Yoshida, Detection of high mass molecules by laser desorption time-of-flight mass spectrometry. Second Japan-China Joint Symposium on Mass Spectrometry. 1987, 185.
[9]L. F. Marvin, M. A. Roberts and L. B. Fay, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in clinical chemistry. Clinica Chimica Acta. 2003, 337, 11.
[10]A. Overberg, A. Hassenburger and F. Hillenkamp, Mass Spectrometry in the Biological Sciences: A Tutorial, M. L. Gross Ed, Kluwer Academic Publisher press, Netherlands, 1992, 181.
[11]K. K. Murray and K. L. Caldwell, Mid-infrared matrix assisted laser desorption ionization with a water/glycerol matrix. Appl. Surf. Sci. 1998, 127, 242.
[12]M. Kussmann, E. Nordhoff, H. Rahbek-Nielsen, S. Haebel, M. Rossel-Larsen, L. Jakobsen, J. Gobom, E. Mirgorodskaya, A. Kroll-Kristensen and L. Palm, P. Roepstorff, Matrix-assisted laser desorption/ionization mass spectrometry sample preparation techniques designed for various peptide and protein analytes. Mass Spectrom. 1997, 32, 593.
[13]D. C. Schriemer and L. Li, Detection of high molecular weight narrow polydisperse polymers up to 1.5 million daltons by MALDI mass spectrometry. Anal. Chem. 1996, 68, 2721.
[14]R. R. O. Loo and J. A. Loo, Matrix-assisted laser desorption/ionization-mass spectrometry of hydrophobic proteins in mixtures using formic acid, perfluorooctanoic acid, and sorbitol. Anal. Chem. 2007, 79, 1115.
[15]R. J. Levis, Laser Desorption and ejection of biomolecules from the condensed phase into the gas phase. Annu. Rev. Phys. Chem. 1994, 45, 483.
[16]A. Overberg and M. Karas, Matrix-assisted infrared-laser desorption/ionization MS of large biomolecules. Rapid Commun. Mass Spectom. 1990, 4, 293.
[17]U. Bahr, M. Karas and F. Hillenkamp, Analysis of biopolymers by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Anal. Chem. 1994, 348, 783.
[18]F. Hillenkamp and J. Peter-Katalinic, MALDI-MS: A Practical Guide to Instrumentation, Methods and Applications, 2007.
[19]吳慧芬、呂麗琪,「2002年的諾貝爾化學獎-質譜儀分析技術的突破開展生化科技新領域」,科學發展,2003,第362卷,第48-51頁。
[20]K. C. Hung, H. Ding and B. Guo, Use of poly(tetrafluoroethylene)s as a sample support for the MALDI-TOF analysis of DNA and proteins. Anal. Chem.1999, 71, 518.
[21]Y. Xu, J. T. Wastson and M. L. Bruening, Patterned monolayer/polymer films for analysis of dilute or salt-contaminated protein samples by MALDI-MS. Anal. Chem. 2003, 75, 185.
[22]J. M. Asara and J. Allison, Enhanced detection of oligonucleotides in UV MADLI MS using the tetraamine spermine as a matrix additive. Anal. Chem. 1999, 71, 2866.
[23]R. S. Brown and J. J. Lennon, Mass resolution improvement by incorporation of pulsed ion extraction in a matrix-assisted laser desorption/ionization linear time-of-flight mass spectrometer. Anal. Chem. 1995, 67, 1998.
[24]M. L. Vestal, P. Juhasz and S. A. Martin, Delayed extraction matrix-assisted laser desorption time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1995, 9, 1044.
[25]L. H. Cohen and A. I. Gusev, Small molecule analysis by MALDI mass spectrometry. Anal. Bioanal. Chem. 2002, 373, 571.
[26]J. Sunner, E. Dratz and Y. C. Chen, Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Anal. Chem. 1995, 67, 4335.
[27]P. C. Liao and J. Allison, Ionization processes in MALDI: matrix dependence of [M+H]+ vs. [M+Na]+ formation. J. Mass Spectrom. 1995, 30, 408.
[28]R. Zenobi and R. Knochenmuss, Ion formation in MALDI mass spectrometry. Mass Spectrom. Rev. 1998, 17, 337.
[29]H. Ehring, M. Karas and F. Hillenkamp, Role of photoionization and photochemistry in ionization processes of organic molecules and relevance for marix-assisted laser desorption ionization mass spectrometry. Org. Mass Spectrom. 1992, 27, 472.
[30]Y. F. Zhu, K. L. Lee, K. Tang, S. L. Allman, N. I. Taranencko and C. H. Chen, Revisit of MALDI for small proteins. Ripid Commun. Mass Spectrom. 1995, 9, 1315.
[31]J. A. Mclean, K. A. Stumpo and D. H. Russell, Size-selected (2-10 nm) gold nanoparticles for matrix assisted laser desorption ionization of peptides. J. Am. Chem. Soc. 2005, 127, 5304.
[32]Y. -F. Huang and H. -T. Chang, Analysis of adenosine triphosphate and glutathione through gold nanoparticles assisted laser desorption/ionization mass spectrometry. Anal. Chem. 2007, 79, 4852.
[33]N. -C. Chiang, C. -K. Chiang, Z. -H. Lin and H. -T. Chang, Detection of aminothiols through surface-assisted laser desorption/ionization mass spectrometry using mixed gold nanoparticles. Rapid Commun. Mass Spectrom. 2009, 23, 3063.
[34]M. Schurenberg, K. Dreisewerd and F. Hillenkamp, Laser desorption/ionization mass spectrometry of peptides and proteins with particle suspension matrixes. Anal. Chem. 1999, 71, 221.
[35]W. -Y. Chen and Y. -C. Chen, Affinity-based mass spectrometry using magnetic iron oxide particles as the matrix and concentrating probes for SALDI-MS analysis of peptides and proteins. Anal. Bioanal. Chem. 2006, 386, 699.
[36]K. -H. Lee, C. -K. Chiang, Z. -H. Lin and H. -T. Chang, Determining enediol compounds in tea using surface-assisted laser desorption/ionization mass spectrometry with titanium dioxide nanoparticle matrices. Rapid Commun. Mass Spectom. 2007, 21, 2023.
[37]C. -T. Chen and Y. -C. Chen, Desorption/ionization mass spectrometry on nanocrystalline titania sol-gel-deposited films. Rapid Commun. Mass Spectom. 2004, 18, 1956.
[38]S. Y. Xu, Y. F. Li, H. F. Zou, J. S. Qiu, Z. Guo and B. C. Guo, Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 2003, 75, 6191.
[39]W. -Y. Chen, L. -S. Wang, H. -T. Chiu, Y. -C. Chen and C. -Y. Lee, Carbon nanotubes as affinity probes for peptides and proteins in MALDI MS analysis. J. Am. Soc. Mass. Spectrom. 2004, 15, 1629.
[40]S. -F. Ren and Y. -L. Guo, Oxidized carbon nanotubes as matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of biomolecules. Rapid Commun. Mass Spectom. 2005, 19, 255.
[41]S. -F. Ren, L. Zang, Z. -H. Chen and Y. -L. Guo, Immobilized carbon nanotubes as matrix for MALDI-TOF-MS analysis: Applications to neutral small carbokydrates. J. Am. Soc. Mass. Spectrom. 2005, 16, 333.
[42]J. Wei, J. M. Buriak and G. Siuzdak, Desorption–ionization mass spectrometry on porous silicon. Nature, 1999, 399, 243.
[43]Z. X. Shen, J. J. Thomas, C. Averbuj, K. M. Broo, M. Engelhard, J. E. Crowell, M. G. Finn and G. Siuzdak, Porous silicon as a versatile platform for laser desorption/ionization mass spectrometry. Anal. Chem. 2006, 78, 612.
[44]S. A. Trauger, E. P. Go, Z. X. Shen, J. V. Apon, B. J. Compton, E. S. P. Bouvier, M. G. Finn and G. Siuzdak, High sensitivity and analyte capture with desorption/ionization mass spectrometry on silylated porous silicon. Anal. Chem. 2004, 76, 4484.
[45]E. P. Go, J. V. Apon, G. Luo and G. Sagehatelian, Desorption/ionization on silicon nanowires. Anal. Chem. 2005, 77, 1641.
[46]X. Wen, S. Dagan and V. H. Wysoki, Small-molecule analysis with silicon-nanoparticle-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 2007, 79, 434.
[47]C. -K. Chiang, Z. Yang, Y. -W. Lin, W. -T. Chen, H. -J. Lin and H. -T. Chang, Detection of proteins and protein-ligand complexes using HgTe nanostructure matrixes in surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 2010, 82, 4543.
[48]W. -T. Chen, C. -K. Chiang, C. -H. Lee and H. -T. Chang, Using surface-assisted laser desorption/ionization mass spectrometry to detect proteins and protein-protein complexes. Anal. Chem. 2012, 84, 1924.
[49]M. -F. Huang and H. -T. Chang, Detection of carbohydrates using surface-assisted laser desorption/ionization mass spectrometry with HgTe nanostructures. Chem. Sci. 2012, 3, 2147.
[50]W. -T. Chen, M. -F. Huang and H. -T. Chang, Using surface-assisted laser desorption/ionization mass spectrometry to detect ss- and ds-oligodeoxynucleotides. J. Am. Soc. Mass Spectrom. 2013, 24, 877.
[51]C. -W. Wang, W. -T. Chen and H. -T. Chang, Quantification of saccharides in honey samples through surface-assisted laser desorption/ionization mass spectrometry using HgTe nanostructures. J. Am. Soc. Mass Spectrom. 2014, 25, 1247.
2.5參考文獻
[1]M. Karas and F. Hillenkamp, Laser desorption ionization of proteins with molecular masses exceeding 10 000 daltons. Anal. Chem. 1988, 60, 2299.
[2]K. Tanaka, H. Waki, Y. Ido, S. Akita and Y. Yoshida, Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151.
[3]T. R. Baker, T. Keough, R. L. M. Dobson, M. P. Lacey, T. A. Riley, J. A. Hasselfield and P. E. Hesselberth, Antisense DNA oligonucleotides 11: the use of matrix-assisted laser desorption/ionization mass spectrometry for the sequence verification of methylphosphonate oligodeoxyribonucleotides. Rapid Commun. Mass Spectrom. 1993, 7, 195.
[4]W. -T. Chen, C. -K. Chiang, C. -H. Lee and H. -T. Chang, Using surface-assisted laser desorption/ionization mass spectrometry to detect proteins and protein-protein complexes. Anal. Chem. 2012, 84, 1924.
[5]U. Pieles, W. Zurcher, M. Schar and H. E. Moser, Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a powerful tool for the mass and sequence analysis of natural and modified oligonucleotides. Nucleic Acids Res. 1993, 21, 3191.
[6]M. O. Glocker, S. H. Bauer, J. Kast, J. Volz and M. Przybylski, Characterization of specific noncovalent protein complexes by UV matrix-assisted laser desorption ionization mass spectrometry. J. Mass Spectrom. 1996, 31, 1221.
[7]L. R. H. Cohen, K. Strupat and F. Hillenkamp, Analysis of quaternary protein ensembles by matrix assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 1997, 8, 1046.
[8]C. -K. Chiang, Z. Yang, Y. -W. Lin, W. -T. Chen, H. -J. Lin and H. -T. Chang, Detection of proteins and protein-ligand complexes using HgTe nanostructure matrixes in surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 2010, 82, 4543.
[9]W. -T. Chen, M. -F. Huang and H. -T. Chang, Using Surface-assisted laser desorption/ionization mass spectrometry to detect ss- and ds-oligodeoxynucleotides. J. Am. Soc. Mass Spectrom. 2013, 24, 877.
[10]S. A. Hofstadler and K. A. Sannes-Lowery, Applications of ESI-MS in drug discovery: interrogation of noncovalent complexes. Nat. Rev. Drug Discovery. 2006, 5, 585.
[11]J. M. Daniel, S. D. Friess, S. Rajagopalan, S. Wendt and R. Zenobi, Quantitative determination of noncovalent binding interactions using soft ionization mass spectrometry. Int. J. Mass Spectrom. 2002, 216, 1.
[12]A. Tjernberg, S.Carnö, F. Oliv, K. Benkestock, P. -O. Edlund, W. J. Griffiths and D. Halén, Determination of dissociation constants for protein-ligand complexes by electrospray ionization mass spectrometry. Anal. Chem. 2004, 76, 4325.
[13]A. Wortmann, M. C. Jecklin, D. Touboul, M. Badertscher and R. Zenobi, Binding constant determination of high-affinity protein-ligand complexes by electrospray ionization mass spectrometry and ligand competition. J. Mass Spectrom. 2008, 43, 600.
[14]J. L. Beck, M. L. Colgrave, S. F. Ralph and M. M. Shell, Electrospray ionization mass spectrometry of oligonucleotide complexes with drugs, metals, and proteins. Mass Spectrom. Rev. 2001, 20, 61.
[15]S. A. Hofstadler and R. H. Griffey, Analysis of noncovalent complexes of DNA and RNA by mass spectrometry. Chem. Rev. 2001, 101, 377.
[16]K. J. Fountain, M. Gilar and J. C. Gebler, Electrospray ionization mass spectrometric analysis of nucleic acids using high-throughput on-line desalting. Rapid Commun. Mass Spectrom. 2004, 18, 1295.
[17]L.B. Jennifer, Developments in electrospray ionization mass spectrometry of non-covalent DNA-ligand complexes. Aust. J. Chem. 2011, 67, 705.
[18]R. Frański, B. Giercżyk and T. Kozik, Tandem mass spectrometry experiments support the existence of hydrophobic interactions in the gas phase. Rapid Commun. Mass Spectrom. 2008, 22, 2747.
[19]R. Sudha and R. Zenobi, The detection and stability of DNA duplexes probed by MALDI mass spectrometry. Helv. Chim. Acta. 2002, 85, 3136.
[20]J. A. Bueren-Calabuig, C. Giraudon, C. M. Galmarini, J. M. Egly and F. Gago, Temperature-induced melting of double-stranded DNA in the absence and presence of covalently bonded antitumour drugs: insight from molecular dynamics simulations. Nucleic Acids Res. 2011, 39, 8248.
[21]A. Tholey and E. Heinzle, Ionic (liquid) matrices for matrix-assisted laser desorption/ionization mass spectrometry-applications and perspectives. Anal. Bioanal. Chem. 2006, 386, 24.
[22]H. -P. Wu, C. -L. Su, H. -C. Chang and W. -L. Tseng, Sample-first preparation: a method for surface-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of cyclic oligosaccharides .Anal. Chem. 2007, 79, 6215.
[23]J. Sunner, E. Dratz and Y. -C. Chen, Graphite surface-assisted laser desorption/ ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Anal. Chem. 1995, 67, 4335.
[24]T. -C. Chiu, L. -S. Huang, P. -C. Lin, Y. -C. Chen, Y. -J. Chen, C. -C. Lin and H. -T. Chang, Nanomaterial based affinity matrix-assisted laser desorption/ionization mass spectrometry for biomolecules and pathogenic bacteria. Recent Pat. Nanotechnol. 2007, 1, 99.
[25]W. -T. Chen and H. -T. Chang, Tea identification through surface-assisted laser desorption/ionization mass spectrometry. Int. J. Anal. Mass Spectrom. Chromatogr. 2013, 1, 11.
[26]J. C. Brice and P. Capper, Properties of mercury cadmium telluride. Inspec, London, 1987.
[27]T. Yonezawa, H. Kawasaki, A. Tarui, T. Watanabe, R. Arakawa, T. Shimada and F. Mafuné, Detailed investigation on the possibility of nanoparticles of various metal elements for surface-assisted laser desorption/ionization mass spectrometry. Anal. Sci. 2009, 25, 339.
[28]W. D. Lawson, S. Nielsen, E. H. Putley and A. S. Young, Preparation and properties of HgTe and mixed crystals of HgTe-CdTe. J. Phys. Chem. Solids. 1959, 9, 325.
[29]M. -F. Huang and H. -T. Chang, Detection of carbohydrates using surface-assisted laser desorption/ionization mass spectrometry with HgTe nanostructures. Chem. Sci. 2012, 3, 2147.
[30]P. A. Wabnitz and J. A. Loo, Drug screening of pharmaceutical discovery compounds by micro-size exclusion chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2002, 16, 85.
[31]M. H. Sheikhha, A. Awan, K. Tobal and J. A. Liu Yin, Prognostic significance of FLT3 ITD and D835 mutations in AML patients. Hematol. J. 2003, 4, 41.
[32]N. Li, Y. Ma, C. Yang, L. Guo and X. Yang, Interaction of anticancer drug mitoxantrone with DNA analyzed by electrochemical and spectroscopic methods. Biophys. Chem. 2005, 116, 199.
[33]L. S. Rosenberg, M. J. Carblin and T. R. Krugh, The antitumor agent mitoxantrone binds cooperatively to DNA: evidence for heterogeneity in DNA conformation. Biochem. 1986, 25, 1002.
[34]X. J. Dang, M. Y. Nie, J. Tong and H. L. Li, Inclusion of the parent molecules of some drugs with beta-cyclodextrin studied by electrochemical and spectrometric method. J. Electroanal. Chem. 1998, 448, 61.
[35]L. S. Rosenberg, M. J. Carblin and T. R. Krugh, The antitumor agent mitoxantrone binds cooperatively to DNA: evidence for heterogeneity in DNA conformation. Biochem. 1986, 25, 1002.
[36]X. J. Dang, M. Y. Nie, J. Tong and H. L. Li, Inclusion of the parent molecules of some drugs with β-cyclodextrin studied by electrochemical and spectrometric methods. J. Electroanal. Chem. 1998, 448, 61.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文