跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/19 01:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭嘉榮
研究生(外文):Chia-Jung Kuo
論文名稱:合成高品質化學氣相沉積石墨烯並應用於膜相關之生物感測
論文名稱(外文):合成高品質化學氣相沉積石墨烯並應用於膜相關之生物感測
指導教授:陳逸聰陳逸聰引用關係
口試委員:余慈顏趙玲謝佳龍
口試日期:2015-01-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:89
中文關鍵詞:石墨烯化學氣相沉積場效電晶體支撐性磷脂雙層磷脂質脂解酶霍亂毒素
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自石墨烯(graphene)於2004年被發現以來,除其獨特的物理性質受到各領域的重視外,石墨烯所具有之廣泛應用性也受到許多關注。在本研究中,關注於發展液相閘極石墨烯場效電晶體(solution-gated graphene filed-effect transistor),做為生物感測平台。

本研究分為兩部分,前半部為石墨烯之合成與鑑定。我們採用了狹縫狀腔體的設計改善了現有的之化學氣相沉積系統 (chemical vapor deposition),透過改變氣體於合成環境中之流場,大幅提升石墨烯合成之品質。並透過有限元素方法模擬,佐證了流場改變對石墨烯合成的影響。另外使用光學顯微鏡、電子顯微鏡、原子力顯微鏡、拉曼光譜和聚焦電子束繞射,鑑定所合成的為高品質之石墨烯

論文後半部分將自行合成之石墨烯製備成場效電晶體元件,並整合微流道系統建構液相之量測環境。我們以囊泡融合法(vesicle fusion)製備支撐性磷脂雙層(supported-lipid bilayer)於石墨烯元件表面,做為與模相關之生物感測平台。

基於此架構,本研究驗證兩個不同之應用。首先為磷脂質脂解酶D (phospholipase D) 水解磷脂雙層之生化反應,驗證石墨烯可以感測到水解反應所引起的電荷變化。接著驗證修飾神經節苷脂GM1的石墨烯元件,可以偵測與霍亂毒素 (cholera toxin) 的結合反應,進一步證實了石墨烯場效電晶體可做為蛋白質與膜交互作用之感測平台。


The theme of this thesis focuses on the application of lipid bilayer-modified graphene field-effect transistors (G-FETs) for the detections of chemical/biological activities of membrane proteins. Compared with one-dimensional (1D) nanowires to be used as a conducting channel in FET biosensors, the two-dimensional (2D) graphene sheets of G-FETs possess a larger and more stable interface with lipid bilayers, thus providing a convenient sensing platform with advantageous device designs in biological studies.
The first part of this thesis describes the device fabrication of G-FETs using high-quality, large-area graphene sheets synthesized from chemical vapor deposition (CVD) reaction. With a specially designed CVD reactor, the as-synthesized graphene sheets were produced within a confined reaction space, which significantly reduces the nucleation density and makes the formation of large-area, high quality graphene sheets possible.
The second part of this thesis displays the biosensing capabilities of a lipid bilayer-modified G-FET. A lipid bilayer was deposited on a G-FET via a vesicle fusion method. In the studies, we have applied this lipid bilayer-modified G-FET to detect phospholipase D and cholera toxin. With electrical measurements of the lipid bilayer-modified G-FET, transfer-curve shifts and electrical conductivity changes can be obtained after interacting proteins come to react with the modified lipid bilayer. Our experimental results have demonstrated that G-FETs can serve as a sensitive platform for biorecognition and biosensing investigations, in particular, suitable for the study of biological activities of membrane proteins.


口試委員會審定書 i
謝誌 ii
中文摘要 iii
ABSTRACT iv
目錄 v
圖目錄 ix
表目錄 xii
簡稱用語對照表 xiii
Chapter 1 導論 1
1.1 石墨烯基本性質之介紹 1
1.1.1 石墨烯的發展背景 2
1.1.2 石墨烯之物理特性 3
1.2 場效電晶體感測器之簡介 3
1.3 磷脂雙層 5
Chapter 2 文獻回顧 6
2.1 石墨烯之結構 6
2.1.1 石墨烯之晶格結構 6
2.1.2 石墨烯之能帶結構 7
2.1.3 石墨烯之堆疊 8
2.2 石墨烯之製備方法 10
2.2.1 機械剝離法 (mechanical exfoliation) 10
2.2.2 氧化石墨烯還原法 (reduction from graphene oxide) 10
2.2.3 碳化矽磊晶成長法 (epitaxial growth) 11
2.2.4 化學氣相沉積法 (chemical vapor deposition, CVD) 11
2.3 化學氣相沈積法製備石墨烯 12
2.3.1 化學氣相沈積法研究進展 12
2.3.2 化學氣相沉積之成長機制 13
2.3.3 製備大面積石墨烯之進展 16
2.4 石墨烯之檢測方法 17
2.4.1 光學散射 17
2.4.2 拉曼光譜 19
2.5 石墨烯場效電晶體之特性 23
2.5.1 載子傳輸理論 23
2.5.2 載子傳輸之散射 23
2.6 石墨烯場效電晶體感測器之發展 24
2.7 磷脂雙層相關文獻回顧 26
2.7.1 支撐性脂雙層 26
2.7.2 石墨烯結合磷脂雙層之相關研究進展 27
2.8 研究動機和目標 29
Chapter 3 實驗方法與材料 31
3.1 以化學氣相沉積製備石墨烯 31
3.1.1 CVD儀器架構 31
3.1.2 有限元素方法模擬CVD系統流場 33
3.2 檢驗儀器 34
3.2.1 光學顯微鏡 34
3.2.2 電子顯微鏡 34
3.2.3 原子力顯微鏡 36
3.2.4 共軛焦拉曼顯微鏡 36
3.3 石墨烯場效電晶體原件製作 37
3.3.1 以PMMA轉置石墨烯 37
3.3.2 退火處理 38
3.3.3 元件製作 38
3.4 量測平台 39
3.4.1 探針量系統 39
3.4.2 液相閘極量測 40
3.4.3 微流體系統 41
3.5 石墨烯-磷脂雙層 43
3.5.1 製備磷脂雙層-石墨烯元件 43
Chapter 4 結果與討論 44
4.1 石墨烯合成 44
4.1.1 以石英狹縫進行石墨烯之合成 44
4.1.2 狹縫設計對石墨烯成長的影響 46
4.1.3 退火程序之參數最佳化 48
4.1.4 計算流體力學模擬 51
4.2 石墨烯品質鑑定 53
4.2.1 以PMMA法轉置石墨烯 53
4.2.2 聚焦電子束繞射圖譜 54
4.2.3 拉曼光譜鑑定 55
4.3 石墨烯場效電晶體 58
4.3.1 退火處理 58
4.3.2 電性量測與分析 59
4.3.3 液相閘極量測 62
4.3.4 漏電流評估 65
4.4 石墨烯-磷脂雙層整合應用 67
4.4.1 支撐性磷脂雙層製備 67
4.4.2 光漂白後螢光回復 71
4.4.3 磷脂質脂解酶量測 73
4.4.4 霍亂毒素偵測 76
4.5 總結 82
參考文獻 83



1.graphite, http://www.grapheneorigami.com/origami_graphite.htm.
2.Wallace, P. R., The Band Theory of Graphite. Phys Rev 1947, 71 (7), 476-476.
3.May, J. W., Platinum Surface Leed Rings. Surf Sci 1969, 17 (1), 267-&.
4.Lu, X. K.; Yu, M. F.; Huang, H.; Ruoff, R. S., Tailoring graphite with the goal of achieving single sheets. Nanotechnology 1999, 10 (3), 269-272.
5.Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat Mater 2007, 6 (3), 183-191.
6.Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L., Ultrahigh electron mobility in suspended graphene. Solid State Commun 2008, 146 (9-10), 351-355.
7.Chen, K. I.; Li, B. R.; Chen, Y. T., Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 2011, 6 (2), 131-154.
8.Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E. L. L., Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol 2001, 305 (3), 567-580.
9.Overington, J. P.; Al-Lazikani, B.; Hopkins, A. L., Opinion - How many drug targets are there? Nat Rev Drug Discov 2006, 5 (12), 993-996.
10.Freeman, W. H., molecular cell biology. 2008.
11.Partoens, B.; Peeters, F. M., From graphene to graphite: Electronic structure around the K point. Phys Rev B 2006, 74 (7).
12.Chen, D.; Feng, H. B.; Li, J. H., Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chemical reviews 2012, 112 (11), 6027-6053.
13.Kang, H. C.; Olac-vaw, R.; Karasawa, H.; Miyamoto, Y.; Handa, H.; Suemitsu, T.; Fukidome, H.; Suemitsu, M.; Otsuji, T., Extraction of Drain Current and Effective Mobility in Epitaxial Graphene Channel Field-Effect Transistors on SiC Layer Grown on Silicon Substrates. Jpn J Appl Phys 2010, 49 (4).
14.Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano letters 2009, 9 (1), 30-35.
15.Novoselov, K. S.; Fal''ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K., A roadmap for graphene. Nature 2012, 490 (7419), 192-200.
16.Somani, P. R.; Somani, S. P.; Umeno, M., Planer nano-graphenes from camphor by CVD. Chem Phys Lett 2006, 430 (1-3), 56-59.
17.Obraztsov, A. N.; Obraztsova, E. A.; Tyurnina, A. V.; Zolotukhin, A. A., Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 2007, 45 (10), 2017-2021.
18.Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324 (5932), 1312-1314.
19.Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; Kim, Y. J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J. H.; Hong, B. H.; Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 2010, 5 (8), 574-578.
20.Edwards, R. S.; Coleman, K. S., Graphene Film Growth on Polycrystalline Metals. Accounts Chem Res 2013, 46 (1), 23-30.
21.Yu, Q. K.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. S., Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 2008, 93 (11).
22.Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457 (7230), 706-710.
23.Hao, Y. F.; Bharathi, M. S.; Wang, L.; Liu, Y. Y.; Chen, H.; Nie, S.; Wang, X. H.; Chou, H.; Tan, C.; Fallahazad, B.; Ramanarayan, H.; Magnuson, C. W.; Tutuc, E.; Yakobson, B. I.; McCarty, K. F.; Zhang, Y. W.; Kim, P.; Hone, J.; Colombo, L.; Ruoff, R. S., The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper. Science 2013, 342 (6159), 720-723.
24.Bhaviripudi, S.; Jia, X. T.; Dresselhaus, M. S.; Kong, J., Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst. Nano letters 2010, 10 (10), 4128-4133.
25.Kidambi, P. R.; Ducati, C.; Dlubak, B.; Gardiner, D.; Weatherup, R. S.; Martin, M. B.; Seneor, P.; Coles, H.; Hofmann, S., The Parameter Space of Graphene Chemical Vapor Deposition on Polycrystalline Cu. J Phys Chem C 2012, 116 (42), 22492-22501.
26.Chen, S.; Ji, H.; Chou, H.; Li, Q.; Li, H.; Suk, J. W.; Piner, R.; Liao, L.; Cai, W.; Ruoff, R. S., Millimeter-size single-crystal graphene by suppressing evaporative loss of Cu during low pressure chemical vapor deposition. Adv Mater 2013, 25 (14), 2062-5.
27.Wang, C. C.; Chen, W.; Han, C.; Wang, G.; Tang, B. B.; Tang, C. X.; Wang, Y.; Zou, W. N.; Chen, W.; Zhang, X. A.; Qin, S. Q.; Chang, S. L.; Wang, L., Growth of Millimeter-Size Single Crystal Graphene on Cu Foils by Circumfluence Chemical Vapor Deposition. Sci Rep-Uk 2014, 4.
28.Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X., Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett 2007, 7 (9), 2758-2763.
29.Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S., Raman spectroscopy in graphene. Phys Rep 2009, 473 (5-6), 51-87.
30.Thomsen, C.; Reich, S., Double resonant raman scattering in graphite. Physical review letters 2000, 85 (24), 5214-7.
31.Bjorkman, T.; Kurasch, S.; Lehtinen, O.; Kotakoski, J.; Yazyev, O. V.; Srivastava, A.; Skakalova, V.; Smet, J. H.; Kaiser, U.; Krasheninnikov, A. V., Defects in bilayer silica and graphene: common trends in diverse hexagonal two-dimensional systems. Sci Rep-Uk 2013, 3.
32.Park, J. S.; Reina, A.; Saito, R.; Kong, J.; Dresselhaus, G.; Dresselhaus, M. S., G '' band Raman spectra of single, double and triple layer graphene. Carbon 2009, 47 (5), 1303-1310.
33.Tan, Y. W.; Zhang, Y.; Bolotin, K.; Zhao, Y.; Adam, S.; Hwang, E. H.; Das Sarma, S.; Stormer, H. L.; Kim, P., Measurement of scattering rate and minimum conductivity in graphene. Physical review letters 2007, 99 (24), 246803.
34.Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S., Detection of individual gas molecules adsorbed on graphene. Nat Mater 2007, 6 (9), 652-655.
35.Ang, P. K.; Chen, W.; Wee, A. T. S.; Loh, K. P., Solution-Gated Epitaxial Graphene as pH Sensor. Journal of the American Chemical Society 2008, 130 (44), 14392-+.
36.Ohno, Y.; Maehashi, K.; Yamashiro, Y.; Matsumoto, K., Electrolyte-Gated Graphene Field-Effect Transistors for Detecting pH Protein Adsorption. Nano letters 2009, 9 (9), 3318-3322.
37.Cai, B.; Wang, S.; Huang, L.; Ning, Y.; Zhang, Z.; Zhang, G. J., Ultrasensitive label-free detection of PNA-DNA hybridization by reduced graphene oxide field-effect transistor biosensor. ACS nano 2014, 8 (3), 2632-8.
38.Richter, R. P.; Berat, R.; Brisson, A. R., Formation of solid-supported lipid bilayers: an integrated view. Langmuir : the ACS journal of surfaces and colloids 2006, 22 (8), 3497-505.
39.Jass, J.; Tjarnhage, T.; Puu, G., From liposomes to supported, planar bilayer structures on hydrophilic and hydrophobic surfaces: An atomic force microscopy study. Biophys J 2000, 79 (6), 3153-3163.
40.Lenz, P.; Ajo-Franklin, C. M.; Boxer, S. G., Patterned supported lipid bilayers and monolayers on poly(dimethylsiloxane). Langmuir : the ACS journal of surfaces and colloids 2004, 20 (25), 11092-9.
41.Yamazaki, K.; Kunii, S.; Ogino, T., Characterization of Interfaces between Graphene Films and Support Substrates by Observation of Lipid Membrane Formation. J Phys Chem C 2013, 117 (37), 18913-18918.
42.(a) K Tsuzuki, Y. O., S Iwasa, R Ishikawa, A Sandhu, and R Tero, Reduced Graphene Oxide as the Support for Lipid Bilayer Membrane. J. Phys.: Conf. Ser 2013, 352 (1); (b) Y Okamoto, K. T., S Iwasa, R Ishikawa, A Sandhu, and R Tero, Fabrication of Supported Lipid Bilayer on Graphene Oxide. J. Phys.: Conf. Ser 2012, 352 (1).
43.Ang, P. K.; Jaiswal, M.; Lim, C. H. Y. X.; Wang, Y.; Sankaran, J.; Li, A.; Lim, C. T.; Wohland, T.; Ozyilmaz, B.; Loh, K. P., A Bioelectronic Platform Using a Graphene-Lipid Bilayer Interface. ACS nano 2010, 4 (12), 7387-7394.
44.Hirtz, M.; Oikonomou, A.; Georgiou, T.; Fuchs, H.; Vijayaraghavan, A., Multiplexed biomimetic lipid membranes on graphene by dip-pen nanolithography. Nat Commun 2013, 4.
45.Wang, Y. Y.; Pham, T. D.; Zand, K.; Li, J. F.; Burke, P. J., Charging the Quantum Capacitance of Graphene with a Single Biological Ion Channel. ACS nano 2014, 8 (5), 4228-4238.
46.Kim, Y. S.; Lee, J. H.; Kim, Y. D.; Jerng, S. K.; Joo, K.; Kim, E.; Jung, J.; Yoon, E.; Park, Y. D.; Seo, S.; Chun, S. H., Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition. Nanoscale 2013, 5 (3), 1221-1226.
47.Liang, X. L.; Sperling, B. A.; Calizo, I.; Cheng, G. J.; Hacker, C. A.; Zhang, Q.; Obeng, Y.; Yan, K.; Peng, H. L.; Li, Q. L.; Zhu, X. X.; Yuan, H.; Walker, A. R. H.; Liu, Z. F.; Peng, L. M.; Richter, C. A., Toward Clean and Crackless Transfer of Graphene. ACS nano 2011, 5 (11), 9144-9153.
48.Lin, Y. C.; Lu, C. C.; Yeh, C. H.; Jin, C. H.; Suenaga, K.; Chiu, P. W., Graphene Annealing: How Clean Can It Be? Nano letters 2012, 12 (1), 414-419.
49.Kwak, Y. H.; Choi, D. S.; Kim, Y. N.; Kim, H.; Yoon, D. H.; Ahn, S. S.; Yang, J. W.; Yang, W. S.; Seo, S., Flexible glucose sensor using CVD-grown graphene-based field effect transistor. Biosens Bioelectron 2012, 37 (1), 82-87.
50.Tarabella, G.; Mohammadi, F. M.; Coppede, N.; Barbero, F.; Iannotta, S.; Santato, C.; Cicoira, F., New opportunities for organic electronics and bioelectronics: ions in action. Chem Sci 2013, 4 (4), 1395-1409.
51.Luo, Z. T.; Kim, S.; Kawamoto, N.; Rappe, A. M.; Johnson, A. T. C., Growth Mechanism of Hexagonal-Shape Graphene Flakes with Zigzag Edges. Acs Nano 2011, 5 (11), 9154-9160.
52.Chen, S. S.; Ji, H. X.; Chou, H.; Li, Q. Y.; Li, H. Y.; Suk, J. W.; Piner, R.; Liao, L.; Cai, W. W.; Ruoff, R. S., Millimeter-Size Single-Crystal Graphene by Suppressing Evaporative Loss of Cu During Low Pressure Chemical Vapor Deposition. Adv Mater 2013, 25 (14), 2062-2065.
53.Calado, V. E.; Schneider, G. F.; Theulings, A. M. M. G.; Dekker, C.; Vandersypen, L. M. K., Formation and control of wrinkles in graphene by the wedging transfer method. Appl Phys Lett 2012, 101 (10).
54.Kobayashi, T.; Bando, M.; Kimura, N.; Shimizu, K.; Kadono, K.; Umezu, N.; Miyahara, K.; Hayazaki, S.; Nagai, S.; Mizuguchi, Y.; Murakami, Y.; Hobara, D., Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl Phys Lett 2013, 102 (2).
55.Lee, S. I.; Song, W.; Kim, Y.; Song, I.; Jung, D. S.; Jung, M. W.; Cha, M. J.; Park, S. E.; An, K. S.; Park, C. Y., P-Type Doping of Graphene Films by Hybridization with Nickel Nanoparticles. Jpn J Appl Phys 2013, 52 (7).
56.Joshi, P.; Romero, H. E.; Neal, A. T.; Toutam, V. K.; Tadigadapa, S. A., Intrinsic doping and gate hysteresis in graphene field effect devices fabricated on SiO2 substrates. J Phys-Condens Mat 2010, 22 (33).
57.Gierz, I.; Riedl, C.; Starke, U.; Ast, C. R.; Kern, K., Atomic Hole Doping of Graphene. Nano letters 2008, 8 (12), 4603-4607.
58.Wang, H. M.; Wu, Y. H.; Cong, C. X.; Shang, J. Z.; Yu, T., Hysteresis of Electronic Transport in Graphene Transistors. Acs Nano 2010, 4 (12), 7221-7228.
59.Gelmont, B.; Shur, M. S.; Mattauch, R. J., Disk and Stripe Capacitances. Solid State Electron 1995, 38 (3), 731-734.
60.Chen, F.; Xia, J. L.; Tao, N. J., Ionic Screening of Charged-Impurity Scattering in Graphene. Nano Lett 2009, 9 (4), 1621-1625.
61.Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M., Charged-impurity scattering in graphene. Nat Phys 2008, 4 (5), 377-381.
62.Kiani, M. J.; Harun, F. K. C.; Ahmadi, M. T.; Rahmani, M.; Saeidmanesh, M.; Zare, M., Conductance modulation of charged lipid bilayer using electrolyte-gated graphene-field effect transistor. Nanoscale Res Lett 2014, 9.
63.Liu, S. J.; Wen, Q.; Tang, L. J.; Jiang, J. H., Phospholipid-Graphene Nanoassembly as a Fluorescence Biosensor for Sensitive Detection of Phospholipase D Activity. Analytical chemistry 2012, 84 (14), 5944-5950.
64.Zrimi, J.; Ling, A. N.; Arifin, E. G. R.; Feverati, G.; Lesieur, C., Cholera Toxin B Subunits Assemble into Pentamers - Proposition of a Fly-Casting Mechanism. Plos One 2010, 5 (12).
65.Page, T. R.; Hayamizu, Y.; So, C. R.; Sarikaya, M., Electrical detection of biomolecular adsorption on sprayed graphene sheets. Biosensors & bioelectronics 2012, 33 (1), 304-308.
66.Ohno, Y.; Maehashi, K.; Yamashiro, Y.; Matsumoto, K., Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano letters 2009, 9 (9), 3318-22.
67.Shi, J.; Yang, T.; Kataoka, S.; Zhang, Y.; Diaz, A. J.; Cremer, P. S., GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes. Journal of the American Chemical Society 2007, 129 (18), 5954-61.
68.Williams, T. L.; Jenkins, A. T., Measurement of the binding of cholera toxin to GM1 gangliosides on solid supported lipid bilayer vesicles and inhibition by europium (III) chloride. Journal of the American Chemical Society 2008, 130 (20), 6438-43.
69.Yanagisawa, K., GM1 ganglioside and the seeding of amyloid in Alzheimer''s disease: Endogenous seed for alzheimer amyloid. Neuroscientist 2005, 11 (3), 250-260.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊